MTH 505: Number Theory Spring 2020
Homework 1 Drew Armstrong

Problem 1. Find the complete integer solution x, y € Z to the following Diophantine equation:
1035z + 644y = 299.

Consider the set of integer vectors (x,y, z) satisfying 1035z + 644y = z. Beginning with the
obvious triples r; := (1,0,1035) and 7o := (0,1,644), we perform a sequence of elementary
operations corresponding to the Euclidean algorithm:

X Yy z

11 01035 |y

0 1] 644 | ro
1| —-1] 391 |rg=r; —1ro
-1 2 253 rqy =r9 — 11‘3
2| -3 138 rs =Ir3 — 11‘4
-3 5 115 r¢ = Ig4 — 11‘5
5| —8 23 r; =r5 — 11‘6
—28 45 0 rg =rg — 51‘7

In particular, we see that ged(1035,644) = 23, and we note that 299 = 23-13. From theorems
in the notes, we conclude that the complete solution is given by the linear combinations
13r7 + krg = (15 — 28k, —24 + 45k, 23) for all k € Z:

1035(15 — 28k) + 644(—24 + 45k) = 23.

Problem 2. Let a,b, ¢, k € Z be any integers satisfying a = bk + c. In this case prove that
ged(a, b) = ged(b, ¢).

[Hint: Show that the sets of common divisors are the same: Div(a,b) = Div(b,c). It follows
that the greatest element of each set is the same.]

To prove that the sets Div(a,b) and Div(b, ¢) are the same we must show (1) that Div(a,b) <
Div(b, ¢) and (2) Div(b,c) < Div(a,b).

(1): Consider any element d € Div(a,b). By definition this means that a = da’ and b = db’ for
some integers a’, b’ € Z. But then we also have

c=a—>bk=dd —db'k =d(a —Vk),
which implies that d|c and hence d € Div(b, ¢).

(2): Consider any element d € Div(b, c). By definition this means that b = db’ and ¢ = d¢’ for
some integers b, ¢’ € Z. But then we also have

a=>bk+c=dk+dd =db'k+ ),
which implies that d|a and hence d € Div(a, b).

Problem 3. In this problem you will give a non-constructive proof of Bézout’s identity.
Consider two nonzero integers a, b € Z and define the set

S ={azx +by:z,ye”Zand ax + by > 0}.
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This set is non-empty because it contains |a|, hence it has a least element by well-ordering.
Let d € S denote this least element.

(a) Prove that d is a common divisor of a and b. [Hint: Let r be the remainder of a mod
d. If r # 0 show that r is an element of S that is smaller than d.]

(b) Continuing from (a), show that d is the greatest common divisor of a and b. [Hint:
Let e be any common divisor of @ and b. Use (a) to show that e < d.]

(a): By definition of d we know that d = ax + by > 0 for some integers x,y € Z. Since d # 0
we may divide a by d to obtain a = gd + r for some integers ¢, r € Z satisfying 0 < r < d. We
will show that » = 0 and hence d|a. So let us assume for contradiction that r > 0. Then since

r=a—gqd=a—q(ax+by) = a(l —qx) + b(—qy) = a(some integer) + b(some integer)

we find that r is an element of S that is strictly smaller than d. Contradiction. A similar
argument shows that d|b.

(b): Suppose that e € Z satisfies ela and elb. Say a = ea’ and b = eb’ for some integers
a',b € Z. Then since d = ax + by we have

d=ax+by =edz+eby =e(dz +Vy).
Finally, since e|d and d > 0 we conclude that e < d as desired.

Combining (a) and (b) shows that d = ged(a,b). In particular, we have proved that there
exist integers x,y € Z satisfying ax + by = ged(a, b). This is called Bézout’s Identity.

Problem 4. Consider any non-zero integers a, b, c € Z. In class I defined the greatest common
divisor ged(a, b, ¢) as the greatest element of the following set of common divisors:

Div(a,b,c) = {d € Z : d|a and d|b and d|c}.
Prove that the same concept can also be defined recursively, as follows:
ged(a, b, ¢) = ged(ged(a, b), c).

[Hint: This comes down to the fact that any common divisor of a and b is a divisor of ged(a, b),
which can be proved using Bézout’s identity.]

Let’s say that d := ged(a,b) with a = da’ and b = db'. Following the idea in Problem 2, we
will prove that the sets Div(a,b,c) and Div(d, c) are the same.

(1): First we assume that e € Div(d, ¢), so that e|d and e|c. Let’s say d = ed’. But then we
have a = da’ = ed'a’ and b = db' = ed't/, which implies that e|a and elb. In summary, we have
shown that e € Div(a, b, ¢).

(2): Conversely, suppose that we have e € Div(a,b,c¢) with a = ea”, b = eb” and ¢ = ed’.

Our goal is to show that e|d and hence e € Div(d,c). But we know from Bézout’s Identity

(Problem 3) that there exist some x,y € Z satisfying az + by = d. It follows from this that
d=ax+by=ecdz+eby=celd"z+1"y),

and hence e|d as desired.

Problem 5. Euclid’s Lemma. For any integers a, b, ¢ € Z with a|bc and ged(a, b) = 1, prove
that alc. [Hint: From Bézout’s identity we know that ax + by = 1 for some z,y € Z. Multiply
both sides by c.]



3

Since a|bc we have bc = ak for some k € Z. And from Bézout’s Identity we have azx + by = 1
for some integers z,y € Z. Then multiplying both sides by ¢ gives

ar +by =1
clax +by) =c
acr + bey = ¢
acr + aky = ¢
a(cr + ky) = ¢,

which implies that alc.

Problem 6. Lamé’s Theorem. Consider some integers a,b € Z with a > b > 0 and suppose
that the Euclidean algorithm uses n divisions with remainder to compute ged(a,b). In this
case, Lamé’s Theorem says that we must have a > F, ;41 and b > F),, where the Fibonacci
numbers are defined by Fy =0, F; =1 and F, = Fy,—1 + Fro.

(a) Prove Lamé’s Theorem by induction on n, starting with n = 0 and n = 1.

(b) Prove by induction that for all n > 2 we have

1—%\/5>"_2.

Fn>¢n2:( 5

(c) Assuming that n > 2, combine parts (a) and (b) to prove that we have n < 5d + 2,
where d is the number of decimal digits in b.

Before starting the proof, let me first clearly state the Euclidean algorithm. Given a pair
(a,b) with a > b > 0 we first define 9 := a and r; := b then for all r; # 0 we apply division
with remainder to obtain r;_1 = ¢;+17; + 7,41 and 0 < ;51 < r;. This produces a decreasing
sequence of remainders:

ro>Ty>Te > >0y > rpe = 0.
If r, > rpp1 = 0 then we say that the algorithm “terminates in n steps.” It is not important
for this problem, but we also conclude from Problem 2 that

ged(a, b) = ged(ro,m) = ged(ry,mo) = -+ - = ged(rp, rne1) = ged(rp, 0) = 7p.

(a): Base Cases. If the algorithm terminates in n = 0 steps then we must have b = 0, in
which case b = 0 > Fy and @ > 1 = Fj. If the algorithm terminates in n = 1 steps then we
must have b > 1 and a = ¢gb + 0 for some quotient ¢ > 1, which implies that b > 1 = F; and
a=>b+1=2> b,

Induction Step. Now fix some integer n > 2 and let us assume that:
e The Euclidean algorithm applied (a,b) terminates in n steps.
e Lamé’s Theorem holds for any pair when the algorithm terminates in n — 1 steps.

Let 79 = a and 1 = b, as in the above discussion. Since the algorithm applied to (rg,r1) =
(a,b) terminates in n steps it follows that the algorithm applied to (1, 72) = (b, r2) terminates
in n — 1 steps. Thus we may assume for induction that b > F,, and ro > F;,_1. Finally, since
g2 > 0 this implies that

CLZQQb+T2>b+T2>Fn+Fn,1=Fn+1.
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(b): We observe that the golden ratio ¢ = (1 + 1/5)/2 satisfies ¢? = ¢ + 1, and hence ¢"2 =
¢" 1 + ¢" for all integers n > 0. Observe that I, = 1 > 1 = ¢ and F3 = 2 > 1.618 = ¢
Now fix some integer n > 4 and assume for induction that Fj, > ¢F=2 for all 2 < k < n. It
follows that

Fy=F, 1+ F, 2> ¢n—3 + ¢n—4 = ¢n—2'

(c): Suppose that the Euclidean algorithm applied to (a,b) terminates in n steps. We showed
in part (a) that b > F,, and we showed in part (b) that F}, = ¢" 2, hence b > ¢" 2. Take the
logarithm base 10 of both sides to obtain

A\

b ¢n72
log(b) = (n — 2)log(¢)
log(b)/log(¢) + 2 = n.

We observe that 1/log(¢) = 4.785 < 5. If d is the number of decimal digits in b then we also
have 109! < b < 10%, which implies that d — 1 < log(b) < d. It follows that

\

n <

1
log(b) + 2 < 5d + 2.
log(¢) 8(0)

[Remark: Maybe this can be improved to n < 5d with a bit more work.]



