
Math 510 Fall 2022
Review for Exam 2 Drew Armstrong

• State the definitions of row space, column space, nullspace. It is important to know that

C(A) = all vectors of the form Ax,

and
Ax = 0 ⇐⇒ x is orthogonal to every row of A.

• The previous observation says that N (A) = R(A)⊥. In general, if U ⊆ V is a subspace
of an inner product space V then we define

U⊥ = {v ∈ V : 〈u,v〉 = 0 for all u ∈ U}.

If V is finite dimensional, then you should know (but you don’t need to prove) that

dimU + dimU⊥ = dimV.

• If A is m × n then R(A) and N (A) are subspaces of Rn, while C(A) and N (AT ) are
subspaces of Rm. It follows from the previous fact that

dimR(A) + dimN (A) = n and dim C(A) + dimN (AT ) = m.

• The Fundamental Theorem says that dimR(A) = dim C(A). You don’t need to prove
this. We define

rank(A) := dimR(A) = dim C(A).

• Know that row operations correspond to multiplying EA with E elementary, and column
operations correspond to multiplying AF with F elementary. Given a small invertible
matrix A, be able to express A as a product of elementary matrices.

• Given specific A, find bases for the four fundamental subspaces. Method: Compute
RREF of A. The nonzero rows of the RREF are a basis for R(A). The pivot columns
of the RREF are not a basis for C(A), but the corresponding columns in A are a basis
for C(A). Alternatively, the nonzero rows of the RREF of AT are a basis for C(A). To
compute N (A), suppose that M is the RREF of A. Then Ax = 0 and Mx = 0 have
the same solutions. The solutions of Mx = 0 are easy to read off.

• To elaborate a bit on the previous point: Let M be the RREF of A, which is obtained
from A by multiplying on the left by elementary matrices: Ek · · ·E1A = M . Using this
fact, show that Ax = 0 if and only if Mx = 0. (It follows from this that R(A) =
N (A)⊥ = N (M)⊥ = R(M), which is why the nonzero rows of M give a basis for R(A).)

• Know criteria for the existence of inverses. Given an m× n matrix A:
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– A has a left inverse if and only if rank(A) = n.

– A has a right inverse if and only if rank(A) = m.

– If A is not square then left (right) inverses are not unique.

– A−1 exists if and only if m = n = rank(A).

– Two-sided inverses are unique.

Be able to compute one-sided and two-sided inverses for small matrices.

• A linear system Ax = b has a solution if and only if b ∈ C(A), in which case the solution
has the form

x′ +N (A) = {x′ + x : x ∈ N (A)}.

If A has independent columns then N (A) = {0} so the solution is a single point.

• Compute the solution of a small linear system.

• Use the trick xTATAx = ‖Ax‖2 to prove that N (ATA) = N (A). One direction: If
Ax = 0 then ATAx = AT0 = 0. Other direction: If ATAx = 0 then ‖Ax‖2 =
xTATAx = xT0 = 0. But ‖Ax‖2 = 0 implies Ax = 0 by properties of norms.

• For any matrix A, the matrix ATA is square and symmetric.

• If A has independent columns, show that ATA also has independent columns, hence
(ATA)−1 exists. Do the same for AAT when A has independent rows.

• If Ax = b has no solution, multiply both sides on the left by ATAx = ATb. The
new system always has solutions, and these solutions minimize ‖Ax − b‖. If A has
independent columns then the least-squares solution is unique:

ATAx = ATb

x = (ATA)−1ATb.

• Solve a small least squares problem, such as fitting a line to three data points, or finding
the distance between skew lines in R3.

• Projection. Let Px be the projection of x onto C(A). Since Px is in C(A) we must
have Px = Ax̂ for some x̂. We also know that Px − x is orthogonal to C(A), which
means that Px− x is orthogonal to every column of A:

AT (Px− x) = 0.

• Assuming A has independent colums, solve the previous equation to get

P = A(ATA)−1AT .
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• In general, P is a projection when P 2 = P and P T = P . If P is a projection show that
Q = I − P is also a projection. In fact, P and Q project onto orthogonal subspaces.
This sometimes gives a shortcut to compute P . For example, let P be the projection
onto the plane ax+ by+ cz = 0. Then I−P projects onto the line generated by (a, b, c):

I − P =

a
b
c

(a b c
)a

b
c

−1 (a b c
)

=
1

a2 + b2 + c2

a2 ab ac

ab b2 bc

ac bc c2

 .

• State the definition of k-linear forms. Know that every 1-linear form looks like ϕb(x) =
bTx for a vector b. Know that every 2-linear form looks like ϕB(x,y) = xTBy for a
square matrix B.

• Relate properties of the function ϕB to properties of the matrix B:

– B = C if and only if ϕB(x,y) = ϕC(x,y) for all x,y.

– BT = B if and only if ϕB(x,y) = ϕB(y,x) for all x,y.

– If B = ATA then ϕB(x,x) ≥ 0 for all x.

– If B = ATA and A has independent columns then ϕB(x,x) = 0 implies x = 0.

• Write a given polynomial f(x) of degree 2 in the form f(x) = b+bTx+xTBx for some
scalar b, vector b and symmetric matrix B.

• Use Laplace expansion or some other method to compute small determinants.

• Know that A−1 exists if and only if det(A) 6= 0.

• Know the formulas

– det(AT ) = det(A)

– det(AB) = det(A)det(B)

– det(A−1) = 1/det(A).

• If A is square, prove that
√

det(ATA) = |det(A)|.

• If A is n × k, know that
√

det(ATA) is the k-volume of the k-parallelogram in Rn

generated by the columns of A.
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