
Math 561/661 Fall 2018
Homework 5 Drew Armstrong

1. Quotient Rings. Let (R,+,×, 0, 1) be a commutative ring. Technically: This means
that (1) (R,+, 0) is an abelian group, (2) (R,×, 1) is a commutative monoid (abelian group
without inverses), and (3) for all a, b, c ∈ R we have a(b+ c) = ab+ ac.

(a) Let I ⊆ R be an additive subgroup and recall that “addition of cosets” is well-defined:

(a+ I) + (b+ I) = (a+ b) + I.

Thus we obtain the quotient group (R/I,+, 0 + I). Now suppose that for all a ∈ R
and b ∈ I we have ab ∈ I. (Jargon: We say that I ⊆ R is an ideal.) In this case prove
that the following “multiplication of cosets” is well-defined:

(a+ I)(b+ I) = (ab) + I.

It follows that (R/I,+,×, 0 + I, 1 + I) is a ring, called the quotient ring. [You do not
need to check all the details.]

(b) Apply part (a) to show that Z/nZ is a ring.

2. The Fermat-Euler-Lagrange Theorem, Part II. Let (R,+,×, 0, 1) be a ring and let
R× ⊆ R denote the subset of elements that have multiplicative inverses. We call (R×,×, 1)
the group of units.

(a) For all n ∈ Z prove that (Z/nZ)× = {a + nZ : gcd(a, n) = 1}. [Hint: If gcd(a, n) = 1
then we have aZ+nZ = 1Z, hence there exist integers x, y ∈ Z with ax+ny = 1. This
is sometimes called Bézout’s Identity.]

(b) Euler’s Totient Theorem. Euler’s totient function is defined by φ(n) := #(Z/nZ)×.
For all a ∈ Z with gcd(a, n) = 1 prove that

aφ(n) = 1 mod n.

(c) Fermat’s Little Theorem. If p ∈ Z is prime and p - a prove that

ap−1 = 1 mod p.

3. Chinese Remainder Theorem. In this problem I will use the shorthand notation
[a]n := a+ nZ. Now fix some m,n ∈ Z with gcd(m,n) = 1 and consider the function

ϕ : Z/mnZ → Z/mZ× Z/nZ
[a]mn 7→ ([a]m, [a]n).

(a) Prove that ϕ is well-defined. That is, for all a, a′ ∈ Z prove that

[a]mn = [a′]mn implies [a]m = [a′]m and [a]n = [a′]n.

(b) For all c ∈ Z prove that m|c and n|c together imply (mn)|c. [Hint: There exist x, y ∈ Z
such that mx+ ny = 1.] Use this conclude that ϕ is injective.

(c) Prove that ϕ is surjective. [Big Hint: Given ([a]m, [b]n) we want to find c ∈ Z such
that [a]m = [c]m and [b]n = [c]n. Try c := any + bmx.]

(d) Prove that ϕ restricts to a bijection

ϕ : (Z/mnZ)× ←→ (Z/mZ)× × (Z/nZ)×.

[Hint: Use the fact that gcd(k, `) = 1 if and only if there exist integers x, y ∈ Z such
that kx+ `y = 1.] It follows that Euler’s totient is multiplicative: φ(mn) = φ(m)φ(n).



4. Automorphisms of a Cyclic Group. For all integers n ∈ Z prove that

Aut(Z/nZ) ∼= (Z/nZ)×.

[Hint: Show that any automorphism ϕ : Z/nZ → Z/nZ has the form ϕa([k]n) := [ak]n for
some integer a ∈ Z satisfying gcd(a, n) = 1.]

5. Matrix Representation of Isometries. Consider the following set of matrices:

G =

{(
A u

0 · · · 0 1

)
: A ∈ O(n) and u ∈ Rn

}
⊆ Matn+1(R).

(a) Prove that G ⊆ Matn+1(R) is a subgroup. [Hint: Block multiplication.]
(b) Use results from class to prove that G is isomorphic to the group Isom(Rn) of isometries

of n-dimensional Euclidean space.

6. Second and Third Isomorphism Theorems.

(a) Let H,K ⊆ G be subgroups with K EG normal. We already know that HK ⊆ G is a
subgroup. Prove that K EHK is a normal subgroup and the map h 7→ hK defines a
surjective group homomorphism H → (HK)/K with kernel H ∩K. It follows that

H

H ∩K
∼=
HK

K
.

(b) Now consider another normal subgroup N EG such that N ⊆ K. Prove that N EK
is normal and that the map gN 7→ gK defines a surjective group homomorphism
G/N → G/K with kernel K/N . It follows that

G/N

K/N
∼=
G

K
.

7. Dimension of a Vector Space, Part II. Let V be a vector space over a field F.

(a) Let u1, . . . ,un ∈ V be a basis and consider the subspaces Vk := F(u1, . . . ,uk) ⊆ V .
Prove for all 0 ≤ k < n that there is no subspace U satisfying

Vk ( U ( Vk+1.

(b) Conversely, suppose that we have a maximal chain of subspaces

{0} = V0 ( V1 ( · · · ( Vn = V.

Prove by induction that Vk has a basis of size k, hence dim(Vk) = k. Parts (a) and (b)
together show that dimension equals the length of a maximal chain of subspaces

(c) If U ⊆ V is a subspace you may assume that the quotient group V/U is a vector space.
Prove that dim(V/U) = m if and only if there exists a maximal chain of subspaces

U = V0 ( V1 ( · · · ( Vm = V.

[Hint: You may assume that the Correspondence Theorem and the First Isomorphism
Theorem still hold after replacing the word “subgroup” with “subspace.”1]

(d) Prove that dim(V ) = dim(U) + dim(V/U). [Hint: Combine (a), (b) and (c).]
(e) Rank-Nullity Theorem. For any linear function ϕ : V →W prove that

dim(V ) = dim(kerϕ) + dim(imϕ).

1For that matter, the Second and Third Isomorphism Theorems also hold.


