
Math 561/661 Fall 2018
Homework 6 Drew Armstrong

1. The Alternating Group A4 is Not Simple. Recall that A4 ⊆ S4 is the subgroup
of permutations of {1, 2, 3, 4} which can be expressed as the product of an even number of
transpositions.

(a) Prove that the following set is a normal subgroup:

V = {id, (12)(34), (13)(24), (14)(23)}EA4.

It follows that A4 is not a simple group.
(b) Furthermore, prove that V ∼= Z/2Z × Z/2Z. The letter V is for Klein’s Viergruppe.

[Once upon a time it was surprising that not every abelian group is cyclic.]

2. Primary Factors of a Finite Abelian Group. Let G be finite abelian group.

(a) Suppose that there exist subgroups H,K ⊆ G such that #G = #H · #K and
gcd(#H,#K) = 1. In this case, prove that G is an internal direct product:

G = H ×K.

(b) Now suppose that #G = pe11 · · · p
ek
k for distinct primes p1, . . . , pk. The Sylow Theorems

tell us that for each i there exists a unique subgroup Hi ⊆ G of size #H = peii . Use
part (a) and induction to prove that G is the direct product of these subgroups:

G = H1 ×H2 × · · · ×Hk.

This is called the primary factorization of G. It also true that each primary factor Hi

is a product of cyclic subgroups but this is harder to prove.
(c) In the special case that G is cyclic, prove that

G ∼=
Z
pe11 Z

× Z
pe22 Z

× · · · × Z
pekk Z

.

This is a non-constructive version of the Chinese Remainder Theorem.

3. Lagrange vs. Rank-Nullity. Let p ∈ Z be prime. You showed on the previous homework
that every nonzero element of the ring Fp := Z/pZ has a multiplicative inverse. In other words,
Fp is a field of size p.

(a) Let V be an n-dimensional vector space over Fp. Prove that #V = pn.
(b) Now let U ⊆ V be a k-dimensional subspace. Show that Lagrange’s Theorem and the

Rank-Nullity Theorem give you the same information about this subspace.

4. Double Cosets. Let G be a group and let H,K ⊆ G be any subgroups. For each pair
(h, k) ∈ H ×K consider the function ϕh,k(g) := hgk−1.

(a) Prove that this defines a group homomorphism ϕ : H ×K → Perm(G).
(b) For each g ∈ G, prove that the orbit satisfies

Orbϕ(g) = HgK := {hgk : h ∈ H, k ∈ K}.

These orbits are called double cosets. Unlike single cosets, we will see that double
cosets do not all have the same size.



(c) We also have a group action ψ : H → Perm(G/K) defined by ψh(gK) := (hg)K.
(Don’t bother to prove this.) For all g ∈ G prove that HgK is the disjoint union of
the cosets in the ψ-orbit of gK:

HgK =
∐

C ∈Orbψ(gK)

C.

(d) For all g ∈ G prove that Stabψ(gK) = H ∩ gKg−1, where gKg−1 := {gkg−1 : k ∈ K}.
(e) Combine (c) and (d) with Lagrange’s Theorem and Orbit-Stabilizer to conclude that

#HgK =
#H ·#K

#(H ∩ gKg−1)
.

5. Burnside’s Lemma. Let ϕ : G → Perm(X) be a group action, and let X/G denote the
set of orbits. For each g ∈ G, let Fixϕ(g) denote the set of elements fixed by g:

Fixϕ(g) := {x ∈ X : ϕg(x) = x} ⊆ X.
(a) Count the elements of the set {(g, x) ∈ G×X : ϕg(x) = x} in two ways to prove that∑

g∈G
#Fixϕ(g) =

∑
x∈X

# Stabϕ(x).

(b) Use Orbit-Stabilizer to obtain a formula for the number of orbits:

#(X/G) =
1

#G

∑
g∈G

#Fixϕ(g).

(c) Application: Consider a “bracelet” (circular string of beads) containing 6 beads. There
are k possible colors for the beads, and we regard two bracelets to be the same if they
are equivalent up to dihedral symmetry. Use the formula in part (b) to compute the
number of different bracelets. [Hint: The dihedral group D12 acts on a set X of size
k6. You want to compute the number of orbits: #(X/D12). To get started I’ll tell you
that #Fix(R) = k and #Fix(R2) = k2.]

Problems 6 and 7 are only for Sanjoy Kundu.

6. Normal Subgroups of Sn. Assuming that An is simple (which is true for n ≥ 5) you
will prove that An is the only non-trivial normal subgroup of Sn.

(a) Prove that the center of Sn is trivial: Z(Sn) = {id}. [Hint: Recall that a group element
g ∈ G is in the center if and only if its conjugacy class has size 1.]

(b) Suppose that N E Sn is a normal subgroup not equal to {id} or Sn. Use the fact that
An is simple to prove that N = An or #N = 2. [Hint: Consider N ∩An EAn.]

(c) Continuing from (b), if #N = 2 then we must have N = {id, τ} for some τ ∈ Sn such
that τ 6= id and τ2 = id. Prove that τ ∈ Z(Sn) and get a contradiction.

7. Gaussian Binomial Coefficients. Let p be prime and consider the field Fp := Z/pZ.

(a) For all n ≥ 0 we define the p-factorial:

[n]p! :=

n−1∏
i=0

(1 + p+ p2 + · · ·+ pi) ∈ Z.

Prove that #GLn(Fp) = p(
n
2) ·(p−1)n ·[n]p!. [Hint: The columns of an invertible matrix

are just an ordered basis for the vector space Fnp . Argue that there are pn − 1 ways to



choose the first basis vector, then pn − p ways to choose the second basis vector, etc.,
so that #GLn(Fp) =

∏n−1
i=0 (pn − pi).]

(b) Let X be the set of all k-dimensional subspaces of Fnp . The group GLn(Fp) acts on X
in the obvious way. For any k-dimensional subspace U ∈ X, prove that the stabilizer
of U is isomorphic to the following subgroup of GLn(Fp):{(

A C

0 B

)
: A ∈ GLk(Fp), B ∈ GLn−k(Fp), C ∈ Matk×(n−k)(Fp)

}
.

[Hint: Choose a basis u1,u2, . . . ,un for Fnp such that u1,u2, . . . ,uk is a basis for U .]
(c) Combine parts (a) and (b) with the Orbit-Stabilizer Theorem to prove that

#X =
[n]p!

[k]p! · [n− k]p!
.

This is called a Gaussian binomial coefficient.


