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1 Subspaces Associated to Linear Functions

In the last section we discussed purely symbolic properties of matrix inversion. Recall: Let A
be an m×n matrix. An n×m matrix B is called a right inverse of A when AB = Im and an
m× n matrix C is called a left inverse of A when CA = In. If A has both a right inverse B
and a left inverse C then the two must be equal because

B = InB = (CA)B = C(AB) = CIm = C.
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In this case we say that A−1 = B = C is the unique two-sided inverse of A. Any matrix
having a two-sided inverse is called invertible. We also proved the following basic facts: If
A−1 exists then (A∗)−1 exists and is equal to (A−1)∗. If A−1, B−1 and AB exist then (AB)−1

exists and is equal to B−1A−1.

Precisely when do inverse matrices exist? This question is surprisingly subtle. In order to
answer it we must ascend to a higher level of abstraction. To each linear function between
vector spaces V →W we associate certain subspaces of V and W .

1.1 Kernel and Image of a Linear Function.

Consider a linear function f : V → W between vector spaces.1 We define the kernel and the
image of f as follows:

ker(f) := {the set of v ∈ V such that f(v) = 0},
im(f) := {the set of w ∈W such that w = f(v) for some v ∈ V }.

Remark: The kernel and image of f are sometimes called the nullspace and range.2

We observe that ker(f) ⊆ V is a subspace. Indeed, given vectors v1, . . . ,vn ∈ ker(f) in the
kernel and scalars a1, . . . , an, the linearity of f implies

f(a1v1 + · · ·+ anvn) = a1f(v1) + · · ·+ anf(vn) = a10 + · · ·+ an0 = 0,

so the linear combination a1v1 + · · ·+anvn is also in the kernel. Furthermore, we observe that
im(f) ⊆ W is a subspace. Indeed, consider any vectors w1, . . . ,wn ∈ im(f) in the image
and any scalars a1, . . . , an. By definition we can write wi = f(vi) for some vectors vi, hence
from the linearity of f we have

a1w1 + · · ·+ anwn = a1f(v1) + · · ·+ anf(vn) = f(a1v1 + · · ·+ anvn).

Since a1w1 + · · ·+ anwn = f(v′) for some vector v′ we conclude that the linear combination
a1w1 + · · ·+ anwn is also in the image.

The invertibility of a linear function is closely related to its kernel and image. The first
observation is true by definition of the words image and surjective:3

f : V → W is surjective if and only if im(f) = W .

1Over R or C; it doesn’t matter. Indeed, the same theory applies to vector spaces over arbitrary fields.
2Kernel and image are standard terminology in abstract algebra. Nullspace and range are more common

in applied linear algebra. For matrices, the image/range is often called the column space. (Too many words; I
know.) See the next section.

3The words surjective and injective were introduced by Bourbaki in the 1940s. The older equivalent terms
are onto and one-to-one.
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The next observation requires a short proof:

f : V → W is injective if and only if ker(f) = {0}.

Proof. Recall that any linear function satisfies f(0) = 0. If f is injective then f(v) = 0 = f(0)
implies v = 0, and hence ker(f) = {0}. Conversely, suppose that ker(f) = {0}. To show
that f is injective, let f(v1) = f(v2) for some vectors v1,v2. Then we have

f(v1) = f(v2)

f(v1)− f(v2) = 0

f(v1 − v2) = 0 linearity of f

v1 − v2 = 0 ker(f) = {0}
v1 = v2.

Hence f is injective. �

1.2 Isomorphism of Vector Spaces.

Let f : V →W be a function between vector spaces. We say that f is an isomorphism4 when
the following properties are satisfied:

(a) f is linear,

(b) f is surjective,

(c) f is injective.

Properties (b) and (c) say that f is a bijection,5 which is equivalent to being invertible.
Furthermore, one can check that the inverse function f−1 : W → V is also linear. If there
exists an isomorphism between vector spaces V and W then we will write

V ∼= W.

When V and W are finite dimensional we have the following important fact:

Isomorphism of Finite Dimensional Vector Spaces.

V ∼= W ⇐⇒ dim(V ) = dim(W ).

Proof. =⇒: Suppose that V ∼= W and let f : V → W be a specific isomorphism. Suppose
that dim(V ) = n and let {b1, . . . ,bn} be a basis for V . Then I claim that {f(b1), . . . , f(bn)}
is a basis for W , from which it will follow that dim(W ) = n. There are two things to show:

4Also called a linear isomorphism, or an isomorphism of vector spaces.
5Another Bourbaki term. The older word is one-to-one correspondence.
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• Independent. Suppose that a1f(b1) + · · · + anf(bn) = 0 for some scalars a1, . . . , an.
Linearity of f implies that

0 = a1f(b1) + · · ·+ anf(bn) = f(a1b1 + · · ·+ anbn),

and then the fact that f is injective implies that

0 = a1b1 + · · ·+ anbn.

Finally, the fact that {b1, . . . ,bn} is independent implies that a1 = · · · = an = 0.

• Spanning. Consider any vector w ∈ W . Since f is surjective we have w = f(v) for
some v ∈ V , and since {b1, . . . ,bn} spans v we can write

v = a1b1 + · · ·+ anbn

for some scalars a1, . . . , an. Finally, by linearity of f we have

w = f(v) = f(a1b1 + · · ·+ anbn) = a1f(b1) + · · ·+ anf(bn),

which shows that {f(b1), . . . , f(bn)} spans W .

⇐=: Suppose that dim(V ) = dim(W ) = n. Choose bases v1, . . . ,vn ∈ V and w1, . . . ,wn ∈W
and define a linear function f : V → W by sending vi 7→ wi for all i. Then for any vector
v = a1v1 + · · ·+ anvn ∈ V we have

f(a1v1 + · · ·+ anvn) = a1f(v1) + · · ·+ anf(vn) = a1w1 + · · ·+ anwn.

Furthermore, the function f :−1: W → V defined by sending wi 7→ vi is the inverse of f :

f−1(a1w1 + · · ·+ anwn) = a1f
−1(w1) + · · ·+ anf

−1(wn) = a1v1 + · · ·+ anvn.

�

As a consequence of this theorem, any n-dimensional vector space over R is isomorphic to Rn.
Indeed, let v1, . . . ,vn ∈ V be a basis. Then the following function V → Rn is an isomorphism:

a1v1 + · · ·+ anvn 7→

a1...
an

 .

We will apply these ideas in the next section.

2 Subspaces Associated to Matrices

Recall that an m× n matrix over R is the same thing as a linear function Rn → Rm.6 In this
case the kernel and image have a special interpretation.

6When I write Rn I always assume that we are working with the standard basis.
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2.1 The Nullspace of a Matrix.

Given an m× n matrix A we define the nullspace:

N (A) := {the set of x ∈ Rn such that Ax = 0}.

It is easy to check that N (A) ⊆ Rm is a subspace. Indeed, N (A) is just the kernel of the
linear function A : Rn → Rm. More interestingly, we can use the concept of the nullspace to
express the fact that a given vector is simultaneously orthogonal to a given set of vectors:

x ∈ N (A) ⇐⇒ Ax = 0 ⇐⇒ x is orthogonal to every row of A.

Indeed, let aT
i be the ith row vector of A. If Ax = 0 then we have0

...
0

 = 0 = Ax =

− aT
1 −
...

− aT
m −

x =

aT
1 x
...

aT
mx

 .

Comparing entries on the left and right gives aT
i x = 0 for all i. In other words, the vector x

is orthogonal to each row vector of A. Equivalently, we have

ATx = 0 ⇐⇒ x is orthogonal to every column of A.

It is important to get comfortable with this idea because it is the foundation of least squares.7

2.2 The Column Space of a Matrix.

We can think of an m× n matrix A as a linear function A : Rn → Rm. In this case the image
of A is called the column space:

C(A) = {the set of Ax ∈ Rm for all x ∈ Rn}.

But why is it called the column space? Let a1, . . . ,an ∈ Rm be the column vectors of A. Then
for any vector x = (x1, . . . , xn) ∈ Rn we have

Ax =
(

a1 · · · an

)x1...
xn

 = x1a1 + · · ·+ xnan,

which is a linear combination of the columns of A. So we can also write

C(A) = {all linear combinations of the columns of A}.
7For the impatient: Let Px be the orthogonal projection of a point x onto the column space of a matrix A.

Then the vector Px− x must be orthogonal to every column of A, hence AT (Px− x) = 0.
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Similarly, we can define the row space of A:

R(A) := C(AT ) = {all linear combinations of the rows of A}.

Note that C(A) is a subspace of Rm because each column of an m×n matrix lives in Rm, while
R(A) is a subspace of Rn. So the row space and column space cannot be directly compared.

2.3 Orthogonality of the Subspaces.

We observed above that x ∈ N (A) if and only if x is orthogonal to every row of A. We can
express this as follows:

N (A) = R(A)⊥.

In general, given a subspace U ⊆ V of an inner product space V we let U⊥ ⊆ V denote the
set of vectors that are orthogonal to every vector in U :8

U⊥ = {the set of v ∈ V such that 〈u,v〉 = 0 for all u ∈ U}.

You will check on the homework that U⊥ ⊆ V is also a subspace. Furthermore, if V finite
dimensional then you will prove the following dimension formula:

dimU + dimU⊥ = dimV.

In the case of the rowspace and nullspace of a matrix A we obtain the following theorem.

The Rank-Nullity Theorem. For any matrix A we have

dimR(A) + dimN (A) = the number of columns of A.

Indeed, if A is m× n then R(A) and N (A) are orthogonal subspaces of Rn, so that

dimR(A) + dimN (A) = n.

This is often called the rank-nullity theorem because dimR(A) is called the rank and dimN (A)
is called the nullity of the matrix A.9 By replacing A with AT we obtain the equivalent formula

dim C(A) + dimN (AT ) = m,

which does not have a nice name.

8We read U⊥ as “U perp”.
9The dimension of C(A) is also called the rank of A. The fact that R(A) and C(A) have the same dimension

is a deep fact called the Fundamental Theorem. See the next section.
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3 The Fundamental Theorem

In this section we will prove the most important theorem about matrices. Following Gilbert
Strang, I will call this “The Fundamental Theorem”.

The Fundamental Theorem of Linear Algebra. For any m× n matrix A we have

dimR(A) = dim C(A).

This common dimension is called the rank of A, sometimes written rank(A).

This result is a bit surprising because the row space R(A) lives in Rn, while the column space
C(A) lives in Rm, so there is no direct way to compare them. Evidently there is some subtle
form of communication between the rows and columns of a matrix. We will see in the next
section that the Fundamental Theorem implies the following facts:

• Invertible matrices are square.

• If A and B are square of the same size, then AB = I if and only if BA = I.

• If A is square then A has orthonormal columns if and only if it has orthonormal rows.

The proof is more difficult than you might expect, but it is worth going through the details
because the ideas in the proof quite useful. There are two main steps:

(1) Let E and F be any matrices such that E has a left inverse E′E = I and F has a right
inverse FF ′ = I.10 Then we will show that

dimR(EAF ) = dimR(A) and dim C(EAF ) = dim C(A).

(2) For any matrix A, we will find matrices E and F , as in (1), so that EAF has the
following simple form:

EAF =

(
Ir Or,n−r

Om−r,r Om−r,n−r

)
,

where Ir is the square r × r identity matrix. Since the matrix on the right clearly has
row space and column space of dimension r,11 it will follow that

dimR(A) = dimR(EAF ) = r = dim C(EAF ) = dim C(A).

Aside from these two main steps, we will further organize the proof into substeps, labeled by
(a), (b), etc., since there are many details.

10These one-sided inverses need not be unique.
11The first r rows are a basis for the row space, while the first r columns are a basis for the column space.
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Proof of Step (1).

(a) For any matrix E such that EA exists, we have

R(EA) ⊆ R(A).

Indeed, I claim that each row of EA is a linear combination of the rows of A. To see this, let
E have ith row (ei1, . . . , eim) and let A have ith row aT

i . Then

(ith row of EA) = (ith row of E)A

=
(
ei1 · · · eim

)
A

=
(
ei1 · · · eim

)


aT
1

...

aT
m


= ei1a

T
1 + · · ·+ eimaT

m.

In the last step we used block multiplication. Since every row of EA is in the rowspace R(A) it
follows that any linear combination of rows of EA is in R(A). In other words, R(EA) ⊆ R(A).

(b) If E has a left inverse E′E = I then we also have

R(A) ⊆ R(EA).

Indeed, applying step (a) to the matricx B = EA and E′ shows that

R(A) = R(E′EA) = R(E′B) ⊆ R(B) = R(EA).

Then combining (a) and (b) shows that R(EA) = R(A), hence

dimR(EA) = dimR(A).

(c) For any matrix F such that AF exists, we have

C(A) ⊆ C(AF ).

Indeed, I claim that any column of AF is a linear combination of the columns of A. The proof
is similar to part (a). Let (f1j , . . . , fnj) be the jth column of F and let aj be the jth column
of A. Then we have

(jth column of AF ) = A(jth column of F )

=
(

a1 · · · an

)f1j...
fnj


8



= f1ja1 + · · ·+ fnjan.

(d) If F has a right inverse FF ′ = I, then applying (c) to the matrix B = AF and F ′ gives

C(AF ) = C(B) ⊆ C(BF ′) = C(AFF ′) = C(A),

hence C(AF ) = C(A). It follows that

dim C(AF ) = dim C(A).

Next we will show that dimR(A) = dimR(AF ) and dim C(EA) = dim C(A). This time the
corresponding spaces are not equal, but they are still isomorphic.

(e) For any matrix A with rows aT
i and any matrix F of appropriate shape, note that

(ith row of AF ) = (ith row of A)F = aT
i F.

Consider the function ϕ : R(A)→ R(AF ) defined by multiplying on the right by F . That is,
for any vector12 bT = b1a

T
1 + · · ·+ bmaT

m ∈ R(A) we define

ϕ(bT ) := bTF

= ϕ(b1a
T
1 + · · ·+ bmaT

m)F

= b1(a
T
1 F ) + · · ·+ bm(aT

mF ) ∈ R(AF ).

Matrix multiplication is linear, so ϕ is a linear function. Next, for any vector

cT := c1(a
T
1 F ) + · · ·+ cm(aT

mF ) ∈ R(AF )

we have
cT = ϕ(c1a

T
1 + · · ·+ cnaT

m),

so that ϕ is surjective. Finally, since F has a right inverse FF ′ = I we see that ϕ is injective.
Indeed, if ϕ(bT ) = ϕ(cT ) then

ϕ(bT ) = ϕ(cT )

bTF = cTF

(bTF )F ′ = (cTF )F ′

bT (FF ′) = cT (FF ′)

bT = cT .

Hence ϕ is an isomorphism R(A) ∼= R(AF ), and it follows from the previous section that

dimR(AF ) = dimR(A).

12Usually we think of R(A) as space of column vectors, but for the purpose of this proof it is more convenient
to think of R(A) as space of row vectors.
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(f) Similarly, if E has a left inverse E′E = I then we will show that C(EA) ∼= C(A). To do
this we consider the function ψ : C(A)→ C(EA) defined by multiplying on the left by E. To
be explicit, let aj be the jth column of A,13 so that

(jth column of EA) = E(jth column of A) = Eaj .

Consider the function ψ : C(A) → C(EA) defined by multiplying on the left by E. That is,
for any vector b = b1a1 + · · ·+ bnan ∈ C(A) we define

ψ(b) := Eb

= E(b1a1 + · · ·+ bnan)

= b1(Ea1) + · · ·+ bn(Ean) ∈ C(EA).

Following an argument similar to (e), we see that ψ is a vector space isomorphism, and hence

dim C(EA) = dim C(A).

Proof of Step (2). The proof of this step is an algorithm. For this purpose we introduce
the important new idea of elementary matrices.

(g) Elementary Matrices. We define three families of square matrices.14

• For any index i and nonzero scalar λ we define

Di(λ) =


1

1
λ

1
1

 .

The main diagonal entries are 1, except of the ii entry, which is λ. The off-diagonal
entries are all zero.

• For any indices i 6= j and any scalar λ we define

Lij(λ) =


1

1 · · · λ

1
...
1

1

 .

The main diagonal entries are 1. The only other nonzero entry is λ in the ij position.

13In part (e) we used aT
i for the ith row of A. Hopefully you don’t mind that I’m recycling the notation aj

for a different purpose. Gilbert Strang uses a∗i to denote rows of a matrix, but I don’t like this because I use ∗
for conjugate transpose.

14It is always a struggle to find a notation for elementary matrices. Here I use the Wikipedia notation. I
guess that D is for Diagonal, T is for Transposition and L is for Lower triangular, since many algorithms only
use lower triangular Lij(λ) (i.e., with i > j). I prefer to think of D for Dilation and L for eLimination.
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• For any indices i 6= j we define

Tij =


1

0 · · · 1
... 1

...
1 · · · 0

1

 .

The main diagonal entries are 1 except for zeros in the ii and jj positions. The off-
diagonal entries are zero except for 1 in the ij and ji positions.

We observe that each of these (square) elementary matrices is invertible. That is, we have

Di(λ)−1 = Di(1/λ)

Lij(λ)−1 = Lij(−λ)

T−1ij = Tij .

But what are these matrices for?

(h) Row and Column Operations. Let A be an m × n matrix. For any matrix E we
have seen that each row of EA is a linear combination of the rows of A. To be precise, if
(ei1, . . . , eim) is the ith row of E and aT

i is the ith row of A, then

(ith row of EA) = ei1a
T
1 + · · ·+ eimaT

m.

When E is an m×m elementary matrix then we have the following elementary row operations.

• The function A Di(λ)A multiplies the ith row of A by λ.

• The function A  Lij(λ)A replaces the ith row of A by itself plus λ times the jth row
of A. Indeed, when k 6= i, the kth row of Lij(λ) is just a standard basis vector, whereas
the ith row of Lij(λ) is (0, . . . , 0, 1, 0, . . . , 0, λ, 0, . . . , 0) with 1 in the ith position and λ
in the jth position. Hence the ith row of EA is

0aT
1 + · · ·+ 0aT

i−1 + 1aT
i + 0aT

i+1 + · · ·+ 0aT
j−1 + λaT

j + 0aT
j+1 + · · ·+ 0aT

m.

• The function A TijA swaps the ith and jth rows of A.

Similarly, if F has jth column (f1j , . . . , fnj) and A has jth column aj , then

(jth column of AF ) = f1ja1 + · · ·+ fnjan.

When F is an elementary matrix then we have the following elementary column operations.

• The function A ADi(λ) multiplies the ith column of A by λ.

• The function A  ALij(λ) replaces the jth column of A by itself plus λ times the ith
column of A. The proof is the same as for rows.
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• The function A ATij swaps the ith and jth columns of A.

(i) The Algorithm. Finally, we can use elementary matrices to put the m × n matrix A
into a particularly nice form. If E1, . . . , Ek are elementary m ×m matrices and if F1, . . . , F`

are elementary n× n matrices then by performing row and column operations we will obtain

Ek · · ·E1E1AF1F2 · · ·F` = EAF.

Since elementary matrices are invertible, the products E = Ek · · ·E2E1 and F = F1F2 · · ·F`

are also invertible. In particular, E has a left inverse and F has a right inverse, so we can
apply the results from step (1).

Now we explain how to choose the operations.15 If the top left entry of A is zero, swap rows
or columns until it is not zero. Then scale the first row or column so the top left entry is equal
to 1. Next apply elimination matrices Lij(λ) on both sides to eliminate the other entries in
the first row and column. The result is a matrix of the form

1 0 · · · 0

0
...
0

A′

 ,

where A′ has size (m− 1)× (n− 1). If A′ is the zero matrix then we are done. Otherwise we
repeat the previous steps on the smaller matrix to obtain

1 0 0 · · · 0

0 1 0 · · · 0

0
...
0

0
...
0

A′′


,

where A′′ has size (m− 2)× (n− 2). We repeat this process until the bottom right corner is
a zero matrix. If the process terminates after r steps then the bottom right corner is the zero
matrix of size (m− r)× (n− r). �

This completes our proof of the Fundamental Theorem. This is not the shortest proof, but it
is the clearest proof that I know. And it has the added benefit of introducing important ideas
(such as elementary matrices) that we will use in the future.

Remark: There is a variant of this algorithm that works over the integers. The difference
when working over Z is that we cannot divide, so we cannot scale the top left entry to equal 1.

15We are concerned here with clarity of exposition, not with efficiency of implementation.
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However, we can arrange that the top left entry is as small as possible, and that each diagonal
entry divides the next. We omit the proof because it requires a bit of number theory.16

Theorem (Smith Normal Form). Let A be an n×m matrix of rank r with integer entries.
Then there exist invertible matrices E and F with integer entries, whose inverses E−1 and
F−1 and also have integer entries, such that

EAF =


d1

d2
. . .

dr

Or,n−r

Om−r,r Om−r,n−r

 .

The diagonal integers 0 ≤ d1 ≤ . . . ≤ dr have the property that di+1 is an integer multiple of
di for all i. These diagonal entries are called the elementary divisors of the matrix A. The
Smith Normal Form is useful in cryptography and in algebraic topology, but we will have no
use for it in this course.

4 Existence of Inverse Matrices

As promised, we now apply the Fundamental Theorem to the existence of inverse matrices.
Before doing so we make a basic observation. For any m× n matrix A and n× 1 column b,

the matrix equation Ax = b has a solution x ∈ Rn if and only if b ∈ C(A).

Indeed, this is just a way of rephrasing the definition of the column space, since every linear
combination of the columns of A has the form Ax for some vector x.

First we state conditions for the existence of left and right inverse matrices.

4.1 Existence of Right Inverses.

Given an m×n matrix A, recall that a right inverse is any n×m matrix X satisfying AX = Im.
In order to find such a matrix, let xj ∈ Rn be the unknown jth column of X. Then using
block multiplication gives(

Ax1 · · · Axm

)
= A

(
x1 · · · xm

)
= AX = Im =

(
e1 · · · em

)
.

In other words, we have AX = Im if and only if we have Axj = ej for each column vector
xj , where ej is the jth column of the identity matrix Im, i.e., the jth standard basis vector in
Rm. By the previous remark, such vectors xj exist if and only if each basis vector ej ∈ Rm is

16In general the algorithms for linear algebra over Z are much more expensive than for linear algebra over a
field such as R or C. The complexity of the algorithms makes the subject useful for cryptography.
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in the column space C(A). Finally, since C(A) is a subspace of Rm, this happens if and only
if C(A) fills up all of Rm.17 Here is a summary:

A has a right inverse ⇐⇒ AX = Im for some matrix X

⇐⇒ Axj = ej for some vectors x1, . . . ,xm

⇐⇒ ej ∈ C(A) for the standard basis vectors e1, . . . , em

⇐⇒ C(A) = Rm

⇐⇒ dim C(A) = m.

Furthermore, the Rank-Nullity Theorem tells us that dim C(A) + dimN (AT ) = m, hence

A has a right inverse ⇐⇒ dim C(A) = m

⇐⇒ dimN (AT ) = 0

⇐⇒ N (AT ) = {0}
⇐⇒ ATx = 0 implies x = 0

⇐⇒ the columns of AT are independent

⇐⇒ the rows of A are independent.

4.2 Existence of Left Inverses.

We could do this from scratch, or we could observe that A has a right inverse if and only if
AT has a left inverse. Indeed, if X is a right inverse of A then AX = Im implies XTAT = Im,
so that XT is a left inverse of AT . Conversely, if Y is a left inverse of AT then Y AT = In
implies AY T = Im, so that Y T is a right inverse of A. Hence

A has a left inverse ⇐⇒ AT has a right inverse

⇐⇒ C(AT ) = Rn

⇐⇒ R(A) = Rn

⇐⇒ dimR(A) = n

⇐⇒ dimN (A) = 0 Rank-Nullity

⇐⇒ N (A) = {0}
⇐⇒ Ax = 0 implies x = 0

⇐⇒ the columns of A are independent.

17Indeed, if C(A) contains every basis vector e1, . . . , en then since C(A) is a subspace, it contains every linear
combination of the basis vectors, i.e., it contains every vector in Rm.
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4.3 Existence of Two-Sided Inverses.

Now we will use the Fundamental Theorem, which says that dimR(A) = dim C(A). First we
observe that

A has a two-sided inverse ⇐⇒ A has a right inverse and a left inverse.

Indeed, any two sided inverse is by definition a right inverse and a left inverse. Conversely,
suppose that A has a right inverse AB = Im and a left inverse CA = In. Then (as we have
seen before) we must have

B = InB = (CA)B = C(AB) = CIm = C,

so that A−1 = B = C is the unique two-sided inverse of A. Finally, let r be the rank of A so
that r = dimR(A) = dim C(A) and observe that18

A has a two-sided inverse ⇐⇒ A has a right inverse and a left inverse

⇐⇒ dim C(A) = m and dimR(A) = n

⇐⇒ r = m and r = n

⇐⇒ m = n = r.

In particular, A must be square.

These ideas lead to some subtle properties of square matrices. Apparently the columns know
what the rows are doing, and vice versa.

4.4 Proof that AB = I ⇐⇒ BA = I for Square Matrices.

Let A and B be square matrices with r = rank(A). Then

AB = I =⇒ A has a right inverse

=⇒ r = the number of columns of A

=⇒ r = the number of rows of A

=⇒ A has a left inverse, say CA = I.

But then from the above computation we must have B = C, so BA = I. Switching the roles
of A and B shows that BA = I implies AB = I.

Here is an interesting application.

18There are many more equivalent conditions for invertibility. Wolfram MathWorld lists twenty three: https:
//mathworld.wolfram.com/InvertibleMatrixTheorem.html. Twenty of these follow easily from the results in
this section. The remaining three refer to determinants, eigenvalues and singular values, which we haven’t
discussed yet.
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4.5 For Square Matrices, Orthonormal Columns ⇐⇒ Orthonormal Rows.

Let A be a square matrix. Then we have

A has orthonormal columns ⇐⇒ ATA = I

⇐⇒ AAT = I

⇐⇒ A has orthonormal rows.

I think this theorem is a small miracle.

Now we know when inverse matrices exist. In the next section we will describe methods to
compute inverse matrices.

5 Linear Systems

I assume you have some familiarity with the solution of linear systems, which is the main topic
of Linear Algebra I. In this section we will go deeper into the topic.

Recall that a system of m linear equations in n unknowns has the form
a11x1 + · · · + a1nxn = b1,

...
...

...
...

am1x1 + · · · + amnxn = bm,

which can be expressed as a single matrix equation:a11 · · · a1n
...

...
am1 · · · amn


x1...
xn

 =

 b1
...
bm

 .

At a higher level of abstraction we just write Ax = b. Given a matrix of coefficients A ∈ Rm×n

and a vector of constants b ∈ Rm, the goal is to solve for the vector of unknowns x ∈ Rn.
Recall from the previous section that

the system Ax = b has a solution for x if and only if b is in the column space C(A).

If this is the case, then we can view the solution of Ax = b as an (n − r)-dimensional affine
subspace of Rn, which is parallel to the nullspace N (A). To be precise, we have the following.

5.1 Shape of the Solution

Let A be an m×n matrix and consider any vector b ∈ C(A) in the column space. By definition
this means we can write b = Ax′ for some vector x′ ∈ Rm, which might not be unique. Then
every solution Ax = b has the form

x = x′ + x0
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for some homogeneous solution Ax0 = 0, i.e., for some element of the nullspace x0 ∈ N (A).
In more colloquial terms:

(general solution) = (one particular solution) + (general homogeneous solution).

Proof. Fix a particular solution Ax′ = b. Then for any x0 ∈ N (A) we have

A(x′ + x0) = Ax′ +Ax0 = Ax′ + 0 = Ax′ = b,

so that x = x′ + x0 is also a solution. Conversely, let x be any solution Ax = b. Then

b = b

Ax = Ax′

Ax−Ax′ = 0

A(x− x′) = 0,

so that x − x′ is an element of the nullspace, say x − x′ = x0 ∈ N (A). Hence every solution
has the form x = x′ + x0 for some x0. �

Here is a picture where the nullspace is a 2-dimensional plane living in Rn, so the general
solution is also a 2-dimensional plane:

5.2 Uniqueness of the Solution

Suppose that b ∈ C(A), so the system Ax = b has a solution. In the previous section we saw
that this solution has the same shape as the nullspace. Hence the solution is unique if and
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only if the nullspace is a single point. If A has shape19 m × n and rank r, recall from the
Rank-Nullity theorem that dimN (A) = n− dimR(A) = n− r. Hence

the solution to Ax = b is unique ⇐⇒ N (A) = {0},
⇐⇒ dimN(A) = 0

⇐⇒ r = n

⇐⇒ A has independent rows

⇐⇒ A has a left inverse.

Indeed, suppose that CA = I and Ax = b. Then we must have

Ax = b

CAx = Cb

Ix = Cb

x = Cb,

so that Cb is the unique solution.

5.3 How to Compute the Solution

Linear systems are solved using row reduction, also called Gaussian elimination. Gauss de-
veloped this method together with the method of least squares when he was 24, in order to
determine the orbit of the dwarf planet Ceres. A similar method for solving linear systems
was used in China since at least the 5th century AD.20

We will perform row reduction using elimination matrices, which were defined in the pre-
vious section. The goal is to put the system in a standardized simple form. Given a general
matrix A, we first multiply on the left by lower triangular elimination matrices Lij(λ) (i.e.,
with i > j) until we obtain a matrix in “staircase form”:

Lk · · ·L2L1A =


∗ · · · · ·

∗ · · ·
∗ ·

 .

Here the blank entries are zero. The entries labeled ∗ are nonzero; these are called the pivots.
And the entries marked · are arbitrary. Next we multiply by dilation matrices Di(λ) to turn
the pivot entries into 1s:

D` · · ·D2D1Lk · · ·L2L1A =


1 · · · · ·

1 · · ·
1 ·

 .

19Here I am using the word “shape” for matrices and for subspaces. Don’t take it too literally in either case.
20The Chinese method was concerned with integer solutions, and is the precursor of the Chinese Remainder

Theorem in abstract algebra.
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Finally, we multiply by upper triangular elimination matrices Lij(λ) (i.e., with i < j) to
eliminate the entries above the pivots:

Um · · ·U2U1D` · · ·D2D1Lk · · ·L2L1A =


1 · 0 · 0 ·

1 · 0 ·
1 ·

 .

Finally, this is called the reduced row echelon form (or RREF) of A. It has the virtue of being
unique, i.e., independent of the particular order of row operations.21

We can summarize this process as follows. Multiply the elementary matrices together to obtain

L := Lk · · ·L2L1, D := D` · · ·D2D1 and U := Um · · ·U2U1.

The names indicate that L is lower trianglular (i.e., has zeros above the diagonal), D is
diagonal (i.e., has zeros away from the diagonal) and U is upper triangular (i.e., has zeros
below the diagonal). Furthermore, let’s define E = UDL, which is invertible because it is a
product of invertible matrices. Let R denote the RREF of A, so that

EA = R.

Since E is invertible, it follows from the section on the Fundamental Theorem that R has the
same row space and nullspace as A:

R(R) = R(A) and N (R) = N (A).

In other words, the homogeneous system equation Ax = 0 is equivalent to Rx = 0, and the
solution of this second system is particularly easy to read off. To solve the non-homogeneous
system Ax = b we simply multiply both sides on the left by E to obtain

Ax = b

EAx = Eb

Rx = Eb,

and the solution is again easy to read off.

Example. Solve the linear system
x + 3y + 8z = 2,
x + 2y + 6z = 1,
0 + y + 2z = 1,

which can be expressed in matrix notation as1 3 8
1 2 6
0 1 2

xy
z

 =

2
1
1

 ,

21We will not prove this uniqueness because it is a bit tricky, and we will never need it.
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Ax = b.

First we perform down elimination on A: 1
−1 1

1

1 3 8
1 2 6
0 1 2

 =

1 3 8
0 −1 −2
0 1 2


1

1
+1 1

1 3 8
0 −1 −2
0 1 2

 =

1 3 8
0 −1 −2
0 0 0



Next we scale the pivots:1
−1

1

1 3 8
0 −1 −2
0 0 0

 =

1 3 8
0 1 2
0 0 0

 .

Then we perform up elimination:221 −3
1

1

1 3 8
0 1 2
0 0 0

 =

1 0 2
0 1 2
0 0 0

 .

The single matrix that performs the elimination is

E = UDL

=

1 −3
1

1

1
−1

1

1
1

+1 1

 1
−1 1

1


=

1 −3
1

1

1
−1

1

 1
−1 1
−1 1 1


=

−2 3 0
1 −1 0
−1 1 1

 .

Check:

EA = R,−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

 =

1 0 2
0 1 2
0 0 0

 .

22In class I circled pivots and drew arrows, which is extremely difficult to do in LATEX.
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To solve the homogeneous system Ax = 0 we multiply both sides by E:

Ax = 0

EAx = E0

Rx = 01 0 2
0 1 2
0 0 0

xy
z

 =

0
0
0

 .

This is equivalent to the linear system
x + 0 + 2z = 0,
0 + y + 2z = 0,
0 + 0 + 0 = 0.

Note that the third equation is redundant, which shows that our original system of three
equations really only contains two equations. The solution, which is also called the nullspace
of A, is a line: xy

z

 =

−2z
−2z
z

 = z

−2
−2
1

 .

To solve the non-homogeneous system Ax = b we again multiply both sides by E:

Ax = b

EAx = Eb

Rx = Eb1 0 2
0 1 2
0 0 0

xy
z

 =

−2 3 0
1 −1 0
−1 1 1

2
1
1


1 0 2

0 1 2
0 0 0

xy
z

 =

−1
1
0

 .

This is equivalent to the linear system
x + 0 + 2z = −1,
0 + y + 2z = 1,
0 + 0 + 0 = 0,

whose solution is a line parallel to the null space:xy
z

 =

−1− 2z
1− 2z
z

 =

−1
1
0

+ z

−2
−2
1

 .
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In the language of 5.1, x0 = z(−2,−2, 1) is the general homogeneous solution and x′ =
(−1, 1, 0) is one particular solution. Note that there are infinitely many equivalent ways to
describe this solution. For example, we can also writexy

z

 =

 1
3
−1

+ t

2
2
1

 .

On the other hand, the following system has no solution because (1, 0, 0) is not in the column
space of A: 1 3 8

1 2 6
0 1 2

xy
z

 =

1
0
0

 .

If we try to solve the system then we obtain−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

xy
z

 =

−2 3 0
1 −1 0
−1 1 1

1
0
0


1 0 2

0 1 2
0 0 0

xy
z

 =

−2
1
−1

 ,

which is equivalent to the system
x + 0y + 2z = −2,
0x + y + 2z = 1,
0x + 0y + 0z = −1.

This system has no solution because the third equation 0x+ 0y + 0z = −1 has no solution.

5.4 How to Compute the Inverse of a Square Matrix

We have seen a method for solving linear systems. Now we apply this method to compute the
inverse of a square matrix. Let A be an invertible n× n matrix, and let E be the product of
elementary matrices that puts A in reduced row echelon form: EA = R. Since A is invertible it
has independent rows, and, since R(A) = R(R), this implies that R has independent rows. In
particular, R has no zero rows, which finally implies that R is the identity matrix. Summary:

The RREF of an invertible matrix A is the identity matrix I.

This idea gives an algorithm to compute the inverse. Begin with the augmented matrix(
A I

)
.

Then apply elementary matrices on the left to put A in RREF:(
A I

)
22



 
(
E1A E1I

)
 
(
E2E1A E2E1I

)
...

 
(
Ek · · ·E2E1A Ek · · ·E2E1I

)
=
(
EA E

)
=
(
R E

)
.

If A is invertible, so that R = I and E = A−1 then the process gives(
A I

) RREF
 

(
I A−1

)
.

We don’t even need to keep track of the elementary matrices.

Example. (
A I

)
=

 1 1 1
1 2 0
1 0 0

1 0 0
0 1 0
0 0 1


 

 1 1 1
0 1 −1
1 0 0

1 0 0
−1 1 0
0 0 1


 

 1 1 1
0 1 −1
0 −1 −1

1 0 0
−1 1 0
−1 0 1


 

 1 1 1
0 1 −1
0 0 −2

1 0 0
−1 1 0
−2 1 1


 

 1 1 1
0 1 −1
0 0 1

1 0 0
−1 1 0
1 −1/2 −1/2


 

 1 1 1
0 1 0
0 0 1

1 0 0
0 1/2 −1/2
1 −1/2 −1/2


 

 1 1 0
0 1 0
0 0 1

0 1/2 1/2
0 1/2 −1/2
1 −1/2 −1/2


 

 1 0 0
0 1 0
0 0 1

0 0 1
0 1/2 −1/2
1 −1/2 −1/2


23



=
(
I A−1

)
.

Check: 1 1 1
1 2 0
1 0 0

0 0 1
0 1/2 −1/2
1 −1/2 −1/2

 =

1 0 0
0 1 0
0 0 1

 .

Recall that for square matrices A and B we have AB = I if and only if BA = I so we only
need to check one.

What happens if we try to invert a non-invertible matrix? Consider the matrix A from Section
5.3. We perform elimination until we reach the RREF: 1 3 8

1 2 6
0 1 2

1 0 0
0 1 0
0 0 1


=
(
A I

)
 
(
EA E

)
=
(
R E

)
=

 1 0 2
0 1 2
0 0 0

−2 3 0
1 −1 0
−1 1 1


And then we’re stuck.

6 Least Squares Approximation

6.1 The Four Fundamental Subspaces

Let me summarize our results so far. To each m × n matrix A we associate four subspaces;
two of Rm and two of Rn:

R(A),N (A) ⊆ Rn and C(A),N (AT ) ⊆ Rm.

The subspaces R(A) and N (A) are orthogonal complements in Rn, while C(A) and N (AT )
are orthogonal complements in Rm.23 It follows from the general theorem on dimensions of
orthogonal complements24 that

dimR(A) + dimN (A) = n and dim C(A) + dimN(AT ) = m.

These results are called the Rank-Nullity Theorem. The Fundamental Theorem says that the
rank of A is well-defined:

r = rank(A) := dimR(A) = dim C(A).

23Remind yourself right now why this is true.
24See the homework.
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Hence we also have

dimN (A) = n− r and dimN (AT ) = m− r.

Here is “the big picture” in the style of Gilbert Strang:25

The matrix A maps the space Rn on the left to the space Rm on the right. Actually, A maps
all of Rn onto the blue column space C(A). The red nullspace N (A) gets squashed onto the
origin 0 ∈ Rm. Any vector x ∈ Rn can be expressed uniquely as x = y + z with y ∈ R(A)
and z ∈ N (A). If Ay = b then we also have Ax = b because

Ax = A(y + z) = Ay +Az = b + 0 = b.

This picture is rather impressionistic but it does a good job of showing a lot of information.
One thing it doesn’t show is the set of all solutions to the equation Ax = b, which is an affine
subspace of Rn that is parallel to N(A) and passes through x and y. I guess that would make
the picture unreadable.

Next we work through an explicit example. Consider the rank 2 matrix

A =

1 3 8
1 2 6
0 1 2

 .

In Section 5.3 we already computed the nullspace:

N (A) = the line in R3 spanned by (2, 2,−1).

25A similar picture appears on the cover of his 4th edition of Introduction to Linear Algebra.
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The rowspace is the orthogonal complement of the nullspace, which is a plane:

R(A) = N (A)⊥ = the plane in R3 defined by 2x+ 2y − z = 0.

Since no two rows of A are parallel, any two rows will form a basis for R(A). More systemat-
ically, we can look at the RREF:

EA = R,−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

 =

1 0 2
0 1 2
0 0 0

 .

Since the product of elementary matrices E is invertible, we know that R(A) = R(EA) =
R(R), and it is very easy to read a basis from R:

R(A) = R(R) = span{(1, 0, 2), (0, 1, 2)}.

To compute the column space C(A) and left nullspace N (AT ) we can apply the same methods
to the transposed matrix AT . That is, we should compute RREF (AT ):261 1 0

3 2 1
8 6 2

 RREF
 

1 0 1
0 1 −1
0 0 0

 .

From this we see that

C(A) = R(AT ) = span{(1, 0, 1), (0, 1,−1)}.

Finally, the left nullspace is the solution to the homogeneous system ATx = 0, which from
the RREF of AT is equivalent to

x + 0 + +z = 0,
0 + y + −z = 0,
0 + 0 + 0 = 0.

The solution is the line spanned by (1,−1,−1):xy
z

 =

−zz
z

 = z

−1
1
1

 = span{(1,−1,−1)}.

As expected, this line is the orthogonal complement of the column space:

span{(1,−1,−1)}⊥ = (plane x− y − z = 0) = span{(1, 0, 1), (0, 1,−1)} = C(A).

Here is a picture:

26This is equivalent to applying elementary matrices on the right of A to compute reduced column echelon
form (RCEF), but nobody uses this terminology.
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Note that the line N (A) gets squashed onto the origin, while all of R3 gets squashed onto the
plane C(A). Since this matrix is square, we could have drawn all four subspaces in the same
copy of R3, but that would just be a mess.

In summary:

The four fundamental subspaces can be read off from RREF(A) and RREF(AT ).

6.2 The Matrices ATA and AAT

We have seen that a non-square matrix A cannot have an inverse. To fix this we sometimes
consider the square matrices ATA and AAT . To be precise, suppose that A has shape m× n,
so that ATA is square of shape n × n and AAT is square of shape m ×m. We also observe
that these matrices are symmetric because

(ATA)T = AT (AT )T = ATA

and
(AAT )T = (AT )TAT = AAT .

The matrices ATA and AAT show up surprisingly often in applied mathematics. We will see
our first glimpse of this in the next section when we discuss least squares approximation. To
prepare for this we develop some basic properties. The key observation is that A and ATA
have the same nullspace:

N (ATA) = N (A).

This would be easy to prove if AT had a left inverse. Indeed, if E is a matrix with a left
inverse E′E = I then we recall from Section 3 that

R(EA) = R(A),
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and hence
N (EA) = R(EA)⊥ = R(A)⊥ = N (A).

But the matrix AT might not have a left inverse, so we cannot use this fact. Instead we use
a clever trick:27

For any x ∈ Rn we have xTATAx = (Ax)T (Ax) = (Ax) • (Ax) = ‖Ax‖2.

Proof that N (ATA) = N (A). First we note that N (A) ⊆ N (ATA) because

Ax = 0 =⇒ (ATA)x = AT (Ax) = AT0 = 0.

On the other hand, suppose that (ATA)x = 0. Then from the trick we have

‖Ax‖2 = xTATAx = xT (ATAx) = xT0 = 0,

and hence ‖Ax‖ = 0. But recall that the standard norm ‖ − ‖ satisfies ‖v‖ = 0 if and only if
v = 0. Hence we must have Ax = 0 as desired. �

We obtain a similar identity by replacing A with AT . To be precise, let B = AT , so that

N (AAT ) = N (BTB) = N (B) = N (AT ).

And it follows from these identities that

rank(ATA) = rank(A) = rank(AT ) = rank(AAT ).

Indeed, the first and third equations follow by applying dimension to the identities N (ATA) =
N (A) and N (AAT ) = N (AT ), while the middle equation is just the Fundamental Theorem.
This is quite interesting since the four matrices A, AT , ATA and AAT have different shapes.

We combine these results to prove the main result of this section.

Theorem (Invertibility of ATA and AAT ). For any matrix A, the matrices ATA and AAT

are square, hence they might be invertible. I claim that

(ATA)−1 exists ⇐⇒ A has independent columns,

(AAT )−1 exists ⇐⇒ A has independent rows.

Proof. Let A have shape m×n and rank r. To prove the first statement, note that ATA has
shape n× n, hence

(ATA)−1 exists ⇐⇒ rank(ATA) = n

27The idea lurking in the background is that matrices of the form ATA are related to inner products. See
Problem 5 on Homework 3.
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⇐⇒ rank(A) = n previous result

⇐⇒ dim C(A) = n

⇐⇒ A as independent columns.

Similarly, since AAT has shape m×m, we have

(AAT )−1 exists ⇐⇒ rank(AAT ) = m

⇐⇒ rank(A) = m previous result

⇐⇒ dimR(A) = m

⇐⇒ A as independent rows.

�

To end this section we give two theoretical applications.28

Explicit formulas for left and right inverses. For any matrix A we recall from 4.1 that

A has a left inverse ⇐⇒ A has independent columns,

A has a right inverse ⇐⇒ A has independent rows.

Such left and right inverses are not unique, but we can use the previous theorem to give a
formula for specific left and right inverse. If A has independent columns then (ATA)−1 exists
and (ATA)−1AT is a left inverse:

[(ATA)−1AT ]A = (ATA)−1(ATA) = I.

If A has independent rows then (AAT )−1 exists and AT (AAT )−1 is a right inverse:

A[AT (AAT )−1] = (AAT )(AAT )−1 = I.

CMR Factorization. Applied linear algebra is often expressed in terms of matrix factoriza-
tions. Here we will show that any m × n matrix A of rank r can be factored as A = CMR,
where the matrices C, M and R have shapes m× r, r × r and r × n. The matrices C and R
are defined as follows:

• Choose any r independent columns of A and let these be the columns of C.

• Choose any r independent rows of A and let these be the rows of R.

By construction, C has independent columns and R has independent rows, so the matrices
(CTC)−1 and (RRT )−1 exist. In this case we will show that there exists a unique r × r
matrix M satisfying A = CMR. This matrix is invertible and is determined by the formula

M = (CTC)−1(CTART )(RRT )−1.

It is difficult to see that the matrix defined by this formula has the desired properties, so we
will proceed in two steps:

28The section on Least Squares below gives some practical applications.
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(1) There exists an invertible matrix M satisfying A = CMR.

(2) The matrix from part (1) must satisfy the desired formula.

The proof of (1) is tricky and algorithmic.29 Feel free to skip it.

(1): First let T be an invertible product of column transpositions so that the first r columns
of AT are equal to C; let’s say

AT =
(
C F

)
,

for some m×(n−r) matrix F . Next we consider the reduced row echelon form of AT . Let E be
an invertible product of elementary row operations satisfying EAT = RREF(AT ). Since the
first r columns of AT (i.e., the columns of C) are independent, so will be the first r columns
of the RREF, and it follows that

EAT = RREF(AT ) =

(
Ir G

Om−r,r Om−r,n−r

)
,

for some r × (n − r) matrix G. I claim that AT = C
(
I G

)
. Indeed, if we write E−1 =(

X Y
)

where X is m× r and Y is m× (m− r) then we find

(
C F

)
= AT = E−1

(
I G

O O

)
=
(
X Y

)( I G

O O

)
=
(
X YG

)
,

which implies that X = C.30 It follows that

AT = E−1

(
I G

O O

)
=
(
C Y

)( I G

O O

)
=
(
C CG

)
= C

(
I G

)
.

At this point we have
A = C

(
I G

)
T−1 = CR′,

where we have defined R′ :=
(
I G

)
T−1. Our final goal is to prove that R′ = MR for some

invertible M . Since C has independent columns (and hence has a left inverse) we see from
Section 3 that A and R′ have the same row space:

R(A) = R(CR′) = R(R′),

Since this row space is r-dimensional, and since R′ has r rows, it follows that the rows of R′

are a basis for R(A). In particular, each row of R can be expressed as a linear combination
of the rows of R′, which gives a matrix equation R = MR′. Similarly, since the rows of R
are a basis for R(A) we can write R′ = NR for some matrix N . Putting these together gives

29I apologize that I assigned this as homework; I didn’t realize how tricky it is. Gilbert Strang fooled me.
Maybe there is a more direct proof but I couldn’t find it.

30We also have Y G = F , but we don’t care about this.
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R = MNR. Finally, since R has a right inverse this implies MN = I, which implies that M
is invertible.31 �

(2): Once we know that M exists, it is not difficult to prove that satisfies the desired formula.
Indeed, suppose that A = CMR. Then since (CTC)−1 and (RRT )−1 exist we must have

CMR = A

CT (CMR)RT = CTART

(CTC)M(RRT ) = CTART

M = (CTC)−1CTART (RRT )−1.

�

For example, let’s consider our favorite matrix

A =

1 3 8
1 2 6
0 1 2

 .

This matrix has rank 2, so we should choose two independent columns and two independent
rows. Choosing the first two columns and the first two rows gives

A =

1 3
1 2
0 1

(−2 3
1 −1

)(
1 3 8
1 2 6

)
.

Choosing columns 1, 3 and rows 2, 3 gives

A =

1 8
1 6
0 2

(1 −3
0 1/2

)(
1 2 6
0 1 2

)
.

Remark: There is another interesting description of the matrix M . In the paper LU and CR
Elimination by Strang and Moler,32 they prove that M−1 is the matrix obtained from A by
intersecting the columns of C with the rows of R. We observe that this is true for the two
examples just given:(

−2 3
1 −1

)−1
=

(
1 3
1 2

)
and

(
1 −3
0 1/2

)−1
=

(
1 6
0 2

)
.

Pretty cool.

31Recall that MN = I implies NM = I for square matrices.
32I think there’s a better proof in Hamm and Huang, https://arxiv.org/abs/1907.12668. I need to look

into it.

31

https://arxiv.org/abs/1907.12668


6.3 Least Squares Approximation

We have seen that a linear system Ax = b has a solution for x if and only if b is in the column
space of A. In fact, this statement is just the definition of the column space:

C(A) = {all linear combinations of the columns of A},
= {all vectors of the form Ax for some x}.

What happens when b is not in the column space?

The Problem of Least Squares. Given an m × n matrix A and an m × 1 column vector
b, find an n× 1 column vector x such that the distance ‖Ax− b‖ is minimized.

Obviously a true solution Ax = b makes ‖Ax− b‖ = 0. When b 6∈ C(A), the minimum value
of ‖Ax− b‖ will be strictly positive. The problem is called least squares approximation since
the length ‖Ax − b‖ is minimized if and only if the squared length ‖Ax − b‖2 is minimized,
and the squared length is a sum of squares:33

‖Ax− b‖2 =

∥∥∥∥∥∥∥
 aT

1 x− b1
...

aT
mx− bm


∥∥∥∥∥∥∥
2

= (aT
1 x− b1)2 + · · ·+ (aT

mx− bm)2,

where aT
i is the ith row of A and b = (b1, . . . , bm). There are two ways to solve this problem:

(1) Calculus

(2) Linear Algebra

The calculus solution uses the typical method of Lagrange multipliers. This solution is more
common in textbooks because every student knows calculus, whereas not every student knows
linear algebra. However, the linear algebra solution is conceptually much simpler and is easier
to generalize.

The key idea is to view ‖Ax − b‖ as the distance between two points in Rn. The expression
Ax represents a general point of the column space, while b is a point that is not in the column
space. Here is a picture:

33There are certainly other ways to define a “best approximate solution”. For example, one could try to
minimize the sum of absolute values:

|aT
1 x− b1|+ · · ·+ |aT

mx− bm|.

This is a reasonable idea, but the mathematics is much more difficult. We will see some other methods of
approximation after we discuss the singular value decomposition.
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For geometric reasons34 we see that the length of the blue vector Ax− b is minimized when
it is perpendicular to the column space. Since the orthogonal complement of C(A) is N (AT ),
this happens precisely when

AT (Ax− b) = 0. (∗)

Since you might not remember the details, I will repeat them one more time.35 Let ai be the
ith column of A, so that aT

i is the ith row of AT . To say that Ax− b is perpendicular to the
column space means that Ax− b is perpendicular to each column. That is, we must have

aT
i (Ax− b) = ai • (Ax− b) = 0 for all i.

But this is equivalent to saying that AT (Ax− b) = 0 because

AT (Ax− b) =

− aT
1 −
...

− aT
m −

 (Ax− b) =

aT
1 (Ax− b)

...

aT
m(Ax− b)

 ,

which is the zero vector if and only if each component aT
i (Ax− b) is zero.

We may proceed to solve equation (∗) which is called the normal equation:36

AT (Ax− b) = 0

ATAx−ATb = 0

ATAx = ATb.

34Ultimately, this follows from the triangle inequality.
35David Hilbert said that every idea must be repeated five times before the students will remember it. See

the very interesting biography of Hilbert by Constance Reid.
36The word normal here indicates that Ax− b is perpendicular to the columns of A.

33



Whereas the equation Ax = b did not have a solution, it is worth noting that the normal
equation ATAx = ATb always has a solution. To see this, we only need to check that ATb
is in the column space C(ATA). In the previous section on the matrices ATA and AAT we
proved the key fact that N (ATA) = N (A), which implies that

R(ATA) = N (ATA)⊥ = N (A)⊥ = R(A).

But then we must have

C(ATA) = R((ATA)T ) = R(ATA) = R(A) = C(AT ).

This implies that any vector in the column space of AT , for example ATb, is in the column
space of ATA, so can be expressed in the form ATAx.

In general, suppose that A has shape m × n and rank r. Then the solution of the normal
equation ATAx = ATb is an affine subspace of Rn that is parallel to the nullspace N (ATA) =
N (A), and so has dimension n − r. This solution will be unique if and only if r = n, i.e., if
and only if A has independent columns. In this case we know from the previous section that
(ATA)−1 exists, and hence the unique least squares solution has a symbolic form:

ATAx = ATb

x = (ATA)−1ATb.

Here is a summary:

• If b ∈ C(A) then the system Ax = b has an exact solution.

• If b 6∈ C(A) then the system Ax = b does not have an exact solution.

• The length ‖Ax− b‖ is minimized when Ax− b is perpendicular to C(A).

• This happens if and only if AT (Ax− b) = 0, or ATAx = ATb.

• The normal equation ATAx = ATb always has a solution.

• If A has independent columns then ATA is invertible, so the solution is unique:

x = (ATA)−1ATb.

We often use a different notation such as x̂ to denote the least squares solution ATAx̂ = ATb,
to distinguish it from an exact solution Ax = b. However, if there exists an exact solution
Ax = b, then we note that x̂ = x since multiplying both sides on the left gives

Ax = b

ATAx = ATb.
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6.4 Examples of Least Squares

The classical application of least squares is to curve fitting. Indeed, this is the purpose for
which Gauss invented the method.37

Curve Fitting. Suppose that we have a collection of n data points in the x, y-plane:

(x1, y1), (x2, y2), . . . , (xn, yn).

We would like to find the line of the form y = a+ bx that is the “best fit” for these points:

There are different ways one might interpret the word “best”. The most obvious definition
might be to minimize the orthogonal distances38 from the points to the line:

This idea is called total least squares, or orthogonal least squares. It is a hard non-linear
problem, which we will solve after discussing the singular value decomposition. In statistics
this problem is called principal component analysis. It is much easier to minimize the sum of
squares of the vertical distances:

37He used it to fit the elliptical orbit of the dwarf Planet Ceres to a collection of observed data points.
38Typically we want to minimize the sum of squared distances.
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This problem is called ordinary least squares, or just least squares regression.

Here’s how we solve it. We start by being optimistic and assuming that all of the data points
fit perfectly on the line, which leads to a system of n linear equations in the two unknowns a
and b: 

a + bx1 = y1,
a + bx2 = y2,

...
a + bxn = yn,

It is an unfortunate feature of curve fitting problems that the roles of variables and constants
get switched around, so instead of a system looking like Ax = b we get a system looking like
Xa = y. In our case we have

Xa = y1 x1
...

...
1 xn

(a
b

)
=

y1...
yn

 .

However, this system almost certainly does not have a solution, since any three or more points
almost certainly do not fit perfectly on a straight line. Hence we will apply the method of
least squares. If the data points do not all have the same x value, then the two columns of X
are are independent and we get a unique solution:

Xa = y

XTXa = XTy

a = (XTX)−1Xy.

Recall that this “least squares solution” minimizes the length ‖Xa−y‖, hence it also minimizes
the squared length ‖Xa− y‖2. In terms of the data points, this becomes

‖Xa− y‖2 =

∥∥∥∥∥∥∥
 a+ bxi − yi

...
a+ bxn − yn


∥∥∥∥∥∥∥
2

=
∑

(a+ bxi − yi)2,

which is, indeed, the sum of the squared vertical errors:
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To be explicit, the normal equation has the following form, which you might recognize:

XTXa = XTy(
1 · · · 1
x1 · · · xn

)1 x1
...

...
1 xn

(a
b

)
=

(
1 · · · 1
x1 · · · xn

)y1...
yn


(

n
∑
xi∑

xi
∑
x2i

)(
a
b

)
=

( ∑
yi∑
xiyi

)
,

which is equivalent to the linear system{
an + b

∑
xi =

∑
yi,

a
∑
xi + b

∑
x2i =

∑
xiyi.

This is the form usually presented in introductory statistics courses, when the students don’t
know linear algebra.

However, the linear algebra formulation is much more powerful because it generalizes easily.
For example, we can fit our data to polynomial curve of degree d:

y = a0 + a1x+ · · ·+ · · ·+ adx
d.

Assuming optimistically that all n data points lie on this curve gives a system of n linear
equations in the d+ 1 unknown coefficients a0, . . . , ad:

Xa = y1 x1 x21 · · · xd1
...

...
...

...
...

1 xn x2n · · · xdn


a0...
ad

 =

y1...
yn

 .
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Then the least squares solution (which minimizes the sum of squares of the vertical errors) is
given by the normal equation XTXa = XTy. This equation is much harder to obtain using
calculus, and the explicit formulas for the entries of the matrix XTX are not so nice.

Distance Between Subspaces. Consider the following parametrized lines in R3:

L1 : (1, 0, 0) + s(1, 2, 1),
L2 : (1, 1, 1) + t(1, 1, 1).

These lines (probably) do not intersect. We would like to find points x1 ∈ L1 and x2 ∈ L2

such that the distance ‖x1 − x2‖ is minimized:

We could solve this problem from scratch, but instead we will apply the general theory of least
squares. First we assume, optimistically, that the lines intersect, so that

x1 = x21
0
0

+ s

1
2
1

 =

1
1
1

+ t

1
1
1


s

1
2
1

− t
1

1
1

 =

1
1
1

−
1

0
0


1 −1

2 −1
1 −1

(s
t

)
=

0
1
1

 .

Whether this system has an exact solution or not,39 we can proceed by multiplying on the left
by the transpose of the coefficient matrix:1 −1

2 −1
1 −1

(s
t

)
=

0
1
1


39If the system did, unexpectedly, have an exact solution, we would see this at the end.
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(
1 2 1
−1 −1 −1

)1 −1
2 −1
1 −1

(s
t

)
=

(
1 2 1
−1 −1 −1

)0
1
1


(

6 −4
−4 3

)(
s
t

)
=

(
3
−2

)
(
s
t

)
=

(
6 −4
−4 3

)−1(
3
−2

)
(
s
t

)
=

1

2

(
3 4
4 6

)(
3
−2

)
=

1

2

(
1
0

)
=

(
1/2
0

)
.

The least squares solution (s, t) = (1/2, 0) corresponds to the points

x1 = (1, 0, 0) +
1

2
(1, 2, 1) = (3/2, 1, 1/2) and x2 = (1, 1, 1) + 0(1, 1, 1) = (1, 1, 1).

But what exactly have we minimized here? Recall that the least squares solution of Ax = b
minimizes the distance ‖Ax− b‖. In our case we have minimized the distance∥∥∥∥∥∥

1 −1
2 −1
1 −1

(s
t

)
−

0
1
1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
1

0
0

+ s

1
2
1

−
1

1
1

− t
1

1
1

∥∥∥∥∥∥ = ‖x1 − x2‖,

which is exactly what we wanted to do.

More generally, we can use this method to find the distance between any two affine subspaces
living in Rn. Recall that an affine subspace of Rn has the form

p + U = {the set of points p + u for all u ∈ U},

where p ∈ Rn is a point and U ⊆ Rn is a linear subspace (i.e., passing through 0). For the
current discussion, it is convenient to represent a d-dimensional affine subspace as p + C(A)
for some n× d matrix A with independent columns. We can also express this as

p + C(A) = {the set of points p +Ax for all x ∈ Rd}.

Now let A and B be matrices of shapes n× d and n× e, each with independent columns, and
consider any two points a,b ∈ Rn. We want to find the distance between the following two
subspaces:

a + C(A) = {the set of a +Ax for x ∈ Rd},
b + C(B) = {the set of b +By for y ∈ Re}.
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We begin optimistically, by assuming that a + C(A) and b + C(B) share a common point:

a +Ax = b +By

Ax−By = b− a(
A −B

)( x

y

)
= b− a

Cz = c,

where the matrices C, z and c have shapes n × (d + e), (d + e) × 1 and n × 1, respectively.
Next we multiply on the left by CT to obtain

Cz = c

CTCz = CT c(
AT

−BT

)(
A −B

)
z =

(
AT

−BT

)
c(

ATA −ATB

−BTA BTB

)
z =

(
AT c

−BT c

)
.

The matrix C need not have independent columns. However, if the column spaces C(A)
and C(B) have trivial intersection (i.e., if C(A) ∩ C(B) = {0}), then C will have independent
columns.40 In this case the inverse (CTC)−1 exists and we have a unique least squares solution:(

x

y

)
=

(
ATA −ATB

−BTA BTB

)−1(
AT (b− a)

−BT (b− a)

)
.

To check that this makes sense, we consider the case when

a =

1
0
0

 , A =

1
2
1

 , b =

1
1
1

 , B =

1
1
1

 .

This is just our previous example with L1 = a + C(A) and L2 = b + C(B). Then we have(
x

y

)
=

(
ATA −ATB

−BTA BTB

)−1(
AT (b− a)

−BT (b− a)

)

=



(
1 2 1

)1
2
1

 −
(
1 2 1

)1
1
1


−
(
1 1 1

)1
2
1

 (
1 1 1

)1
1
1





−1

(
1 2 1

)0
1
1


−
(
1 1 1

)0
1
1




40This is a bit tricky so we omit the proof.
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=

(
6 −4

−4 3

)−1(
3

−2

)
,

=

(
1/2

0

)
,

which is exactly what we had before.

6.5 Projection Matrices

When solving the least squares problem we implicitly solved the problem of projecting onto
a (linear) subspace. Given a linear subspace U ⊆ Rn and a point x ∈ Rn we want to find
the point y ∈ U that is closest to x. We will denote the point by y = P (x) and call it the
projection of x onto U . Here is a picture:

It is not immediately obvious, but we will see that P : Rn → Rn is a linear function, hence
it corresponds to an n × n matrix. The easiest way to find this matrix is to represent U as
a column space. Suppose that dimU = d and let a1, . . . ,ad ∈ U be any basis. Then we can
form the n× d matrix

A =

 | |
a1 · · · ad

| |

 so that U = C(A).

From geometric considerations (the triangle inequality) we see that the distance ‖P (x)−x‖ is
minimized when the vector P (x)−x is perpendicular to U . And since U⊥ = C(A)⊥ = N (AT ),
we see that41

P (x)− x ∈ U⊥ ⇐⇒ AT (P (x)− x) = 0.

41We already saw this argument in 6.3 so I went faster this time.
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Furthermore, since P (x) ∈ U and since U = C(A) we can write P (x) = Ax̂ for some vector
x̂ ∈ Rd.42 Thus we have the following two facts about the projection:

• AT (P (x)− x) = 0,

• P (x) = Ax̂.

Combining these facts gives

AT (Ax̂− x) = 0

ATAx̂−ATx = 0

ATAx̂ = ATx

x̂ = (ATA)−1ATx A has independent columns

Ax̂ = A(ATA)−1ATx

P (x) = A(ATA)−1ATx.

Finally, since this equality holds for any vector x ∈ Rn we conclude that P is linear and is
represented by the n× n matrix A(ATA)−1AT . We have thus proved the following theorem.

Theorem (Projection Onto a Subspace). Let A be an n × d matrix with independent
columns, so the column space U = C(A) is a d-dimensional subspace of Rn. The function
P : Rn → Rn that projects onto U is linear and is represented by the following matrix:

P = A(ATA)−1AT .

If A has orthonormal columns then the formula simplifies because ATA = I:

P = AAT .

A given subspace is represented by many matrices. For example, consider the 3× 1 matrices

A =

 1
−1
1

 and B =

−2
2
−2

 .

The column spaces C(A) and C(B) are the same line in R3. Thus we expect that the matrices
A(ATA)−1AT and B(BTB)−1BT are equal. Indeed, we have

A(ATA)−1AT =

 1
−1
1

(1 −1 1
) 1
−1
1

−1 (1 −1 1
)

=

 1
−1
1

 (3)−1
(
1 −1 1

)
42In the least squares problem the vector x̂ is the main event. Here it is only a temporary convenience.
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=
1

3

 1
−1
1

(1 −1 1
)

=
1

3

 1 −1 1
−1 1 −1
1 −1 1


and

A(ATA)−1AT =

−2
2
−2

(−2 2 −2
)−2

2
−2

−1 (−2 2 −2
)

=

−2
2
−2

 (12)−1
(
−2 2 −2

)

=
1

12

−2
2
−2

(−2 2 −2
)

=
1

12

 4 −4 4
−4 4 −4
4 −4 4


=

1

3

 1 −1 1
−1 1 −1
1 −1 1

 .

More generally, if A is n× d then for any invertible d× d matrix C we have

C(AC) = C(A).

If A has independent columns then AC also has independent columns, and we observe that

(AC)((AC)T (AC))−1(AC)T = AC(CT (ATA)C)−1CTAT

= ACC−1(ATA)−1(CT )−1CTAT

= AI(ATA)−1IAT

= A(ATA)−1AT .

So far we have discussed explicit properties of projection in Euclidean space. Next we discuss
some abstract properties of projection that apply also to operators on infinite dimensional
spaces.

Definition of Abstract Projection. Let V be a real inner product space and consider a
linear function P : V → V . If P satisfies certain mild conditions,43 then there exists a unique
linear function P T : V → V , called the adjoint of P , satisfying

〈Pu,v〉 = 〈u, P Tv〉 for all u,v ∈ V .

43For example, this holds when V is complete and P is continuous.
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We say that P is an abstract projection operator when

P 2 = P and P T = P.

For example, if V is Euclidean space then the adjoint P T is just the transpose matrix. In this
case we observe that the matrix P = A(ATA)−1AT is an abstract projection because

P 2 = [A(ATA)−1AT ][A(ATA)−1AT ]

= A((((((((
(ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= P

and

P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]T (A)T

= A[(ATA)T ]−1AT

= A[AT (AT )T ]−1AT

= A(ATA)−1AT

= P.

Later we will see that any abstract projection matrix satisfying P 2 = P and P T = P is a
“real” (i.e., geometric) projection, hence it can be represented as P = A(ATA)−1AT . To
summarize: For any square matrix P we have

P 2 = P and P T = P ⇐⇒ P = A(ATA)−1AT for some A.

I think that’s pretty surprising. In fact, there is a more general version:44 For any square
matrix P we have

P 2 = P ⇐⇒ P = A(BTA)−1BT for some A and B.

If P has shape n × n and rank d then the matrices A and B both have shape n × d and
independent columns. Geometrically, this is a “non-orthogonal projection”. It projects all
points onto the column space of A, but it does this at a strange angle that is perpendicular
to the column space of B.

For example, suppose we want to project onto the line t(1, 1) in R2 in a direction that is
perpendicular to (3, 1). Then we can take

A =

(
1
1

)
and B =

(
3
1

)
44Maybe we’ll prove this later; maybe not. Here are some links:

https://math.stackexchange.com/questions/600745/are-idempotent-matrices-always-diagonalizable

https://math.stackexchange.com/questions/2817221/decomposition-of-idempotent-matrix
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to get

P = A(BTA)−1BT =

(
1
1

)((
3 1

)(1
1

))−1 (
3 1

)
=

(
1
1

)
(4)−1

(
3 1

)
=

1

4

(
1
1

)(
3 1

)
=

1

4

(
3 1
3 1

)
.

Picture:

Projection Matrices Come in Pairs.45 To end this section, I want to observe that pro-
jection matrices come in pairs. Let P be a projection matrix satisfying

P 2 = P and P T = P.

Then the matrix Q = I − P is also a projection since

Q2 = (I − P )2 = I2 − 2P + P 2 = I − 2P + P = I − P = Q

and
QT = (I − P )T = IT − P T = I − P = Q.

45This topic does not apply very well to infinite dimensional vector spaces, since one of the pair will have
infinite rank.
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Furthermore, we observe that

PQ = QP = P 2 − P = P − P = O.

Thus we have the following situation:

• P and Q are projections,

• P +Q = I,

• PQ = O.

Suppose that P and Q have shape n× n. If P is the projection onto a subspace U ⊆ Rn then
Q is the projection onto the orthogonal complement U⊥ ⊆ Rn and vice versa. We can see this
by looking at Rn “from the side”:

For any point x ∈ Rn we know that the four points 0,x, Px, Qx form a rectangle because

Px +Qx = (P +Q)x = Ix = x

and
(Px) • (Qx) = (Px)T (Qx) = xTP TQx = xTPQx = xTOx = 0.

This pairing sometimes shortens calculations. For example, suppose that we want to find the
3× 3 matrix P that projects onto the plane x− 2y + z = 0 in R3. Then the complementary
matrix Q = I − P projects onto the line generated by (1,−2, 1), which is easier to calculate:

Q =

 1
−2
1

 1
−2
1

(1 −2 1
)−1 (1 −2 1

)
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=

 1
−2
1

 (6)−1
(
1 −2 1

)

=
1

6

 1
−2
1

(1 −2 1
)

=
1

6

 1 −2 1
−2 4 −2
1 −2 1

 .

It follows that

P = I −Q

=
1

6

6 0 0
0 6 0
0 0 6

− 1

6

 1 −2 1
−2 4 −2
1 −2 1


=

1

6

 5 2 −1
2 2 2
−1 2 5

 .

Of course, we could also do this the long way, by first finding a basis for the plane x−2y+z = 0.
Let’s take (1, 0,−1) and (0, 1, 2) and form the matrix

A =

 1 0
0 1
−1 2

 .

Then with a bit of work, one can verify that

A(ATA)−1AT =
1

6

 5 2 −1
2 2 2
−1 2 5

 .

It seems a bit surprising that these two methods give the same answer. To be more precise,
consider any complementary subspaces U and U⊥ in Rn, and choose any matrices A and B
with independent columns, such that U = C(A) and U⊥ = C(B). Then it must be true that

A(ATA)−1AT +B(BTB)−1BT = I,

but this seems mysterious. I’ll end by giving an argument to make it feel more natural.

Suppose that dimU = d so that A has shape n × d and B has shape n × (n − d). Form the
augmented matrix

C =
(
A B

)
,
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which has shape n× n. Since the columns of A are a basis for U and the columns of B are a
basis for U⊥, the columns of C are a basis for the whole space. In particular, C is invertible,
which implies that

C(CTC)−1CT = CC−1(CT )−1CT = I.

On the other hand, since every column of A is perpendicular to every column of B we know
that ATB = O and BTA = O, hence

CTC =

(
AT

BT

)(
A B

)
=

(
ATA ATB

BTA BTB

)
=

(
ATA O

O BTB

)
.

And since A and B each have independent columns, we know that ATA and BTB are invert-
ible, hence

(CTC)−1 =

(
ATA O

O BTB

)−1
=

(
(ATA)−1 O

O (BTB)−1

)
.

Finally, we observe that

C(CTC)−1CT =
(
A B

)( (ATA)−1 O

O (BTB)−1

)(
AT

BT

)

=
(
A(ATA)−1 B(BTB)−1

)( AT

BT

)
= A(ATA)−1AT +B(BTB)−1BT .
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