
Math 561 H Fall 2011
Homework 1 Solutions Drew Armstrong

1. Let G be a group. Prove that the identity element of G is unique (that is, there is only
one element of G satisfying the defining property of an identity element). This justifies our
use of the special symbol “e”.

Proof. Suppose that there exist e, f ∈ G such that ae = ea = a for all a ∈ G and bf = fb = b
for all b ∈ G. Letting a = f and b = e yields e = ef = f . �

2. Let G be a finite group.
(a) Show that there are an odd number of x ∈ G such that x3 = e.
(b) Show that there are an even number of x ∈ G such that x2 6= e.

(Hint: What is the inverse of xn?)

Proof. Given x ∈ G we first note that (xn)−1 = (x−1)n (make sure you know why this is
true). To prove part (a) we want to show that the size of the set S = {x ∈ G : x3 = e} is
odd. First note that we have x ∈ S ⇒ x−1 ∈ S because inverting both sides of x3 = e gives
(x−1)3 = e−1 = e. Then substituting x→ x−1 in the same argument gives x−1 ∈ S ⇒ x ∈ S.
Thus the elements of S come in pairs (x, x−1) with x 6= x−1 and possibly some single elements
with x = x−1. But x ∈ S and x = x−1 together imply that e = x2 ⇒ x = x3 ⇒ x = e. Hence
e ∈ S is the only element of S that does not come from a pair (x, x−1). We conclude that |S|
is odd.

To prove part (b) let T = {x ∈ G : x2 6= e}. As above we can see that x ∈ T ⇔ x−1 ∈ T .
Furthermore, by definition no element of T satisfies x = x−1. Hence the elements of T come
in pairs (x, x−1) and we conclude that |T | is even. �

3. Let G be a finite group. For all a, b ∈ G, show that ab and ba have the same order as
elements of G.

Proof. We wish to show that the sets 〈ab〉 = {(ab)k : k ∈ Z} and 〈ba〉 = {(ba)k : k ∈ Z} have
the same size. This will be done if we can find a bijection from 〈ba〉 to 〈ab〉. We claim that
φa from Problem 4 is such a bijection.

Indeed, note that φa maps 〈ba〉 into 〈ab〉 because φa((ba)k) = a(ba)ka−1 = (ab)k(aa−1) =
(ab)k ∈ 〈ab〉. The injective (one-to-one) property follows from Problem 4, and the map φa :
〈ba〉 → 〈ab〉 is surjective (onto) because for any (ab)k ∈ 〈ab〉 we have (ab)k = φa((ba)k). �

4. Let G be a group and fix an element g ∈ G. Define a function φg : G→ G by φg(h) = ghg−1

for all h ∈ G.
(a) Prove that φg is a bijection (one-to-one and onto).
(b) Prove that φg(ab) = φg(a)φg(b) for all a, b ∈ G.

These two properties mean that φg is an automorphism (a “symmetry”) of G.

Proof. We first show part (a). To show that φg is injective (one-to-one), suppose that φg(a) =
φg(b), or gag−1 = gbg−1, for some a, b ∈ G. Applying the map φg−1 to both sides shows that
a = g−1gag−1g = g−1gbg−1g = b. To show that φg is surjective (onto) consider an arbitrary
group element h ∈ G. This element is hit by φg because φg(g−1hg) = h. These two properties
show that φg is a bijection from G to itself, otherwise known as a permutation of G.

To show (b), note that for any a, b ∈ G we have

φg(a)φg(b) = (gag−1)(gbg−1) = ga(gg−1)bg−1 = gabg−1 = φg(ab).



�

So not only is φg a permutation of the set G, but it also preserves the group structure of
G. Such a map is called an automorphism of G, and the particular map φg is called “conjugation
by g”.

5. Suppose that 1, 9, 16, 22, 53, 74, 79, 81 are eight members of a nine-element subgroup of
(Z/91Z)×. Which element has been left out? Recall: (Z/91Z)× is the multiplicative group of
invertible elements of Z/91Z. What is the inverse of 9 in this group?

A subgroup must be closed. By trial-and-error multiplying the given eight numbers together
(mod 91) you will find that only one extra number shows up. That is, 29. The following
multiplication table shows everything we could possibly want to know about this group.

× 1 9 16 22 29 53 74 79 81
1 1 9 16 22 29 53 74 79 81
9 9 81 53 16 79 22 29 74 1
16 16 53 74 79 9 29 1 81 22
22 22 16 79 29 1 74 81 9 53
29 29 79 9 1 22 81 53 16 74
53 53 22 29 74 81 79 9 1 16
74 74 29 1 81 53 9 16 22 79
79 79 74 81 9 16 1 22 53 29
81 81 1 22 53 74 16 79 29 9

In particular, it is a closed subset of (Z/91Z)× because no extra numbers show up in the
table. (It is not everything, because |(Z/91Z)×| = 90 and our group only has 9 elements.) We
can see that every element of our group has an inverse because 1 shows up (exactly once) in
each row and column. In particular note that 9 × 81 = 1 mod 91, hence 9−1 = 81. Finally,
note that our group is abelian (commutative) because the table is symmetric about its main
diagonal. [Is our group cyclic? Hint: NO. How can you tell from the table?]

6. Let Mn(R) denote the set of all n×n matrices with real entries. We define the (real) general
linear group, special linear group, orthogonal group, and special orthogonal group as follows:

GLn(R) := {A ∈Mn(R) : detA 6= 0},
SLn(R) := {A ∈Mn(R) : detA = 1},
On(R) := {A ∈Mn(R) : AAT = I},

SOn(R) := {A ∈Mn(R) : AAT = I, detA = 1}.
Why is GLn(R) a group? Show that SLn(R), On(R) and SOn(R) are subgroups of GLn(R).

Your answer will vary, depending on your background in linear algebra. I’ll give my version
of an answer.

First note that GLn(R) is closed under matrix multiplication because if det(A) 6= 0 and
det(B) 6= 0, it follows that det(AB) = det(A) det(B) 6= 0. The identity matrix I is in GLn(R)
since det(I) = 1 and GLn(R) is closed under inverses because of the fact that A−1 exists if
and only if det(A) 6= 0.

Note that det(A) = 1 implies det(A) 6= 0, hence SLn(R) is a subset of GLn(R). It is closed
because det(A) = 1 and det(B) = 1 imply det(AB) = det(A) det(B) = 1. The identity matrix
is in SLn(R) and for A ∈ SLn(R) we have A−1 ∈ SLn(R) because det(A−1) = 1/ det(A) = 1.

Note that AAT = I implies det(A) = ±1 6= 0 because

1 = det(I) = det(AAT ) = det(A) det(AT ) = det(A) det(A).



Hence On(R) ⊆ GLn(R). The identity matrix is in On(R) because IIT = I, and if AAT = I
then inverting both sides gives

I = I−1 = (AAT )−1 = (AT )−1A−1 = (A−1)TA−1.

A slightly fancy result (which I’ll prove in class) then implies that A−1(A−1)T = I.
Finally, note that SOn(R) = SLn(R) ∩On(R). It is a general fact (can you prove it?) that

the intersection of two subgroups is a subgroup.

7. Given a matrix A ∈ Mn(R) we can define a function from pairs u, v ∈ Rn of column
vectors to scalars R by (u, v)A := uTAv. (Such a function is called a bilinear form — it is a
generalization of the dot product.) If (u, v)A = (u, v)B for all vectors u, v, prove that the
matrices A,B are equal. (Hint: What if u, v are standard basis vectors?)

Proof. Suppose that (u, v)A = (u, v)B for all column vectors u, v ∈ Rn. Let ej ∈ Rn denote the
column vector with a 1 in its j-th position and zeroes elsewhere. Then by definition Aej equals
is the j-th column of A. Taking the dot product of this with ei gives eT

i (Aej) = aij , which is
the entry in the i-th row and j-column of A. Finally, note that aij = (ei, ej)A = (ei, ej)B = bij
for all 1 ≤ i, j ≤ n. Since A and B have the same entries they are equal. �

(We know that we can think of matrices A ∈Mn(R) under multiplication as linear functions
from Rn to Rn under composition. [And this is the correct way to think.] Problem 7
shows that we could also think of a matrix A ∈ Mn(R) as a bilinear function from Rn × Rn

to R. Unfortunately, such functions cannot be composed. What could matrix multiplication
mean in this case?)

8. Let (u, v) = uT v denote the dot product of column vectors u, v ∈ Rn. We define the length
‖u‖ of a vector u by ‖u‖2 := (u, u), so that ‖u−v‖ represents the distance between two vectors
u, v. Now consider an orthogonal matrix A ∈ On(R). Given two vectors u, v ∈ Rn, prove
that ‖u− v‖ = ‖Au−Av‖.

Proof. Since A ∈ On(R) note that ATA = I. Then by definition we have

‖Au−Av‖2 = ‖A(u− v)‖2 = (A(u− v))T (A(u− v)) = (u− v)TATA(u− v)

= (u− v)T I(u− v) = (u− v)T (u− v) = ‖u− v‖2.
Taking square roots gives the result. �

(It is also true — but harder to show — that any isometry (distance-preserving map) of Rn

that fixes the origin 0 ∈ Rn is given by u 7→ Au for some orthogonal matrix A ∈ On(R). This
fact is a bit surprising, and it gives a strong geometric meaning to the orthogonal group.)


