
Math 561/661 Fall 2018
Homework 2 Drew Armstrong

1. Powers of a Cycle. Consider the standard 12-cycle in cycle notation:

c := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12.

Compute the first twelve powers c, c2, c3 . . . , c12 and express each of them in cycle notation.
Try to guess what the k-th power of an n-cycle looks like.

2. Homomorphism and Isomorphism. Let (G, ∗, δ) and (H, •, ε) be abstract groups and
let f : G → H be a function. We say that f is a (group) homomorphism if it satisfies the
following condition:

for all a, b ∈ G we have f(a ∗ b) = f(a) • f(b).

(a) If f : G→ H is a homomorphism, prove that f(δ) = ε.
(b) If f : G→ H is a homomorphism, prove that f(a−1) = f(a)−1 for all a ∈ G.
(c) Suppose that f : G→ H is homomorphism and that the inverse function exists. Prove

that the function f−1 : H → G is also a homomorphism. It follows that invertible
homomorphisms are the same as isomorphisms.

3. Isometries = Orthogonal Matrices. Let x,y ∈ Rn be column vectors and let xT

denote the row vector corresponding to x. We define the standard inner product as follows:

〈x,y〉 := xTy =
∑
i

xiyi.

Recall the the distance between two points x,y ∈ Rn is defined by ‖x− y‖2 = 〈x− y,x− y〉
and recall that the following properties are satisfied:

• We have ‖x‖2 = 〈x,x〉 = 0 if and only if x = 0.
• For all x,y ∈ Rn we have 〈x,y〉 = 〈y,x〉.
• For all x,y, z ∈ Rn and α, β ∈ R we have 〈x, αy + βz〉 = α〈x,y〉+ β〈x, z〉.

The goal of this problem is to show the following: If f : Rn → Rn is any function that preserves
distance and sends the origin to itself then it preserves the inner product. Hence the function
is linear. Hence we have f(x) = Ax for some n× n matrix A, which must satisfy ATA = I.

(a) Assume that the function f : Rn → Rn preserves the distance between any two points
(i.e., ‖f(x) − f(y)‖2 = ‖x − y‖2 for all x,y ∈ Rn) and sends the origin to iself (i.e.,
f(0) = 0). Prove that

〈f(x), f(y)〉 = 〈x,y〉 for all x,y ∈ Rn.

(b) Continuing from part (a), prove that this f is a linear function. [Hint: For all x,y ∈ Rn
and α ∈ R show that

‖f(x + y)− (f(x) + f(y))‖2 = 0 and ‖f(αx)− αf(x)‖2.]

(c) Continuing from (a) and (b), show that f(x) = Ax for some n × n matrix satisfying
ATA = I. [Hint: Let e1, . . . , en ∈ Rn be the standard basis vectors. Then f(ei) is
the i-th column of A. To show that ATA = I use the fact that eTi Bej is equal to the
i, j-entry of an arbitrary matrix B.]



4. Rotation and Reflection. In class I showed that every element of O2(R) has the form

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
or Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

(a) Verify that Rθ ∈ SO2(R) and that Fθ ∈ O2(R)− SO2(R).
(b) We saw on the previous homework that x 7→ Rθx is a rotation. Use a similar argument

to prove that x 7→ Fθx is a reflection.
(c) For all α, β ∈ R prove that

• RαRβ = Rα+β,
• FαFβ = Rα−β,
• RαFβ = Fβ(Rα)−1 = Fα+β.

(d) Fix a positive integer n and define the matrices R := R2π/n and F := F0. The subgroup
of O2(R) generated by the set {R,F} has 2n elements. Use (c) to find them all.

5. The Fermat-Euler-Lagrange Theorem. Let (G, ∗, ε) be a group and let g ∈ G be any
element. Define the function fg : G→ G by fg(a) := g ∗ a.

(a) Prove that fg : G→ G is a bijection.

(b) If G is a finite abelian group, prove that g#G = ε. [Hint: Suppose that G =
{a1, a2, . . . , an}. Explain why

∏
i ai =

∏
i fg(ai). Rearrange and then cancel.]

[Remark: This theorem is also true for finite non-abelian groups but we don’t have the
technology to prove it yet.]

6. Join of Two Subgroups. Let G be a group and let H,K ⊆ G be subgroups. Recall that
the subgroup generated by the union H ∪K is called the join:

H ∨K := 〈H ∪K〉 = the intersection of all subgroups that contain H ∪K.

(a) If (G,+, 0) is abelian, we define the sum of H and K as follows:

H +K := {h+ k : h ∈ H, k ∈ K}.
Prove that this is a subgroup.

(b) If (G,+, 0) is abelian, use part (a) to prove that H ∨K = H +K.
(c) If (G, ∗, ε) is non-abelian, show that the following set is not necessarily a subgroup,

and hence it does not coincide with the join:

H ∗K := {h ∗ k : h ∈ H, k ∈ K}.
[Hint: The smallest non-abelian group is S3.]


