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Introduction

This is a course about the system of integer numbers. We denote the set of these numbers by
a blackboard bold letter Z (for Zahlen):

Z “ t. . . ,´2,´1, 0, 1, 2, . . .u.

In some sense this is the oldest kind of mathematics that is still actively studied. The subject
is full of open problems that are easy to state but have resisted solution for hundreds or even
thousands of years. In this course I will focus on the period of activity that began with Fermat
in the 1600s and ended roughly with Dedekind at the end of the 19th century. This was the
period in which the modern language of number theory was developed.

There are two major branches of modern number theory, called algebraic and analytic. At
higher levels the two branches are combined but in the beginning they look quite different.
In this class I will focus on the algebraic branch of number theory, but I may mention some
analytic ideas from time to time. Most of our time will be spent looking for integer solutions
to polynomial equations, such as

(1) xn ` yn “ zn.

It is a famous conjecture of Fermat that this equation has no integer solutions when xyz ‰ 0
and n ě 3.1 After hundreds of years of intense work, a proof of this conjecture was finally
announced by Andrew Wiles of Princeton in 1993. There is no way that we can discuss
Wiles’ proof in this class, but we will examine the special cases of (1) when n “ 2, 3, 4.
Such polynomial equations of integers are called Diophantine equations after Diophantus of
Alexandria (ca. 201–299 AD), but they were also studied in the Sunzi Suanjing, a Chinese
mathematical work from the 3rd to 5th century AD.

We will begin by looking at the so-called linear Diophantine equations such as

ax` by ` c “ 0,

and we will work our way up to quadratic Diophantine equations such as

ax2 ` bxy ` cy2 ` dx` ey ` f “ 0.

Along the way we will learn about the algebraic techniques that were developed throughout
history to solve such equations. Cubic equations and above can become impossibly difficult.
In fact, it was proved by Yuri Matyasevich and Julia Robinson in the 1970s that the general
problem is technically undecidable (in a certain sense).2 This is just as well, because the linear
and quadratic cases are more than enough to keep us busy for a full semester.

1In fact, Fermat claimed that he could prove this, but most people today believe that his proof was wrong.
2They gave a negative answer to Hilbert’s 10th Problem by showing that there does not exist an algorithm

to determine whether a given Diophantine equation has a solution.

2



1 The Definition of the Integers

This is a class in which we will prove things, and it is impossible to prove anything without
some technical definitions to work with. Therefore we will begin by stating the technical
definition of the integers.

Logically speaking, the modern definition of Z begins with the definition of the natural numbers

N “ t0, 1, 2, . . .u.

It turns out that the only properties of N that are really fundamental are the properties of
“successor” and “induction”. These are captured with Giusuppe Peano’s system of axioms.

1.1 Peano’s Axioms for N

Let N be a set equipped with an equivlence relation ““” and a “successor” function σ : NÑ N
satisfying the following four properties:

(P1) There exists a special element called 0 P N.

(P2) The element 0 is not the successor of any number, i.e.,

@n P N, σpnq ‰ 0.

(P3) Every number has a unique successor, i.e.,

@m,n P N, pσpmq “ σpnqq ñ pm “ nq.

(P4) The Induction Principle. If a set of natural numbers S Ď N contains 0 and is closed
under succession, then we must have S “ N. In other words, if we have

– 0 P S,

– @n P N, pn P Sq ñ pσpnq P Sq,

then it follows that S “ N.

//

I’ll admit that this definition doesn’t look much like the integers we know and love. For
example, where are the arithmetic operations of addition/subtraction and multiplication? It
turns out that these structures are inherent in the Peano axioms but it takes some work to get
them out. [You will investigate this on HW1.] After all the work is done, we could rephrase
the definition in a much friendlier way.

3



1.2 A Friendly Definition of Z

Let Z be a set equipped with

• an equivalence relation ““” defined by

– @ a P Z, a “ a (reflexive)

– @ a, b P Z, pa “ bq ñ pb “ aq (symmetric)

– @ a, b, c P Z, pa “ b ^ b “ cq ñ pa “ cq (transitive),

• a total ordering “ď” defined by

– @ a, b P Z, pa ď b ^ b ď aq ñ pa “ bq (antisymmetric)

– @ a, b, c P Z, pa ď b ^ b ď cq ñ pa ď cq (transitive)

– @ a, b P Z, pa ď b _ b ď aq (total)

• and two binary operations

– @ a, b P Z, D a` b P Z (addition)

– @ a, b P Z, D ab P Z (multiplication)

which satisfy the following twelve properties:

Axioms of Addition.

(A1) @ a, b P Z, a` b “ b` a (commutative)

(A2) @ a, b, c P Z, a` pb` cq “ pa` bq ` c (associative)

(A3) D 0 P Z, @a P Z, 0` a “ a (additive identity exists)

(A4) @ a P Z, D b P Z, a` b “ 0 (additive inverses exist)

These four properties tell us that Z is an additive group. It has a special element called 0 that
acts as an “identity element” for addition, and every integer a has an “additive inverse”. If b
and c are two such additive inverses then by applying axioms (A1)–(A3) we obtain

b “ b` 0 “ b` pa` cq “ pb` aq ` c “ 0` c “ c.

Thus additive inverses are unique; we will denote the additive inverse of a by “´a”.

Axioms of Multiplication.

(M1) @ a, b P Z, ab “ ba (commutative)

(M2) @ a, b, c P Z, apbcq “ pabqc (associative)

(M3) D 1 P Zz0,@ a P Z, 1a “ a (multiplicative identity exists)
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Notice that elements of Z do not have “multiplicative inverses”. That is, we can’t divide in
Z. So Z is not quite a group under multiplication. We also need to say how addition and
multiplication behave together.

Axiom of Distribution.

(D) @ a, b, c P Z, apb` cq “ ab` ac

We can paraphrase these first eight properties by saying that Z is a (commutative) ring. Next
we will describe how arithmetic and order interact.

Axioms of Order.

(O1) @ a, b, c P Z, pa ď bq ñ pa` c ď b` cq

(O2) @ a, b, c P Z, pa ď b ^ 0 ď cq ñ pac ď bcq

(O3) 0 ă 1 (this means that 0 ď 1 ^ 0 ‰ 1)

These first eleven properties tell us that Z is an ordered ring. However, we have not yet defined
Z because there exist other ordered rings, for example the real numbers R. To distinguish
Z among the ordered rings we need one final axiom. This last axioms is equivalent to the
Induction Principle but we will state it in a more convenient way.

The Well-Ordering Principle.

Let S Ď Z be any non-empty set of integers that is bounded below. That is, assume that there
exists some s P S and assume that there exists some b P Z such that we have b ď s for all
s P S. In this case we conclude that the set S contains a least element, i.e., an element
` P S such that ` ď s for all s P S. Formally, we have the following:

(WO) @S P ℘pNqzH, D ` P S, @ s P S, ` ď s

You can see from the formal statement that this axioms is logically the most complicated.
It took quite a while for people to realize that this is an axiom and not a theorem. This
was essentially the contribution of Giuseppe Peano in 1889, following earlier work of Richard
Dedekind. //

Exercise: Convince yourself that the rational numbers Q do not satisfy the Well-Ordering
Principle. [Don’t worry about the formal definition of Q; just use your intuition.]

Again, it is quite a bit of work to prove that these axioms characterize the system of integers
uniquely. We won’t bother.
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1.3 Discussion: Multiplicative Cancellation

There are two further properties of the integers that are useful in proofs, called additive
and multiplicative cancellation. Additive cancellation can be proved easily from the Friendly
Axioms of Addition.

Additive Cancellation in Z. For all integers a, b, c P Z we have

pa` c “ b` cq ñ pa “ bq

//

Proof. Consider any a, b, c P Z such that a` c “ b` c. From axiom (A4) we know that there
exists an integer d P Z with the property c` d “ 0. By adding d to both sides we obtain

a` c “ b` c

pa` cq ` d “ pb` cq ` d

a` pc` dq “ b` pc` dq

a` 0 “ b` 0

a “ b.

In other words, additive cancellation holds in Z because we can “subtract”. However, we can
also prove that additive cancellation holds in N, where subtraction in not always possible. On
HW1 you will use the Peano axioms to show that the following recursively defined operations
`, ¨ : Nˆ NÑ N are commutative and associative:

a` 0 “ a,

a` σpbq “ σpa` bq,

a ¨ 0 “ 0,

a ¨ σpbq “ pa ¨ bq ` a.

Additive Cancellation in N. For all natural numbers a, b, c P N we have

pa` c “ b` cq ñ pa “ bq

//

Proof. From the definition of “`” we already know that a ` 0 “ b ` 0 implies a “ a ` 0 “
b ` 0 “ b. Now fix a, b P N and let S Ď N be the set of natural numbers c P N with the
property pa` c “ b` cq ñ pa “ bq. We will use induction to prove that S “ N. We just saw
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that 0 P S. So consider any n P N and assume for induction that n P S. That is, assume that
pa`n “ b`nq ñ pa “ bq. In this case we want to show that pa` σpnq “ b` σpnqq ñ pa “ bq
is also true. Indeed, if a` σpnq “ b` σpnq then we must have

σpa` nq “ a` σpnq

“ b` σpnq

“ σpb` nq.

Then axiom (P3) says that a ` n “ b ` n and the assumption n P S implies that a “ b as
desired. We have show that 0 P S and that pn P Sq ñ pσpnq P Sq for all n P N. It follows from
the Principle of Induction (P4) that S “ N as desired.

The issue of multiplicative cancellation in Z is much more subtle. We would like to prove that
for all a, b P Z we have pac “ bcq ñ pa “ bq, but we quickly note that something is wrong with
this statement because we have

2 ¨ 0 “ 0 “ 3 ¨ 0, but 2 ‰ 3.

The correct statement goes as follows.

Multiplicative Cancellation in Z. For all a, b, c P Z we have

pac “ bc^ c ‰ 0q ñ pa “ bq

//

To mimic the proof of additive cancellation in Z we could consider some d P Z with the
property that cd “ 1 and then multiply both sides of ac “ bd by d to obtain

ac “ bc

pacqd “ pbcqd

apcdq “ bpcdq

a ¨ 1 “ b ¨ 1

a “ b.

But this is a false proof because in general there is no such integer d P Z.3

What can we do? It turns out that it is impossible to prove multiplicative cancellation from
just the axioms of addition (A1)–(A4) and the axioms of multiplication (M1)–(M3). These
seven axioms define a structure called a “commutative ring” and it turns out that there are
plenty of interesting commutative rings in which multiplicative cancellation does not hold.4

3We will prove this in the next section as a consequence of Division With Remainder.
4We will see some of these rings in the chapter on Modular Arithmetic
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So it must be that multiplicative cancellation in Z has some mysterious connection to the
order structure pZ,ďq and the principle of induction.

Many authors choose to ignore this subtlety and they just take Multiplicative Cancellation as
a friendly axiom. You can do this if you want but it’s not necessary. The following sequence
of exercises will guide you through a proof of multiplicative cancellation from first principles.

TO BE CONTINUED

2 Linear Diophantine Equations

As mentioned in the introduction, the central problem of number theory is to solve Diophantine
equations. The general problem of Diophantine equations is in some sense impossible, but there
is one case that we understand completely: the case of linear Diophantine equations. In
this chapter I will present the complete solution of linear Diophantine equations and I will use
this as motivation to introduce the basic definitions and algorithms of number theory.

2.1 Division With Remainder

The natural numbers pN,`, 0q are called a commutative monoid because they have a commu-
tative and associative binary operation ` : NˆNÑ N with an identity element 0 P N. We can
formally enlarge this to a commutative group pZ,`, 0q by adjoining “negative numbers” [see
HW1], and this commutative group also carries a commutative monoid structure pZ,ˆ, 1q in
which the multiplication operation ˆ distributes over addition `. Putting all of this together
gives us a commutative ring structure:

pZ,`,ˆ, 0, 1q.

Here the operation ` is invertible (we can subtract) but the operaiton ˆ is not (we can not
divide by an arbitrary integer). [For example, 2 is an integer, but 1{2 is not.] This can be
fixed by formally adjoining multiplicative inverses (called “fractions”), to obtain the system
of rational numbers pQ,`,ˆ, 0, 1q. But we don’t want to do that in this course because it
kills all the interesting properties of number theory.

Instead, we will investigate the subtle properties of “divisibility” for integers.

Definition of Divisibility. Consider two integers a, b P Z. We say that b divides a or that
a is divisible by b if there exists an integer q P Z such that a “ qb, and this case we will write
“b|a”. In symbols, we have

b|a ðñ Dq P Z, a “ qb.

//

Observe that we have 1|a and a|0 for all a P Z. In other words,
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1 divides everything and everything divides 0.

If b does not divide a we will write b - a. But there is something much more specific we can say
in this case. This is the first “theorem” of number theory on which everything else is based.

Theorem (Division With Remainder). Given integers a, b P Z with b ‰ 0, there exists a
unique pair of integers q, r P Z satisfying the following two simultaneous properties:

"

a “ qb` r
0 ď r ă |b|

We say that q is the quotient and is the remainder of a modulo b. //

Proof: Consider a, b P Z with b ‰ 0. First we will show that the quotient and remainder
exist. To do this we consider the set of integers of the form a´ nb for various n P Z:

S :“ ta´ nb : n P Zu.

Since b ‰ 0 this set must contain a non-negative integer. So let Sě0 be the subset of S
consisting of its non-negative elements. Since the set Sě0 is not empty, the Well-Ordering
Principle (i.e., the Principle of Induction) says that it has a least element. Let us call this
least element r P Sě0. Since r P S we have by definition that r “ a´ qb for some q P Z. Thus
we have obtained specific integers q, r P Z with the property

a “ qb` r.

Furthermore, since r P Sě0 we know that 0 ď r. It only remains to show that the remainder
satisfies r ă |b|. To prove this, let us assume for contradiction that |b| ď r. Then we have

|b| ď r

|b| ´ |b| ď r ´ |b|

0 ď r ´ |b|.

Then since

r ´ |b| “ pa´ qbq ´ |b|

“ a´ qb´ p˘bq

“ a´ pq ˘ 1qb P S

we conclude that r ´ |b| P Sě0. On the other hand, since b ‰ 0 we have

0 ă |b|

r ă r ` |b|

r ´ |b| ă r,
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and thus we have found an element of Sě0 that is smaller than r. This is the desired contra-
diction.//

Next we will show that the quotient and remainder of a mod b are unique. To do this, suppose
that we have some integers q1, q2, r1, r2 P Z satisfying the simultaneous properties

"

a “ q1b` r1
0 ď r1 ă |b|

and

"

a “ q2b` r2
0 ď r2 ă |b|

In this case I claim that we must have q1 “ q2 and r1 “ r2. To see this, first observe that the
simultaneous equations

a “ q1b` r1 and a “ q2b` r2

imply that

q1b` r1 “ q2b` r2

q1b´ q2b “ r2 ´ r1

pq1 ´ q2qb “ pr2 ´ r1q.(2)

This equation is certainly true when pq1 ´ q2q “ 0 “ pr2 ´ r1q; we want to show that this is
the only possible solution.

So let us assume for contradiction that pr2 ´ r1q ‰ 0. Since b ‰ 0 we conclude from
equation (2) that pq1 ´ q2q ‰ 0, and then since pq1 ´ q2q is a whole number we conclude that
1 ď |q1 ´ q2|. Now we use equation (2) and the multiplicative property of the absolute value
to obtain

1 ď |q1 ´ q2|

|b| ď |q1 ´ q2||b|

|b| ď |pq1 ´ q2qb|

|b| ď |r2 ´ r1|.(3)

Now I claim that this inequality contradicts the assumptions

0 ď r1 ă |b| and 0 ď r2 ă |b|.

There are two cases to deal with: since pr1 ´ r2q ‰ 0 we must have either r1 ă r2 or r2 ă r1.
For the purpose of this proof we will assume that r1 ă r2 (the proof of the other case is
similar). In this case we have 0 ă pr2 ´ r1q “ |r2 ´ r1| so that the inequality (3) becomes
|b| ď pr2 ´ r1q. Then the assumption 0 ď r1 gives

0 ď r1

´r1 ď 0

|b| ´ r1 ď |b|
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and the assumption r2 ă |b| gives

r2 ă |b|

r2 ´ r1 ă |b| ´ r1.

Putting these together gives pr2 ´ r1q ă p|b| ´ r1q ď |b|, which contradicts (3).

We have shown that pr2 ´ r1q “ 0. Finally, from equation (2) we have

pq1 ´ q2qb “ pr2 ´ r1q “ 0

and then since b ‰ 0 we conclude that pq1 ´ q2q “ 0 as desired.

Remarks:

• I skipped some steps in there, mostly involving the absolute value function. It is formally
defined by

|a| :“

#

a if 0 ď a

´a if a ă 0

and then one can prove that |ab| “ |a||b| for all a, b P Z. It is not entirely trivial to prove
this from the axioms but I’m going to skip those details. [You can find them in my old
Course Notes for MTH 230.]

• In the past I have seen many students write “b|a “ q” when a “ qb. This is wrong. The
symbol “b|a” on the left is not a number; it is a logical statement meaning that there
exists an integer q P Z with the property a “ qb. I advise you to avoid the use of
fractional notation when proving theorems about Z since it can cause confusion.

I claimed above that is it generally not possible to divide by an integer (that is, without
introducing the formal concept of “fractions”). Now we can prove it.

Example. I claim that 2 - 1. In other words, there does not exist an integer n P Z with the
property 2n “ 1. In other other words, there does not exist an integer that deserves to be
called “1{2”.

Proof. Suppose for contradiction that such an integer does exist. This would mean that the
quotient of 1 mod 2 is n and the remainder is zero:

"

1 “ n ¨ 2` 0
0 ď 0 ă |2|

On the other hand, the following two properties are also true:
"

1 “ 0 ¨ 2` 1
0 ď 1 ă |2|

But this says that the quotient of 1 mod 2 is zero and the remainder is 1. Since 0 ‰ 1 this
contradicts the uniqueness of remainders which we proved above.
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Now it is time to start solving equations. Here is an easy one.

Problem (Linear Diophantine Equation in One Unknown). Given integers a, b P Z,
find all integers x P Z satisfying

ax “ b.

//

Solution. This equation has a solution if and only if a divides b, i.e., if and only if the
remainder of b mod a is zero. In this case there is a unique solution x P Z, which is the
quotient of b mod a. //

2.2 Greatest Common Divisor

Okay, now here’s a harder one.

Problem (Linear Diophantine Equation in Two Unknowns). Given integers a, b, c P Z,
find all integers x, y P Z satisfying

(LDE) ax` by “ c.

//

We will work up to the full solution of this problem but it will take some time to get there.
There are a few separate issues involved in the solution:

• Determine whether a solution exists.

• Find one particular solution x, y P Z.

• Classify all possible solutions x, y P Z.

We’ll first deal with the non-existence of solutions since this is easiest. Suppose that d P Z
is a common divisor of a and b. That is, suppose that there exist integers a1, b1 P Z such that
a “ da1 and b “ db1. Now suppose that the equation (LDE) has a solution, i.e., assume that
there exist integers x, y P Z such that

ax` by “ c.

Then we must have

c “ ax` by

“ pda1qx` pdb1qy

“ dpa1xq ` dpb1yq

“ dpa1x` b1yq,

which implies that d also divides c.
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Conclusion. If a and b have a common divisor that does not divide c, then (LDE) has no
solution. For example, if a and b are both even (i.e., if they have the common divisor 2) and
if c is odd (i.e., if it is not divisible by 2) then there is no solution.

This suggests that we should investigate the common divisors of a and b in more detail. For
this purpose we will denote the set of all common divisors by

Divpa, bq :“ td P Z : d|a^ d|bu.

If a “ b “ 0 then we have Divpa, bq “ Z (every integer divides zero) which is not very
interesting. So let’s assume that a and b are not both zero.

Theorem/Definition. Given two integers a, b P Z with a, b not both zero, the set Divpa, bq
of common divisors is non-empty and bounded above. Thus, by the Well-Ordering Principle
it must have a greatest element. We call this element the greatest common divisor of a and b,
and we denote it by gcdpa, bq P Divpa, bq. //

Proof. Without loss of generality, let’s assume that a ‰ 0. Then I claim that each common
divisor d P Divpa, bq satisfies d ď |a|. So consider any d P Divpa, bq. Since d|a and a ‰ 0 we
must have d ‰ 0. Since d|a we also have a “ da1 for some a1 P Z and since a and d are both
nonzero we must have a1 ‰ 0. Then since a1 is a nonzero integer we must have

1 ď |a1|

|d| ď |d||a1|

|d| ď |da1|

|d| ď |a|,

which implies that d ď |d| ď |a| as desired. We conclude that the set Divpa, bq is bounded
above by |a|. We also know that Divpa, bq is non-empty because 1 P Divpa, bq (1 divides
everything).

The usual statement of the Well-Ordering Principle says that every nonempty set of integers
that is bounded below has a least element. By multiplying everything by ´1 one can show
that this is equivalent to the statement that every non-empty set of integers that is bounded
above has a greatest element. Thus the greatest common divisor exists.

This allows us to be more precise about the solvability of (LDE).

Theorem (Reduction of LDE). Consider integers a, b, c P Z with a, b not both zero and let
d “ gcdpa, bq. If d - c then the equation ax`by “ c has no integer solution x, y P Z. On the
other hand, if d|c then we have integers a1, b1, c1 P Z such that a “ da1, b “ db1, and c “ dc1.
In this case I claim that the integer solutions of ax` by “ c coincide with the solutions of the
reduced equation:

a1x` b1y “ c1.
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//

Proof. We already proved the first statement. To prove the second statement we will denote
the set of solutions of of the equation by

Va,b,c :“ tpx, yq P Z2 : ax` by “ cu.

We want to prove that Va,b,c “ Va1,b1,c1 . To show that Va1,b1,c1 Ď Va,b,c consider any solution
px, yq P Va1,b1,c1 , i.e., consider any ordered pair of integers px, yq P Z2 such that a1x` b1y “ c1.
Now multiply both sider of this equation by d to obtain

a1x` b1y “ c1

dpa1x` b1yq “ dc1

pda1qx` pdb1qy “ dc1

ax` by “ c.

We conclude that px, yq P Va,b,c and hence Va1,b1,c1 Ď Va,b,c. To show that Va,b,c Ď Va1,b1,c1

consider any solution px, yq P Va1,b1,c1 , i.e., any ordered pair of integers px, yq P Z2 such that
ax` by “ c. Then we must have

ax` by “ c

pda1qx` pdb1qy “ pdc1q

dpa1x` b1yq “ dc1.

Then since d ‰ 0 we can multiplicatively cancel d from both sides to obtain a1x ` b1y “ c1.
We conclude that px, yq P Va1,b1,c1 and hence Va,b,c Ď Va1,b1,c1 . .

The process of dividing out by the greatest common divisor is called reduction. It is also
convenient to talk about reduction in the language of coprimality. Given integers a, b P Z
recall that we have 1 P Divpa, bq because the integer 1 divides every other integer. This tells
us that the greatest element of Divpa, bq must satisfy 1 ď gcdpa, bq by definition.

Definition of Coprimality. Given two integers a, b P Z, with a, b not both zero, we have
seen that there exists a greatest common divisor d “ gcdpa, bq and that this greatest common
divisor satisfies

1 ď gcdpa, bq ď mint|a|, |b|u.

In the extreme case that gcdpa, bq “ 1 we say that the integers a and b are coprime.

The utility of this concept is that any pair of integers a, b P Z (not both zero) can be reduced
to a coprime pair of integers as follows. Let d “ gcdpa, bq such that a “ da1 and b “ db1. In
this case I claim that gcdpa1, b1q “ 1 and hence the pair a1, b1 P Z is coprime.
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Proof. Let d1 P Divpa1, b1q be any common divisor of a1 and b1, so that we have a1 “ d1a2

and b1 “ d1b2 for some integers a2, b2 P Z. Then we can substitute a “ d1a2 into the equation
a “ da1 to obtain

a “ da1 “ dpd1a2q “ pdd1qa2,

which implies that dd1 divides a. Similarly we find that dd1 divides b and hence that dd1 P
Divpa, bq. But d is by definition the greatest element of Divpa, bq so we must have dd1 ď d.
Now I claim that d1 ď 1. Indeed, if d1 ą 1 then multiplying both sides by d yields the
contradiction dd1 ą d.

We have shown that every element d1 P Divpa1, b1q satisfies d1 ď 1, which implies that 1 P
Divpa1, b1q is the greatest element of this set. In other words, gcdpa1, b1q “ 1.

In summary, we can restate the problem of linear Diophantine equations as follows.

Problem’ (Linear Diophantine Equations in Two Unknowns). Given integers a, b, c P
Z with gcdpa, bq “ 1, find all integers x, y P Z satisfying

ax` by “ c.

Indeed, if gcdpa, bq “ 1 then we automatically have gcdpa, bq|c. If 1 ‰ d “ gcdpa, bq then
we can divide both sides of the equation by d to obtain the reduced equation a1x ` b1y “ c1

which has the same solution. Note that the reduced equation satisfies gcdpa1, b1q “ 1. We will
assume from now on that all linear Diophantine equations are reduced in this way.

2.3 A Bit of Linear Algebra

Suppose for the moment that we are able to compute the greatest common divisor in an
efficient way.5 Then we can restrict our attention to linear Diophantine equations

(LDE) ax` by “ c

in which a and b are coprime integers, i.e., in which gcdpa, bq “ 1. In this section we will
reduce the problem even further. The ideas will be familir to you if you have already taken
linear algebra.

The case of (LDE) in which c “ 0 is called a homogeneous linear Diophantine equation and
it turns out that this case is much easier to solve. Furthermore, it turns out that solving
homogeneous equations is almost enough to solve the full problem.

Theorem (Reduction to the Homogeneous Case). Consider any integers a, b, c P Z.
(For this theorem is doesn’t matter if a and b are coprime.) Now consider the solution sets to

5We will give an algorithm for this in the next section.
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the equation ax` by “ c and its homogeneous version ax` by “ 0:

V0 :“ tpx, yq P Z2 : ax` by “ 0u,

Vc :“ tpx, yq P Z2 : ax` by “ cu.

I claim that these sets are “almost the same” in the following sense: if px1, y1q P Vc is any one
specific solution then the full solution is given by

Vc “ V0 ` px
1, y1q :“ tpx` x1, y ` y1q : ax` by “ 0u.

//

In other words, the complete solution of the non-homogeneous equation coincides with the
complete solution of the homogeneous equation after translation by one particular solution.

Proof. To prove that V0 ` px
1, y1q Ď Vc consider any element px ` x1, y ` y1q P V0 ` px

1, y1q.
Then we have

apx` x1q ` bpy ` y1q “ pax` byq ` pax1 ` by1q

“ 0` c

“ c,

and hence px1 ` x, y1 ` yq P Vc as desired. Conversely, consider any element pu, vq P Vc and
define the vector px, yq :“ pu, vq ´ px1, y1q “ pu´ x1, v ´ y1q. Then we must have

ax` by “ apu´ x1q ` bpv ´ y1q

“ pau` bvq ´ pax1 ` by1q

“ c´ c

“ 0,

and it follows that px, yq P V0. But then we have pu, vq “ px, yq ` px1, y1q P V0 ` px
1, y1q as

desired.

We can visualize the situation as follows. If we temporarily allow x and y to be real numbers
then the equation ax` by “ c defines a line in the plane R2. The integer solutions px, yq can
be thought of as the “integer points” on this line; there may be none or there may be infinitely
many integer points. The associated homogeneous equation ax ` by “ 0 defines a parallel
line passing through the origin p0, 0q; thus it always has an integer point. Since a and b are
integers we will shortly see that the line ax` by “ 0 has infinitely many integers points.

The above theorem says that if we can find just one integer point px1, y1q on the line
ax ` by “ c then we will obtain a one-to-one correspondence between the integer points on
ax` by “ 0 and the integer points on ax` by “ c as in the following picture:
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This one-to-one correspondence is of course not unique. If we chose a different integer point
px1, y1q on ax` by “ c then we would obtain a different picture:

For this reason, there is no one correct way to express the solution of a linear Diophantine
equation. Two people with the correct solution might have answers that look slightly different.
That won’t bother us in this class. If you’re implementing the problem on a computer then
you might want to choose a standard format for the output; there are several available, such
as the Hermite normal form.

Thus we have broken down the problem into two steps:

• Find one particular solution ax1 ` by1 “ c.
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• Find the general homogeneous solution ax` by “ 0.

We will deal with these two problems in the next two sections.

2.4 The Euclidean Algorithm

First we will deal with the problem of actually computing the greatest common divisor of
two numbers, for the purpose of reducing the Diophantine equation. As a side effect of the
computation we will obtain an efficient method to compute a single solution to the equation
ax` by “ c when gcdpa, bq divides c.

For relatively small numbers we can simply compute the set of common divisors by hand and
then select the greatest element of this set. For example, the set of common divisors of ´18
and 30 is

Divp´18, 30q “ t´6,´3,´2,´1, 1, 2, 3, 6u,

from which we conclude that gcdp´18, 30q “ 6. In this section I will present a beautiful
method, called the Euclidean Algorithm, that can compute the solution in logarithmic time.
To be precise, if 0 ď |a| ă |b| then the Euclidean Algorithm will compute gcdpa, bq in less than
2 ¨ log2 |b| steps.

First I’ll show you an example of the algorithm and then I’ll prove why it works. To compute
gcdp3094, 2513q we first note that 3094 ą 2513 and then we find the quotient and remainder
of 3094 mod 2513:

3094 “ 1 ¨ 2513` 581.

Then we replace the number 3094 by the remainder 581 to obtain the new pair of numbers
2513 ą 581. Now we compute the quotient and remainder of 2513 mod 581:

2513 “ 4 ¨ 581` 189.

This results in the new pair of numbers 581 ą 189. Now we repeat the process until a
remainder of 0 is reached:

3094 “ 1 ¨ 2513` 581

2513 “ 4 ¨ 581` 189

581 “ 3 ¨ 189` 14

189 “ 13 ¨ 14` 7

14 “ 2 ¨ 7` 0.

I claim that the last nonzero remainder in this sequence is the greatest common divisor:

gcdp3094, 2513q “ 7.

Now let me justify the claim. It all depends on the following lemma.
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Lemma. Consider any integers a, b, q, r P Z such that a “ qb` r. (This q, r need not be the
quotient and remainder of a mod b.) Then we have

gcdpa, bq “ gcdpb, rq.

//

Proof. We will show more generally that the sets of common divisors are equal:

Divpa, bq “ Divpb, rq.

Then since the greatest common divisors are the greatests elements of these sets, they must
also be equal. To show that Divpa, bq Ď Divpb, rq, consider any common divisor d P Divpa, bq.
By definition there exist integers a1, b1 P Z such that a “ da1 and b “ db1. Then we must have

r “ a´ qb

“ pda1q ´ qpdb1q

“ dpa1 ´ qbq,

which implies that d divides r, and it follows that d P Divpb, rq. Conversely, to show that
Divpb, rq Ď Divpa, bq consider any common divisor d P Divpb, rq. By definition there exist
integers b1, r1 P Z such that b “ db1 and r “ dr1. Then we must have

a “ qb` r

“ qpdb1q ` pdr1q

“ dpqb1 ` r1q,

which implies that d divides a, and it follows that d P Divpa, bq as desired.

Theorem (The Euclidean Algorithm). Consider any integers a, b P Z with b ‰ 0. To
compute gcdpa, bq we first apply Division With Remainder to obtain

"

a “ q1 ¨ b` r1
0 ď r1 ă |b|

If r1 ‰ 0 then we continue to compute the quotient and remainder of b mod r1:
"

a “ q2 ¨ r1 ` r2
0 ď r2 ă r1

And if r2 ‰ 0 we compute the quotient and remainder of r1 mod r2:
"

a “ q3 ¨ r2 ` r3
0 ď r3 ă r2

Thus we obtain a strictly descending sequence of non-negative integers:

0 ‰ |b| “: r0 ą r1 ą r2 ą ¨ ¨ ¨ ě 0.
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I claim that the sequence must terminate. That is, I claim that there exists an integer n ě 1
such that rn “ 0 and rn´1 ‰ 0. Furthermore, I claim in this case that rn´1 is the greatest
common divisor of a and b:

gcdpa, bq “ rn´1.

//

Proof. Assume for contradiction that we have rn ‰ 0 for all n ě 1. Then we obtain an
infinite strictly decreasing sequence of positive integers:

0 ‰ |b| “: r0 ą r1 ą r2 ą ¨ ¨ ¨ ą 0.

Now consider the set S :“ tr0, r1, r2, . . . , u. This set is non-empty because |b| P S and it is
bounded below by 0. Thus the Well-Ordering Principle says that S must have a least element
of the form r` P S. But this is impossible because r``1 ă r` is also an element of S. We
conclude that there exists n ě 1 with rn “ 0 and by another application of Well-Ordering we
can assume that rn´1 ‰ 0.

To prove that this numbe rn´1 is the greatest common divisor of a and b we repeatedly use
the previous Lemma to obtain

gcdpa, bq “ gcdpb, r1q

“ gcdpr1, r2q

“ gcdpr2, r3q

...

“ gcdprn´1, rnq

“ gcdprn´1, 0q.

This last gcd exists because rn´1 ‰ 0. Furthermore, the common divisors of rn´1 and 0 are
just the divisors of rn´1 because everything divides zero. Since rn´1 is positive we conclude
that gcdprn´1, 0q “ rn´1 and hence

gcdpa, bq “ gcdprn´1, 0q “ rn´1.

Remarks:

• I’ll ask you to compute the complexity of the Euclidean Algorithm on HW2.

• The algorithm can be implemented very simply without even mentioning the words
“quotient” and “remainder”. Given two non-negative integers a, b P N not both zero
perform the following steps:

while a ‰ b do
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if a ą b then replace a by a´ b
else replace b by b´ a

return a

I claim that this is just the Euclidean Algorithm in disguise. [Why?]

Thus the Euclidean Algorithm is an efficient way to compute the greatest common divisor of
two integers. However, I claim that the same algorithm can also be used to compute solutions
to linear Diophantine equations. Before describing the general method I’ll illustrate the ideas
behind it by considering the equation

3094x` 2513y “ 21.

We saw above that gcdp3094, 2513q “ 7. Then since 7|21 we know that this equation might
possibly have an integer solution px, yq P Z2. To find such a solution the trick is to broaden
our scope and consider the following homogeneous Diophantine equation in three unknowns
x, y, z:

3094x` 2513y “ z.

The reason we do this is because there are two obvious solutions to this equation:

3094p1q ` 2513p0q “ p3094q

3094p0q ` 2513p1q “ p2513q.

And once we have two solutions we can combine them in various ways to get infinitely many
solutions. We will borrow a principle from linear algebra.

The Principle of Linear Combination. Fix two integers a, b P Z and suppose that the
vectors px1, y1, z1q P Z3 and px2, y2, z2q P Z3 are two solutions of the equation

ax` by “ z.

Then for any integers u, v P Z I claim that the linear combination vector

upx1, y1, z1q ` vpx2, y2, z2q “ pux1 ` vx2, uy1 ` vy2, uz1 ` vz2q P Z3

is another solution. In other words, the set of solution vectors

V “ tpx, y, zq P Z3 : ax` by “ zu

is closed under vector addition and scalar multiplication by integers. //

Proof. Suppose that px1, y1, z1q and px2, y2, z2q are in V and consider any two integers u, v P Z.
Then we have

apux1 ` vx2q ` bpuy1 ` vy2q “ upax1 ` by1q ` vpax2 ` by2q “ uz1 ` vz2,
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and it follows that upx1, y1, z1q ` vpx2, y2, z2q is also in V .

Let’s apply this idea to our problem. If V is the set of solutions px, y, zq P Z3 to the equation
3094x` 2513y “ z then of course we must have the trivial solution p0, 0, 0q P V . But we also
saw above that there two “obvious but non-trivial solutions”:

p1, 0, 3094q P V and p0, 1, 2513q P V.

Now we can apply the Principle of Linear Combination to create as many new solutions as
we want. In the end we are looking for a solution of the form px, y, 7q; is there some sequence
of linear combinations that will achieve this? Certainly. We can just apply the steps of the
Euclidean Algorithm to the third coordinates and let the first two coordinates come along for
the ride. To keep track of the steps I will use the vector notation

x1 :“ p1, 0, 3094q and x2 :“ p0, 1, 2513q.

Then the first step of the Euclidean Algorithm says that we should divide 3094 by 2513 to
obtain 3094 “ 1 ¨ 2513` 581. In terms of vectors we compute

x3 :“ x1 ´ 1 ¨ x2

“ p1, 0, 3094q ´ 1 ¨ p0, 1, 2513q

“ p1,´1, 581q.

Observe that the resulting vector is another solution of the equation because

3094p1q ` 2513p´1q “ p581q.

So far this is not very interesting, but then we continue the process:

x1 “ p1, 0, 3094q
x2 “ p0, 1, 2513q
x3 :“ x1 ´ 1 ¨ x2 “ p1, ´1, 581q
x4 :“ x2 ´ 4 ¨ x3 “ p´4, 5, 189q
x5 :“ x3 ´ 3 ¨ x4 “ p13, ´16, 14q
x6 :“ x4 ´ 13 ¨ x5 “ p´173, 213, 7q
x7 :“ x5 ´ 2 ¨ x6 “ p359, ´442, 0q

At each step the Principle of Linear Combination guarantees that xn is a new solution of the
original equation. In the second-to-last step, the Euclidean Algorithm guarantees that the
third coordinate is the gcd, and we obtain the (non-trivial!) equation:

3094p´173q ` 2513p213q “ 7 “ gcdp3094, 2513q.

Finally, we can return to our motivating equation

3094x` 2513y “ 21.
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Since 7|21 we believed that there might be a solution, and now we can find one easily. Since
21 “ 3 ¨ 7 we just “scalar multiply” the solution x6 “ p´173, 213, 7q by 3 to obtain

3094p´519q ` 2513p639q “ p21q.

This example illustrates that the following general method is correct.

The Vector Euclidean Algorithm. Consider any integers a, b P Z with b ą 0. As in the
usual Euclidean Algorithm we define a sequence of quotients and remainders pqi, riq P Z2 by
repeated division as follows:

a “ q1 ¨ b` r1

b “ q2 ¨ r1 ` r2

r1 “ q3 ¨ r2 ` r3
...

rn´3 “ qn´1 ¨ rn´2 ` rn´1

rn´2 “ qn ¨ rn´1 ` 0.

Recall that rn´1 “ gcdpa, bq. Now consider the two obvious solutions x1 :“ p1, 0, aq and
x2 “ p0, 1, bq of the equation ax` by “ z. If we recursively define the vectors

xi`2 :“ xi`1 ´ qi ¨ xi

then the vector xn has the form px1, y1, gcdpa, bqq for some integer x1, y1 P Z such that

ax1 ` by1 “ gcdpa, bq.

//

Here is a summary of our progress in this section.

• Consider integers a, b, c P Z with a, b not both zero. We have shown that the linear
Diophantine equation

(LDE) ax` by “ c

has a solution px, yq P Z2 if and only if gcdpa, bq divides c.

• More specifically, if c “ n ¨gcdpa, bq for some n P Z then we can use the Vector Euclidean
Algorithm to obtain specific integers x1, y1 P Z such that

ax1 ` by1 “ gcdpa, bq

and then we can multiply both sides by n to obtain a specific solution to (LDE):

apnx1q ` bpny1q “ c.

To complete the solution of (LDE) it remains to find the complete solution of the associated
homogeneous equation: ax ` by “ 0. The answer is easy to guess but a bit tricky to prove.
We will do this in the next section.

23



2.5 Euclid’s Lemma

Consider two integers a, b P Z not both zero. Our goal in this section is to find the complete
solution of the homogeneous linear Diophantine equation

(HLDE) ax` by “ 0

If d “ gcdpa, bq ‰ 1 with a “ da1 and b “ db1 then recall from section 2.2 that we can
“multplicatively cancel” d from both sides of (HLDE) to obtain a new equation

a1x` b1y “ 0

which has the same solutions and where gcdpa1, b1q “ 1. Thus it is sufficient to solve (HLDE)
in the case that a and b are coprime. The complete solution is given by the following theorem.

Theorem (Homogeneous Linear Diophantine Equations). Consider two integers a, b P
Z with gcdpa, bq “ 1. Then the complete solution of the Diophantine equation

ax` by “ 0

is given by px, yq “ kpb,´aq :“ pkb,´kaq for all k P Z. //

It is easy to verify that every pair of the form px, yq “ pkb,´kaq is a solution. Indeed, we have

ax` by “ apkbq ` bp´kaq

“ kpabq ` kp´abq

“ kpab´ abq

“ k ¨ 0

“ 0.

But proving that every solution has this form is a bit harder. To do this we will need a
lemma whose proof depends on the Euclidean Algorithm. This lemma is important enough
to deserve a special name.

Euclid’s Lemma. Consider integers a, b, c P Z with gcdpa, bq “ 1. Then we have

a|pbcq ñ a|c.

Proof of the Lemma. Assume that a|pbcq so there exists an integer k with the property
ak “ pbcq. Since gcdpa, bq “ 1 it follows from the Vector Euclidean Algorithm that there exists
a pair of integers x1, y1 P Z with the property

1 “ ax1 ` by1.
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By multiplying both sides of this equation by c we obtain

c “ cpax1 ` by1q

“ cax1 ` pbcqy1

“ cax1 ` pakqy1

“ apcx1 ` ky1q,

and it follows that a|c as desired.

[Remark: That was a very good trick; never forget it.]

Proof of the Theorem. Assume that gcdpa, bq “ 1. We have already seen that all vectors
of the form px, yq “ kpa,´bq “ pka,´kbq with k P Z are solutions of the equation ax` by “ 0.

Conversely, let px, yq P Z2 be any vector satisfying ax` by “ 0. In this case we want to prove
that px, yq “ kpb,´aq “ pkb,´kaq for some k P Z. If a “ 0 or b “ 0 then one can check that
the solution has the correct form. [Maybe you should check this.] So let us assume that a
and b are both nonzero. Now we will rewrite the equation in two ways:

ax` by “ 0

ax “ bp´yq

ap´xq “ by.

The equation ax “ bp´yq says that a|bp´yq and then since gcdpa, bq “ 1 Euclid’s Lemma says
that a divides ´y. In other words, there exists an integer k with the property

´y “ ka

y “ ´ka.

Similarly, the equation ap´xq “ by says that b|ap´xq and then Euclid’s Lemma implies that
b|p´xq so there exists an integer ` P Z with the property

´x “ `b

x “ ´`b.

Now we substitute these expressions for x and y into the original equation:

ax` by “ 0

ap´`bq ` bp´kaq “ 0

abp´`´ kq “ 0.

Since we have assumed that a and b are both nonzero we must have ab ‰ 0 and then we can
multiplicatively cancel ab to obtain

´`´ k “ 0

´` “ k.
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It follows that px, yq “ p´`b,´kaq “ pkb,´kaq “ kpb,´aq as desired.

In summary, consider two integers a, b P Z, not both zero, and let d “ gcdpa, bq with a “ da1

and b “ db1. We have shown that the homogeneous Diophantine equation

ax` by “ 0

has the complete solution

V “ tpx, yq P Z2 : ax` by “ 0u “ tpkb1,´ka1q : k P Zu.

Geometrically we can think of V as the family of integer points on the line ax ` by “ 0
in the Cartesian plane. This line contains the integer point p0, 0q because the equation is
homogeneous. Then from the above result we see that the rest of the integer points are
equally spaced with distance

a

pa1q2 ` pb1q2 between them:

2.6 Summary and Discussion

We have now completely solved the linear Diophantine equation

(LDE) ax` by “ c.

Here is a point-form summary of our results:
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• If a “ b “ 0 and c ‰ 0 then there is no solution. If a “ b “ c “ 0 then every point
px, yq P Z2 is a solution.

• If a, b are not both zero then there exists a greatest common divisor d :“ gcdpa, bq with
a “ da1 and b “ db1 for some unique integers a1, b1 P Z. If d - c then there is no solution.

• If d|c, i.e., if there exists an integer c1 P Z with c “ dc1 then the equation (LDE) is
equivalent to the “reduced” Diophantine equation

(RLDE) a1x` b1y “ c1,

where now we have gcdpa1, b1q “ 1.

• By applying the Vector Euclidean Algorithm we can find a specific pair of integers
x1, y1 P Z such that

a1x1 ` b1y1 “ gcdpa1, b1q “ 1,

and then multiplying both sides by c1 gives us a specific solution to (RLDE):

a1pc1x1q ` b1pc1y1q “ c1.

• On the other hand, we can use Eucild’s Lemma to prove that the associated homoge-
neous Diophantine equation

(HLDE) a1x` b1y “ 0

has the complete solution given by

V0 :“ tpx, yq P Z : a1x` b1y “ 0u “ tpkb1,´ka1q : k P Zu.

• Finally, let V :“ tpx, yq P Z2 : ax ` by “ cu denote the complete solution to the
original equation (LDE), which is the same as the solution to (RLDE). By combining
the complete solution V0 to (HLDE) with the specific solution pc1x1, c1y1q to (LDE), a
Bit of Linear Algebra shows us that

V “ V0 ` pc
1x1, c1y1q

“ tpkb1,´ka1q : k P Zu ` pc1x1, c1y1q
“ tpc1x1 ` kb1, c1y1 ´ ka1q : k P Zu.

//

Geometrically, we can think of (LDE) as the equation of a general line in the real Cartesian
plane R2. If a, b, c P Z then the Diophantine problem is to find all of the “integer points” on
this line. If gcdpa, bq - c then we find that the line contains no integer points (amazing as
that may be), and when gcdpa, bq|c we find that the line contains infinitely many equally
spaced integer points. The displacement between any two consecutive points is the vector
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pb1,´a1q, which has length
a

pa1q2 ` pb1q2. If we can find just one integer point pc1x1, c1y1q on
the line, then the rest of the integer points are “parametrized” by

pc1x1, c1y1q ` kpb1,´a1q.

There are infinitely many choices for the specific integers x1, y1. Unfortunately, no choice is
better than any other, so there is no one “correct” way to parametrize the solution. Here is a
picture of the situation:

Finally, let’s complete our running example.

Example: Find the complete solution to the Diophantine equation

3094x` 2513y “ 21.

Solution: We consider the associated equation 3094x ` 2513y “ z and the set of integer
vectors V “ tpx, y, zq P Z3 : 3094x ` 2513y “ zu solving this equation. We run the Vector
Euclidean Algorithm starting with the two “basis vectors”:

x1 “ p1, 0, 3094q and x2 “ p0, 1, 2513q.
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By omitting unnecessary symbols we obtain the following table of solution vectors:

x y z vector px, y, zq

1 0 3094 x1

0 1 2513 x2

1 ´1 581 x3 “ x1 ´ 1 ¨ x2

´4 5 189 x4 “ x3 ´ 4 ¨ x3

13 ´16 14 x5 “ x3 ´ 3 ¨ x4

´173 213 7 x6 “ x4 ´ 13 ¨ x5

359 ´442 0 x7 “ x5 ´ 2 ¨ x6

I claim that the final two vectors x6 and x7 contain the solution to our problem. Indeed,
by the Principle of Linear Combination we know that all linear combinations `x6 ` kx7 with
`, k P Z are in the set V . In other words, we have

3094p´173`` 359kq ` 2513p213`´ 442kq “ p7`` 0kq @`, k P Z.

Finally, since 21 “ 3 ¨ 7 “ 3 ¨ gcdp3094, 2513q we specify ` “ 3 to obtain the equation

3094p´519` 359kq ` 2513p639´ 442kq “ 21 @k P Z.

This is the complete solution to the problem.

To end the chapter, I will show how the problem of solving the linear Diophantine equation
ax` by “ c can be extended in two directions.

Extension 1: Systems of linear Diophantine equations. We have seen the complete
solution to a single linear Diophantine equation in two unknowns. More generally, we might
consider a system of m linear Diophantine equations in n unknowns:

$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm

If you have taken a course in linear algebra then you know that this system of equations can
be written as a single matrix equation:

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

b1
b2
...
bm

˛

‹

‹

‹

‚

Then to simplify notation we can abbreviate this matrix equation as

Ax “ b
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where A is the mˆ n matrix of coefficients, x is the nˆ 1 column vector of unknowns and b
is the mˆ 1 column vector of constants. We assume that A and b have integer entries and
the problem is to find all integer vectors x satisfying the matrix equation.

Now I will sketch the complete solution to this problem. The main difficulty is to generalize
the Euclidean Algorithm from a pair of integers to a matrix of integers. The algorithm was
first written down by Henry J. Stephen Smith in 1861 and the general theory was developed
by Weierstrass and Frobenius. I will state their result without proof.6

Theorem (Smith Normal Form). Let A be an m ˆ n matrix with integer entries. For
convenience we will write ` :“ mintm,nu. Then there exists a unique sequence of natural
numbers d1, d2, . . . , d` P N with the following properties:

• We have 1 “: d0|d1|d2| ¨ ¨ ¨ |d`|d``1 :“ 0. This implies that there exists a unique number
0 ď r ď ` such that d0, d1, . . . , dr are positive and dr`1 “ ¨ ¨ ¨ “ d``1 “ 0. The number r
is called the rank of the matrix A.

• There exists an invertible mˆm matrix P and an invertible nˆ n matrix Q such that
the matrices P, P´1, Q,Q´1 all have integer entries and such that

PAQ “ D :“

¨

˚

˚

˚

˚

˚

˝

d1
d2

. . .

dr

0r,n´r

0m´r,r 0m´r,n´r

˛

‹

‹

‹

‹

‹

‚

where 0a,b denotes the aˆ b matrix with all zero entries.

The numbers pd1, d2, . . . , drq are called the invariant factors of the integer matrix A. We can
think of them as a matrix generalization of the “greatest common divisor”. (Indeed, the first
invariant factor d1 is the greatest common divisor of all the entries of A and for all i the
product d1d2 ¨ ¨ ¨ di is the greatest common divisor of all the iˆ i minors of A.) //

Assuming this result we can solve the linear Diophantine system Ax “ b as follows. If PAQ “
D is the Smith Normal Form then we can invert this equation to obtain A “ P´1DQ´1. Then
we substitute into the equation Ax “ b to obtain

Ax “ b(LDS)

P´1DQ´1x “ b

DQ´1x “ Pb

Dy “ c(RLDS)

where y :“ Q´1x and c :“ Pb. We conclude that x is a solution of the linear Diophantine
system (LDS) if and only if y “ Q´1x is a solution of the reduced linear Diophantine system

6The proof is quite involved.
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(RLDS). But the reduced system is easy to solve. If we write y “ py1, y2, . . . , ynq
T and

c “ pc1, c2, . . . , cmq
T then the matrix equation Dy “ c translates into the following system of

linear Diophantine equations:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

d1y1 “ c1
d2y2 “ c2

...
dryr “ cr

0 “ cr`1
...

0 “ cm

Observe that this system has a solution if and only if

• for all 1 ď i ď r we have di|ci, say ci “ qidi with qi P Z,

• for all r ă i we have ci “ 0,

in which case the complete solution to (RLDS) is

y “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q1
q2
...
qr
k1
k2
...

kn´r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for all k1, k2, . . . , kn´r P Z.

Then to obtain the complete solution of (LDS) we just compute x “ Qy.

Let’s test this on our running example to see if it makes sense. We can express the linear
equation 3094x1 ` 2513x2 “ 21 as the matrix equation

`

3094 2513
˘

ˆ

x1
x2

˙

“
`

21
˘

.

My computer tells us that the Smith Normal Form of the coefficient matrix is

`

1
˘ `

3094 2513
˘

ˆ

186 359
´229 ´422

˙

“
`

7 0
˘

`

3094 2513
˘

“
`

1
˘ `

7 0
˘

ˆ

442 359
´229 ´186

˙

.
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(You might recognize some of these numbers from our Euclidean Algorithm computations
above.) Substituting this into the original equation gives

`

1
˘ `

7 0
˘

ˆ

442 359
´229 ´186

˙ˆ

x1
x2

˙

“
`

21
˘

`

7 0
˘

ˆ

442 359
´229 ´186

˙ˆ

x1
x2

˙

“
`

1
˘ `

21
˘

`

7 0
˘

ˆ

y1
y2

˙

“
`

21
˘

.

This last equation is the reduced form of the system; it obviously has the complete solution
py1, y2q “ p3, kq for all k P Z. Finally, we invert the process to obtain the complete solution of
the original system:

ˆ

y1
y2

˙

“

ˆ

3
k

˙

ˆ

442 359
´229 ´186

˙ˆ

x1
x2

˙

“

ˆ

3
k

˙

ˆ

x1
x2

˙

“

ˆ

186 359
´229 ´422

˙ˆ

3
k

˙

ˆ

x1
x2

˙

“

ˆ

558` 359k
´687´ 442k

˙

.

This is not in the same form as our solution above, but we can see that they are the same by
making the substitution k ÞÑ pk ´ 3q to obtain

ˆ

x1
x2

˙

“

ˆ

558` 359pk ´ 3q
´687´ 442pk ´ 3q

˙

“

ˆ

´519` 359k
639´ 442k

˙

@k P Z.

The non-uniqueness of the parametrization comes from the non-uniqueness of the matrices P
and Q in the Smith Normal Form PAQ “ D. For example, our original solution corresponds
to the equally valid factorizations

`

1
˘ `

3094 2513
˘

ˆ

´173 359
213 ´422

˙

“
`

7 0
˘

`

3094 2513
˘

“
`

1
˘ `

7 0
˘

ˆ

442 359
213 173

˙

,

but this is not what my computer spit out when I asked it for the Smith Normal Form.

Extension 2: Positive solutions to linear Diophantine equations. Another way to
extend the problem is to require that the coefficients and solutions to a linear Diophantine
equation be non-negative. We can state the problem as follows:
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Given natural numbers a1, a2, . . . , an P N and b P N, find all natural numbers
x1, x2, . . . , xn P N such that

(Syl) a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b.

This problem goes by a few different names:

• The Frobenius Coin Problem. You live in a country where the coins come in n
different denominations: $a1, $a2, . . . , $an. For which values $b can you make change?
(Debt is not allowed.) If you can make change for $b, in how many different ways can
you do it?

• Sylvester’s Postage Stamp Problem. The numbers a1, . . . , an are the values of
stamps. What amounts of postage can you obtain?

• The Chicken McNugget Problem. Chicken McNuggets come in boxes of size
a1, a2, . . . , an. What quantities of Chicken McNuggets can you purchase?

If the numbers a1, a2, . . . , an are pairwise coprime then it is known that there exists number

gpa1, a2, . . . , anq,

called the Frobenius number, such that every integer greater than this can be represented as a
non-negative combination of a1, . . . , an. In general it is an NP-hard problem to compute the
Frobenius number. In the case n “ 2, Sylvester (1884) proved that

gpa1, a2q “ a1a2 ´ a1 ´ a2

and moreover, he proved that the total number of non-representable positive integers is

pa1 ´ 1qpa2 ´ 1q

2
.

Homework 2 will guide you through proofs of Sylvester’s theorems. The equation (Syl) for
general n is still an active area of research. For example, let

Epa1, a2, . . . , anqpbq

denote the total number of solutions to the equation. This function is called Sylvester’s
denumerant. It was known to Sylvester and Cayley that this function can be expressed as a
polynomial in b with non-constant coefficients:

Epa1, a2, . . . , anqpbq “
n
ÿ

i“1

Eipbq ¨ b
i.

Furthermore, each coefficient Eipbq is a periodic function of b with period that divides the
least common multiple of a1, . . . , an. Today these kinds of investigations go under the name
“Ehrhart Theory”.7

7For an introduction to Ehrhart Theory I recommend the book Computing the Continuous Discretely by
Beck and Robins. For the specific problem of Sylvester’s denumerant see the recent paper: https://arxiv.

org/abs/1312.7147
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3 Modular Arithmetic

In the previous chapter we saw that in general it is not possible to “divide” by an integer. For
example, if there exists an integer n P Z with the property 2n “ 1 then we observe that the
following properties are true:

"

1 “ n ¨ 2` 0
0 ď 0 ă |2|

and

"

1 “ 0 ¨ 2` 1
0 ď 1 ă |2|

The properties on the left say that 1 has quotient n and remainder 0 mod 2, while the properties
on the right say that 1 has quotient 0 and remainder 1 mod 2. Since 0 ‰ 1 this contradicts
the uniqueness of remainders, so we conclude that there is no such integer n P Z. In other
words, it is not possible to “divide by 2” in the system of integers.

One way to fix this situation is to introduce the formal concept of “fractions”. To do this we
consider the following set of abstract symbols:

tra{bs : a, b P Z, b ‰ 0u .

We think of the abstract symbol “ra{bs” as the integer a divided by the nonzero integer b,
even though such a number does not necessarily exist within Z. Based on this intuition we
should have an equivalence relation on symbols defined by

ra{bs „ rc{ds ðñ ad “ bc.

You checked on HW1 that this does indeed define an equivalence relation. Then we define a
rational number as an equivalence class of abstract symbols. For example, the rational number
“1/2” corresponds to the equivalence class

“1{2” “ tr1{2s, rp´1q{p´2qs, r2{4s, rp´2q{p´4qs, r3{6s, rp´3q{p´6qs, . . .u.

Our intuition also tells us that it should be possible to add and multiply rational numbers
using the following rules:

ra{bs ¨ rc{ds “ rpacq{pbdqs

ra{bs ` rc{ds “ rpad` bcq{pbdqs.

Note that the symbols on the right exist because b ‰ 0 and d ‰ 0 implies bd ‰ 0. But there
is still a subtle issue here: each rational number has many different representations; we need
to check that the definitions of addition and multiplication of fractions do not depend on the
choice of representation. For example, our definition of addition says that

r1{2s ` r5{8s “ rp1 ¨ 8` 2 ¨ 5q{p2 ¨ 8qs “ r18{16s.

But we can rewrite these fractions as r1{2s „ rp´3q{p´6qs and r5{8s „ r10{16s and then the
definition of addition gives

rp´3q{p´6qs ` r10{16s “ rpp´3q ¨ 16` p´6q ¨ 10q{pp´6q ¨ 16qs “ rp´108q{p´96qs.
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If these notions are to make any sense then it must be the case that

r18{16s „ rp´108q{p´96qs,

and indeed this is true because 18 ¨ p´96q “ ´1728 “ 16 ¨ p´108q. On HW1 you checked that
all of these definitions fit together to create a new number system, the ordered commutative
ring of rational numbers:

pQ,ď,`, ¨, 0, 1q.

This ring satisfies all of the friendly axioms of Z, except for the Well-Ordering Principle,
but it has the advantage that we can now “divide” by any non-zero number. In abstract-
algebraic terminology we say that Q is a field.

You are probably so familiar with fractions that you forgot how abstract they are.8 Once
upon a time, someone had to invent the concept of a “fractions” and then it took quite a
while before everyone was comfortable calling them “numbers”.

In this chapter we will follow the pattern just described, to define a new family of extensions
of Z out of thin air. These are less familiar than the rational numbers but they have more
number-theoretic interest. At the end of the chapter I’ll explain how these new number systems
are central to modern cryptography.

3.1 Equivalence Mod n

To define the rational numbers we considered an equivalence relation on a set of abstract
symbols. To define our new number system we will consider an unusual equivalence on the
usual set of integers.

Throughout this section we fix a positive integer n ą 0.

Definition. Given integers a, b P Z we will define the relation „n by

a „n b ðñ n|pa´ bq.

When a „n b holds we say that a and b are equivalent modulo n. //

Before doing anything else let’s check that „n is indeed an equivalence relation:

(1) Reflexive. For all a P Z we have n|pa´ aq because pa´ aq “ 0 “ n ¨ 0. Thus by definition
we have a „n a.

(2) Symmetric. Consider a, b P Z and assume that a „n b so that n|pa ´ bq. By definition
this means that there exists an integer q P Z such that a´ b “ nq. But then we have

a´ b “ nq

b´ a “ np´qq,

8Indeed, the concept of “adding fractions” signals the end of most people’s mathematical careers.

35



and hence n|pb´ aq. It follows that b „n a as desired.

(3) Transitive. Consider a, b, c P Z and assume that we have a „n b and b „n c. By definition
this means that there exist integers q, q1 such that a ´ b “ nq and b ´ c “ nq1. But then we
have

a´ c “ pa´ bq ` pb´ cq

“ nq ` nq1

“ npq ` q1q,

and hence n|pa´ cq. It follows that a „n c as desired. //

We conclude that the relation„n is an equivalence on the set of integers. This gives us infinitely
many new equivalence relations on Z in addition to our favorite equivalence “=”. Now recall
that an equivalence relation on a set determines a partition of the set into equivalence classes.

Definition. For each a P Z consider the set of elements b P Z that are equivalent to a mod n:

rasn :“ tb P Z : a „n bu.

//

We can be more explicit here; for all a P Z I claim that

rasn “ pnZ` aq :“ tnk ` a : k P Zu
“ t. . . , a´ 2n, a´ n, a, a` n, a` 2n, . . .u.

To see that rasn Ď pnZ`aq, consider any b P rasn. By definition this means that n|pb´aq and
hence we have pb´aq “ nk for some k P Z. But then we have b “ nk`a and hence b P pnZ`aq
as desired. Conversely, to see that pnZ ` aq Ď rasn, consider any element b P pnZ ` aq. By
definition this means that b “ nk`a for some k P Z and then we have pb´aq “ nk. It follows
that n|pb´ aq and hence b P rasn as desired.

A nice thing about this notation is that we can replace the abstract concept of equivalence of
integers mod n with the concrete concept of equality of equivalence classes.

Equality of Equivalence Classes. For all a, b P Z we have

a „n b ðñ rasn “ rbsn.

Proof. Assume that a „n b so that a “ nk ` b for some k P Z. Then we have

c P rasn ñ c “ n`` a for some ` P Z
ñ c “ n`` pnk ` bq

ñ c “ np`` kq ` b

ñ c P rbsn,
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and conversely,

c P rbsn ñ c “ nm` b for some m P Z
ñ c “ nm` pa´ nkq

ñ c “ npm´ kq ` a

ñ c P rasn.

We conclude that rasn “ rbsn as desired. Next assume that rasn “ rbsn. Then, in particular,
since b is equivalent to itself we must have b P rbsn “ rasn and it follows that a „n b as desired.

Now let „ be a general equivalence relation on a general set S and for each element x P S let
rxs„ :“ tx1 P S : x1 „ xu denote the equivalence class of x. If S is not empty then we can
choose an element x1 P S and then we can express S as a disjoint union

S “ rx1s„ > S
1,

where S1 Ď S is the set of elements that are not equivalent to x1. Now if S1 is not empty then
we can choose an element x2 P S

1 to obtain a disjoint union

S “ rx1s„ > rx2s„ > S
2,

where S2 Ď S are the elements that are equivalent to neither of x1 and x2. Continuing in
this way, we obtain a partition of the set

S “
ž

iPI

rxis„,

where I is an indexing set and the elements xi are some arbitrary choice of class representatives.
If S is an infinite set then the sets I and rxis„ might be infinite or finite; there is not much
we can say in general.

But now let us return to the equivalence relation „n on the set of integers Z. In this case
there is a lot we can say.

Theorem (Division With Remainder, Fancy Version). Let n be a positive integer.
Then I claim that Z decomposes as a disjoint union of the following n equivalence classes:

Z “ r0sn > r1sn > r2sn > ¨ ¨ ¨ > rn´ 1sn.

Proof. Consider any a P Z. Since n ą 0 there exist integers q, r P Z such that

"

a “ qn` r
0 ď r ă n
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Then since pa ´ rq “ nq we see that a „n r and hence a P rrsn. We have shown that every
integer is contained in some equivalence of the form rrsn for some 0 ď r ă n. In other words
we can express Z as a union of n equivalence classes:

Z “ r0sn Y r1sn Y r2sn Y ¨ ¨ ¨ Y rn´ 1sn.

To show that this union is disjoint, assume for contradiction that two of the classes overlap:
say that a P rrsn X rr

1sn for some 0 ď r ă r1 ă n. The fact that a P rrsn tells us that r is the
remainder of a mod n and the fact that a P rr1sn tells us that r1 is the remainder of a mod n.
But this contradicts the uniqueness of remainders because r ‰ r1.

The key to this proof is to express each equivalence class rasn in the “standard form” rasn “
rrsn where r is the remainder of a mod n. You should compare this to the concept of “lowest
terms” for fractions: for each fraction ra{bs P Q there is a unique way to write

ra{bs „ ra1{b1s

where gcdpa1, b1q “ 1 and b1 is strictly positive. When computing with fractions we know that
we can reduce to lowest terms at any time without affecting the result of the computation.
In the next section we will show that the same idea holds for computations with remainders
mod n.

3.2 Addition and Multiplication of Remainders

In the previous section we showed that Z can be written as a disjoint union of n equivalence
classes mod n. Using the alternate notation rasn “ pnZ` aq we can write this as

Z “ pnZq > pnZ` 1q > ¨ ¨ ¨ > pnZ` n´ 1q.

The class nZ is called a subgroup of pZ,`, 0q because it is closed under addition and subtraction,
and for a general a P Z the equivalence class pnZ` aq is called the coset of nZ generated by a.
We will use that standard abstract-algebraic notation “Z{nZ” for the set of all cosets of the
subgroup nZ Ď Z. Then from the previous theorem we obtain the following.

Definition. Given an integer n ą 0 we denote the set of equivalence classes mod n by

Z{nZ :“ tr0sn, r1sn, r2sn, . . . , rn´ 1snu.

//

We can think of Z{nZ as the set of possible remainders upon division by n. Indeed, when the
context is very clear we might shorten the notation to And if the context is very clear, we
might occasionally shorten this to

Z{nZ “ t0, 1, 2, . . . , n´ 1u.
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The problem for this section is whether we can add and multiply remainders mod n. For
example, consider the numbers 9 and 10 as remainders mod 12. Their sum 9 ` 10 “ 19 and
product 9 ¨ 10 “ 90 are not valid remainders mod 12 but the following equations are valid:

r9` 10s12 “ r19s12 “ r7s12

r9 ¨ 10s12 “ r90s12 “ r6s12.

Thus we would like to say that “9 ` 10 “ 7” and “9 ¨ 10 “ 6” mod 12, and because of the
First Amendment we are free to say this.

Definition(?). Fix an integer n ą 0. Then for all integers a, b P Z we define the sum and
product of equivalence classes as follows:

rasn ` rbsn :“ ra` bsn

rasn ¨ rbsn :“ rabsn.

//

However, just because we can say it doesn’t mean that it makes any sense. To turn this
definition(?) into a real definition we have to show that it does not logically contradict itself.

Theorem. For all a, a1, b1, b1 P Z with rasn “ ra
1sn and rbsn “ rb

1sn we have

ra` bsn “ ra
1 ` b1sn

rabsn “ ra
1b1sn.

In other words, we say that addition and multiplication of remainders is well-defined. //

Proof. Assume that rasn “ rbsn and ra1sn “ rb
1sn so there exist integers k, ` P Z such that

pa´ a1q “ nk and pb´ b1q “ n`. Then we have

pa` bq ´ pa1 ` b1q “ pa´ a1q ` pb´ b1q

“ nk ` n`

“ npk ` `q,

from which it follows that ra` bsn “ ra
1 ` b1sn, and we have

pabq ´ pa1b1q “ ab´ a1b` a1b´ a1b1

“ pa´ a1qb` a1pb´ b1q

“ nkb` an`

“ npkb` a`q,

from which it follows that rabsn “ ra
1b1sn.
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We have obtained a finite set Z{nZ with two (well-defined) binary operations

`, ¨ : pZ{nZq ˆ pZ{nZq Ñ Z{nZ.

Since these operations are “inherited” from the integers, it is easy to check that both “`”
and “¨” commutative and associative and that “¨” distributes over “`”. Note that we have an
identity element for addition,

rasn ` r0sn “ rasn @a P Z,

and for each element rasn P Z{nZ we have an additive inverse:

rasn ` r´asn “ r0sn.

Since this inverse is unique we will write “ ´ rasn” “ r´asn. Furthermore, if n ě 2 then we
also have an identity element for multiplication:

rasn ¨ r1sn “ rasn @a P Z.

In summary, for each integer n ě 2 we have obtained a new commutative ring, which we call
the ring of integers mod n:

pZ{nZ,`, ¨, r0sn, r1snq.

This ring shares some properties in common with Z and Q but it is also quite different, the
key difference being that Z{nZ is a finite ring. Here is one consequence of finiteness.

Fact. It is impossible to give pZ{nZ,`, ¨, r0sn, r1snq the structure of an ordered ring. //

Proof. Assume for contradiction that Z{nZ carries an order structure “ď”. One of the axioms
of order says that

r0sn ă r1sn.

Another axiom of order says that inequalites are preserved by addition, so we must also have

r0sn ` r1sn ă r1sn ` r1sn

r0` 1sn ă r1` 1sn

r1sn ă r2sn.

By successively adding r1sn to both sides we eventually obtain the inequality

rn´ 1sn ă rnsn “ r0sn,

and then by transitivity we conclude that r1sn ă r0sn, which is a contradiction.

Additive cancellation holds in Z{nZ, as it does in any ring. But recall that multiplicative
cancellation in Z was a consequence of its order structure. You will not be surprised, then, to
find out that multiplicative cancellation does not generally hold in Z{nZ. Even worse, we the
ring Z{nZ may contain zero divisors.

For example:
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• Let n “ 6 and consider the elements r2s6 and r3s6 of the ring Z{6Z. By uniqueness of
remaindes mod 6 we know that r2s6 ‰ r0s6 and r3s6 ‰ r0s6. On the other hand, we have

r2s6 ¨ r3s6 “ r2 ¨ 3s6 “ r6s6 “ r0s6.

• It follows from this that we cannot “multiplicatively cancel r2s6” in the ring Z{6Z.
Indeed, multiplicative cancellation would imply that we have

r2s6 ¨ rxs6 “ r2s6 ¨ rys6 ñ rxs6 “ rys6

for all elements rxs6, rys6 P Z{6Z. But rxs6 “ r3s6 and rys6 “ r0s6 is a counterexample.

• Finally, this implies that there is no element in Z{6Z that deserves to be called r1{2s6.
Indeed, suppose for contradiction that there exists an element rxs6 P Z{6Z with the
property r2s6 ¨rxs6 “ r1s6. Then by multiplying both sides of the equation r2s6 ¨r3s6 “ r0s6
by rxs6 we would obtain

r2s6 ¨ r3s6 “ r0s6

rxs6 ¨ r2s6 ¨ r3s6 “ rxs6 ¨ r0s6

r1s6 ¨ r3s6 “ rxs6 ¨ r0s6

r3s6 “ r0s6,

which is a contradiction.

In the next section we will investigate the full story behind this example.

3.3 Euler’s Totient Function

We have seen that the element r2s6 has no “multiplicative inverse” in the ring Z{6Z. This
means that there is no element rxs6 P Z{6Z with the property

r2s6 ¨ rxs6 “ r1s6.

However, if we work modulo 7 then we have

r2s7 ¨ r4s7 “ r8s7 “ r1s7,

which says that the element r4s7 behaves like the number “1{2 modulo 7”. Furthermore, this
element is unique. Indeed, suppose that we had another multiplicative inverse r2s7 ¨rxs7 “ r1s7.
Then the associative property gives

rxs7 “ r1s7 ¨ rxs7 “ pr4s7 ¨ r2s7q ¨ rxs7 “ r4s7 ¨ pr2s7 ¨ rxs7q “ r4s7 ¨ r1s7 “ r4s7.

Then since the element is unique we can give is a special name. For abstract-algebraic reasons
we prefer to use negative exponents instead of fractional notation.
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Definition. If the element rasn P Z{nZ has a (necessarily unique) multiplicative inverse then
we will denote this inverse by ra´1sn, so that

rasn ¨ ra
´1sn “ r1sn.

For all natural numbers k P N we will denote k-th power of the inverse by

ra´ksn :“ pra´1snq
k “ ra´1sn ¨ ra

´1sn ¨ ¨ ¨ ¨ ¨ ra
´1sn

loooooooooooooooomoooooooooooooooon

k times

Thus the notation raksn makes sense for all integers k P Z. One can check that this notation
satisfies the usual properties of exponents; in particular, we see that every power of rasn is
invertible because

raksn ¨ ra
´ksn “ ra

0sn “ r1sn.

//

Generalizing the above example, we can show that 2 is invertible mod n for any odd number
n. Indeed, suppose that n “ 2k ´ 1 for some integer k P Z. Then we have

r2sn ¨ rksn “ r2ksn “ rn` 1sn “ r1sn

and hence r2´1sn “ rksn. On the other hand, if n is an even number then 2 is not invertible
mod n. Indeed, if n “ 2` for some ` P Z then we have

r2sn ¨ r`sn “ r2`sn “ rnsn “ r0sn,

and it follows from the above arguments that r2sn can have no multiplicative inverse. Here is
the general situation.

Theorem (Existence of Multiplicative Inverses Mod n ). Let n be a fixed positive
integer. Then the element rasn P Z{nZ has a multiplicative inverse if and only if gcdpa, nq “ 1.
Moreover, this inverse can be computed efficiently using the Euclidean Algorithm. //

Proof. First assume that gcdpa, nq “ 1. Then the Euclidean Algorithm gives us (non-unique)
integers x, y P Z with the property

ax` ny “ 1.

By rearranging this equation we obtain

pax´ 1q “ np´yq ùñ n|pax´ 1q

ùñ paxq „n 1

ùñ raxsn “ r1sn

ùñ rasn ¨ rxsn “ r1sn,
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and we conclude that rxsn is the multiplicative inverse of a mod n. Conversely, suppose that
the multiplicative inverse rxsn “ ra

´1sn exists. Then the equation rasn ¨ rxsn “ r1sn gives

raxsn “ r1sn ùñ paxq „n 1

ùñ n|pax´ 1q

ùñ pax´ 1q “ nq for some q P Z
ùñ ax` np´qq “ 1 for some q P Z.

Now we want to show that gcdpa, nq “ 1. So let d be any common divisor of a and n, with
a “ da1 and n “ dn1. Substituting these into the previous equation gives

ax` np´qq “ 1

pda1x` pdn1qp´qq “ 1

dpa1x´ n1qq “ 1,

which implies that d divides 1. But the only integers that divide 1 are d “ ˘1 and so we
conclude that the greatest common divisor of a and n is d “ 1.

For example, let us try to compute the multiplicative inverse of 71 modulo 1024. We consider
the collection of integer triples px, y, zq P Z3 satisfying 1024x ` 71y “ z. Then the Vector
Euclidean Algorithm gives:

x y z

1 0 1024
0 1 71
1 ´14 30

´2 29 11
5 ´72 8

´7 101 3
19 ´274 2
´26 375 1

71 ´1024 0

The second to last row says that

1024p´26q ` 71p375q “ 1,

from which we conclude that 71 is invertible mod 1024 with inverse

r71´1s1024 “ r375s1024.

[If the algorithm had stopped with gcdp71, 1024q ‰ 1 then we would have concluded that 71
is not invertible mod 1024.] //

In a commutative ring pR,`, ¨, 0, 1q, the element 0 never has a multiplicative inverse [why
not?] and the element 1 always has a multiplicative inverse; namely itself. In general we
denote the collection of invertible elements by

Rˆ :“ tr P R : there exists a (unique) element s P R with the property rs “ 1u
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and we call this the group of units of the ring R. The name is meant to indicate that the
triple pRˆ, ¨, 1q has the structure of a group. [It is a set with an associative binary operation
and an identity element, in which each element has a (necessarily unique) inverse.] Now we
can rephrase the previous theorem as follows.

Theorem (The Group of Units of Z{nZ ). Fix a positive integer n ą 0 and consider the
ring Z{nZ of integers modulo n. Its group of units is given by

pZ{nZqˆ “ trasn : gcdpa, nq “ 1u.

//

For example, we have

pZ{6Zqˆ “ tr1s6, r5s6u,
pZ{7Zqˆ “ tr1s7, r2s7, r3s7, r4s7, r5s7, r6s7u,
pZ{8Zqˆ “ tr1s8, r3s8, r5s8, r7s8u.

Observe that the sum of two elements in pZ{nZqˆ is not necessarily in pZ{nZqˆ so this is just
a group; not a ring. The remainder of this chapter will be devoted to studying the structure
of this group. To begin we will look at “exponentiation mod n”.

For example, consider the element r71s1024 P pZ{1024Zqˆ. We saw above that r71´1s1024 “
r375s1024. Here are the first few positve powers of 71 mod 1024:

r712s1024 “ r5041s1024 “ r945s1024,

r713s1024 “ r712s1024 ¨ r71s1024 “ r945s1024 ¨ r71s1024 “ r67095s1024 “ r535s1024

r714s1024 “ r713s1024 ¨ r71s1024 “ r535s1024 ¨ r71s1024 “ r37987s1024 “ r97s1024

r715s1024 “ r743s1024

r716s1024 “ r529s1024

r717s1024 “ r695s1024
...

The sequence of powers
1, 71, 945, 535, 97, 743, 529, 695, . . .

looks pretty random.9 However, because pZ{1024Zqˆ is a finite set we do know that the
sequence must contain some repeated element. That is, there must exist two integers 0 ă k ă `
with the property that

r71ks1024 “ r71`s1024.

9It is called pseudo-random.
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Then multiplying both sides of this equation by the inverse element

r71´ks1024 “ pr71´1s1024q
k “ pr375s1024q

k “ r375ks1024

gives

r71ks1024 “ r71`s1024

r71ks1024 ¨ r71´ks1024 “ r71`s1024 ¨ r71´ks1024

r1s1024 “ r71`´ks1024.

We conclude that there exists some natural number m ě 1 with the property that r71ms1024 “
r1s1024. By the Well-Ordering principle there must be a smallest such number.

Definition. For any element rasn P pZ{nZqˆ let ordnpaq be the smallest positive integer
with the property

raordnpaqsn “ r1sn.

We call ordnpaq the multiplicative order of a mod n. //

The numbers ordnpaq are unpredictable in general but they do satisfy some important restric-
tions. For example, here are the multiplicative orders for the elements of pZ{7Zqˆ:

ras7 r1s7 r2s7 r3s7 r4s7 r5s7 r6s7
ord7paq 1 3 6 3 6 2

Note that all of these numbers divide the size of the group: 6 “ pZ{7Zqˆ. Leonhard Euler
proved in 1750 that this phenomenon holds in general.

Euler’s Totient Theorem. Fix a positive integer n ą 0 and let

ϕpnq :“ #pZ{nZqˆ,

i.e., let ϕpnq is the number of integers 0 ă a ă n that are coprime to n.10 Then for all integers
a P Z satisfying gcdpa, nq “ 1 we have

raϕpnqsn “ r1sn,

and it follows from this that the multiplicative order ordnpaq divides ϕpnq. //

Proof. We don’t know exactly what the elements of pZ{nZqˆ are, but at least we know that
there are ϕpnq of them. Thus we can write

pZ{nZqˆ “ trc1sn, rc2sn, . . . , rcϕpnqsnu
10J.J. Sylvester in 1879 called this Euler’s totient function. Sylvester was always coming up with ridiculous

mathematical terminology, some of which has stuck.
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for some distinct class representatives 0 ă c1, c2, . . . , cϕpnq ă n. Now consider any integer
a P Z with gcdpa, nq “ 1. In this case I claim that we also have

pZ{nZqˆ “ trac1sn, rac2sn, . . . , racϕpnqsnu.

Indeed, for each index i we must have racisn P pZ{nZqˆ and hence we must have racisn “ rcjsn
for some index j. But since rasn is invertible (and hence cancellable) we know that

racisn “ racjsn ðñ rasn ¨ rcisn “ rasn ¨ rcjsn

ðñ rcisn “ rcjsn.

Now we will multiply all of the elements of pZ{nZqˆ together. I don’t know which element of
pZ{nZqˆ this gives me but I do have two different ways to express it:

rc1sn ¨ rc2sn ¨ ¨ ¨ ¨ ¨ rcϕpnqsn “ rac1sn ¨ rac2sn ¨ ¨ ¨ ¨ ¨ racϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ rac1ac2 ¨ ¨ ¨ acϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ ra
ϕpnqc1c2 ¨ ¨ ¨ cϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ ra
ϕpnqsn ¨ rc1c2 ¨ ¨ ¨ cϕpnqsn.

Now we can multiply both sides by the inverse of rc1c2 ¨ ¨ ¨ cϕpnqsn (whatever it is) to obtain

r1sn “ ra
ϕpnqsn.

Finally, recall that ordnpaq is the smallest positive integer satisfying raordnpaqsn “ r1sn. Now
divide ϕpnq by ordnpaq to obtain a quotient and remainder:

"

ϕpnq “ q ¨ ordnpaq ` r
0 ď r ă ordnpaq

The first equation tells us that

r1sn “ ra
ϕpnqsn

“ raq¨ordnpaq`rsn

“ praordnpaqsnq
q ¨ rarsn

“ pr1snq
q ¨ rarsn

“ rarsn.

If 0 ă r then this contradicts the minimality of ordnpaq, so we conclude that r “ 0 and hence
ordnpaq|ϕpnq as desired.

For example, let’s compute ϕp1024q. Since 1024 “ 210 is a power of 2 we have gcdpa, 1024q if
and only if a is odd. In other words, we have

pZ{1024Zqˆ “ tr1s1024, r3s1024, r5s1024, . . . , r1023s1024u.
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Since exactly half of the numbers are odd we conclude that

ϕp1024q “ #pZ{1024Zqˆ “ 1024{2 “ 512 “ 29,

and then it follows from Euler’s Totient Theorem that the multiplicative order of any element
ras1024 satisfies:

ord1024paq P td P N : d|512u “ t1, 2, 4, 8, 16, 32, 64, 128, 356, 512u.

This cuts down on the work necessary to compute ord1024p71q, but it’s still not trivial. My
computer used a brute-force method to find that

ord1024p71q “ 128.

A Party Trick. Have you ever looked at a sequence of powers and noticed that the final digit
repeats? For example, consider the powers of 3 and note that the final digits cycle through
the sequence 1, 3, 9, 7:

1, 3, 9, 27, 81, 243, 729, 2187, . . . .

This phenomenon is explained by Euler’s Theorem. Indeed, note that

pZ{10Zqˆ “ tr1s10, r3s10, r7s10, r9s10u

and hence we have ϕp10q “ 4. Then for any integer a P Z coprime to 10, Euler’s Theorem
says that

ra4s10 “ r1s10.

Furthermore, for any integer n “ 4q ` r we have

rans10 “ ra
4q`rs10 “ pra

4s10q
q ¨ rars10 “ pr1s10q

q ¨ rars10 “ ra
rs10.

When q and r are the quotient and remainder of n mod 4 then we conclude that

rans10 “

$

’

’

’

’

&

’

’

’

’

%

r1s10 if n P r0s4

ras10 if n P r1s4

ra2s10 if n P r2s4

ra3s10 if n P r3s4

Since 3 is coprime to 10 this explains our observation about the powers of 3. In fact, you
will show on HW3 that for q ě 0 and r ě 1 we still have ra4q`rs10 “ rars10 even when
gcdpa, 10q ‰ 1.

You can use this trick at a party to impress people by calculating the final digit of a large
power by hand. However, if your friends notice the “mod 4 repetition” then they might not
be very impressed. To be safe you should learn how to compute the final two digits. For
this trick we need to know that

ϕp100q “ 40.
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I’ll show you a quick way to compute this in the next section; for now we’ll just take it as
given. Now for any power an, observe that the final two digits are given by the reduced form
of rans100. If gcdpa, 100q “ 1 and if n “ 40q` r then the same argument as above tells us that

rans100 “ ra
rs100.

And when q ě 0 and r ě 2 then the result from HW3 says that the same equation still holds
for gcdpa, 100q ‰ 1. This guarantees that you will never have to compute a higher exponent
than 39. For optimum effect you should arrange for the exponent to be 2 more than than a
multiple of 40. For example, you could say:

Give me any number “a” and I’ll compute the final two digits of “a42”.

Then since ra42s100 “ ra
2s100 you just need to compute a2 (which isn’t so hard) and tell them

the final two digits. //

In the next two sections we will develop a general formula for the Euler totient function. Then
in the final section of the chapter we will apply this formula to cryptography.

3.4 Unique Prime Factorization

To compute the totient function ϕpnq we first need to compute the “prime factorization” of
the integer n P Z. So far we have only discussed coprimality in this class; now it is finally
time to discuss primality. I postponed the concept of primality until now because it’s more
subtle than you might think.

What is a prime number? Observe that every integer n P Z has two trivial factorizations:

n “ 1 ¨ n and n “ p´1qp´nq.

Any other factorization n “ ab with a, b P Zzt˘1u is called non-trivial. We want to say that
n P Z is prime when it has no non-trivial factorization, but there are a few issues here:

• Are we allowed to have negative prime numbers?

• Are the numbers `1 and ´1 prime?

• What about 0?

There are no completely satisfying answers to these questions and you will find books with
differing opinions. I will base my definition of primality on two considerations:

• Aesthetics: I want the statements of big theorems to be as simple as possible.

• Generality: I want my definition to generalize correctly to other commutative rings.

For these reasons I will first state the definition of primality for a general commutative ring
R and then we will restrict this definition to the integers Z. Recall that the collection of
invertible elements in a ring is called the “group of units” Rˆ. If u P Rˆ (i.e., if there exists
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a multiplicative inverse u´1) then u necessarily divides every element of the ring. Indeed, for
all r P R we have

r “ 1r “ puu´1qr “ upu´1rq.

Thus, from the point of view of divisibility we should ignore the units of the ring. And
what about the zero element 0 P R? From a sophisticated point of view I would say that 0 is
prime if and only if the ring R contains no zero-divisors. But that’s a bit too sophisticated
for this course, so here I will just say that 0 is not prime.

Defininition (Primality in a Commutative Ring). Let R be a general commutative ring.
We say that an element p P R is prime when:

• p is not zero,

• p is not a unit,

• if p “ rs for some r, s P R then either r or s is a unit (but not both).

//

We will return to this definition in the next chapter when we study primality in the ring of
“Gaussian integers” Zr

?
´1s. For now we restrict our attention to the “plain old integers” Z.

Recall that the invertible integers are just ˘1:

Zˆ “ t´1,`1u.

Definition (Primality in Z). Let p be an integer. We say that p is prime when:

• p R t´1, 0, 1u,

• if p “ ab for some a, b P Z then either a “ ˘1 or b “ ˘1 (but not both).

//

The notion of primality is not affected by multiplication by units. Thus the prime integers
come in positive-negative pairs:

˘2,˘5,˘7,˘11, etc.

The possibility of negative primes makes the following proofs cleaner, but you can ignore the
negative primes when it comes to applications.

For the rest of this section I will present the Fundamental Theorem of Arithmetic, which says
that every (non-zero, non-unit) integer can be written as a product of prime integers in an
(essentially) unique way. These results were originally proved in Books VII and IX of Euclid’s
Elements (c. 300 BC).11

11This is also where we get the Euclidean Algorithm and Euclid’s Lemma.
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Theorem (Existence of Prime Factors in Z). Every integer n R t´1, 0, 1u is divisible by
a prime integer. //

Proof. Note that for all n, p P Z we have p|n if and only if p|p´nq. Thus we can restrict
our attention to positive integers. So assume for contradiction that there exists an integer
n ě 2 with no prime factor. Then by the Well-Ordering Principle there exists a smallest
such integer; call it m ě 2. Since m divides itself (i.e., m “ 1m) and since by assumption m
has no prime factor, it must be the case that m is not prime. By definition this means that
there exists a “non-trivial” factorization

m “ ab

in which neither of a or b is a unit. Since ab “ p´aqp´bq and since a is not a unit we can
assume without loss of generality that a ě 2. Since a|m we must also have a ď m, but if
a “ m then m “ ab implies that b “ 1, which contradicts the fact that b is not a unit. Thus
we conclude that 2 ď a ď m ´ 1. Since m was the smallest positive integer with no prime
factor, this implies that a has a prime factor, say a “ pa1. Finally, we conclude that m itself
has a prime factor since

m “ ab “ ppa1qb “ ppa1bq,

and this is the desired contradiction.

For the next theorem I will use a common mathematical convention: Let S Ď Z be any finite
collection of integers and let n “

ś

sPS s denote the product of these integers. For |S| ě 2 this
product is well-defined because of the commutative and associative laws of multiplication. In
the cases S “ tsu or S “ H we say by convention that n “ s or n “ 1, respectively. That is:

a product of no numbers equals 1.

Theorem (Existence of Prime Factorization in Z). Every non-zero integer can be
expressed as a unit times a product of prime numbers. //

Proof. Consider 0 ‰ n P Z. If n is a unit or a prime then we are done. Otherwise, we know
from the previous theorem that there exists a prime factor, say n “ pn1. If n1 is a unit or a
prime then we are done. Otherwise, n1 has a prime factor, say n1 “ p1n2. If n2 is a prime or
a unit then we are done; otherwise we continue. When this process stops we will obtain the
desired factorization.

To prove that the process does stop, observe that the integers n, n1, n2 from above satisfy
|n| ą |n1| ą |n2|. If the process continues forever then we will obtain an infinite decreasing
sequence of positive integers

|n| ą |n1| ą |n2| ą |n3| ą ¨ ¨ ¨ ą 0,

which violates the Well-Ordering Principle.
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We have now proved that every non-zero integer can be written as a unit times a product of
primes. For example, the number ´30 can be written as

´30 “ p´1q ¨ 2 ¨ 3 ¨ 5

“ 1 ¨ p´2q ¨ 3 ¨ 5

“ 1 ¨ 2 ¨ p´3q ¨ 5

“ 1 ¨ 2 ¨ 3 ¨ p´5q

“ p´1q ¨ p´2q ¨ p´3q ¨ 5

...

“ 1 ¨ p´5q ¨ p´3q ¨ p´2q

There are lots of ways (48 ways, in fact) to write this factorization, but the the differences are
only cosmetic; all I have done is rearranged the units and permuted the prime factors. Our
final theorem says that prime factorization is unique except for these trivial rearrangements.

Theorem (Uniqueness of Prime Factorization in Z). Consider a non-zero integer n P Z
and suppose that we have

n “ ˘p1p2 ¨ ¨ ¨ pk “ ˘q1q2 ¨ ¨ ¨ q`

where the integers p1, . . . , pk, q1, . . . , qk P Z are all prime. In this case I claim that k “ `, and
furthermore I claim that we can permute the indices so that

p1 “ ˘q1, p2 “ ˘q2, . . . , pk “ ˘qk.

//

To prove this we need a lemma. This is the original version of Euclid’s Lemma from Euclid’s
Elements (Proposition VII.30).

Euclid’s Lemma (Prime Version). Let p P Z be prime. Then for all a, b P Z we have

pp|abq ñ pp|a_ p|bq.

//

Proof of the Lemma. Let p be prime. We will assume that p|ab and p - a and this case we
will show that p|b. Recall from our original version of Euclid’s Lemma that

pp|ab^ gcdpa, pq “ 1q ñ pp|bq.

Thus we will be done if we can show that d :“ gcdpa, pq equals 1. Recall that the gcd satisfies
1 ď d ď |p|. Since d|p we have p “ dp1 for some p1 P Z. Then since p is prime it must be the
case that d is a unit (i.e., d “ 1) or that p1 is a unit (i.e., d “ |p|). On the other hand, the case
d “ |p| is impossible because we have d|p and a - p. We conclude that d “ 1 as desired.
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Proof of the Theorem. Suppose that we have

(UF) p1p2 ¨ ¨ ¨ pk “ ˘q1q2 ¨ ¨ ¨ q`

for some primes p1, . . . , pk, q1, . . . , q` P Z and assume without loss of generality that k ď `.
Since p1 divides the left hand side it also divides the right hand side: p1|pq1q2 ¨ ¨ ¨ q`q. Since
p1 is prime, by Euclid’s Lemma this means that p1 divides qi for some i. After relabeling the
primes qi we can assume without loss of generality that p1|q1, say q1 “ p1u. Since q1 is prime
and since p1 (being prime) is not a unit, this implies that u is a unit and we conclude that
p1 “ ˘q1. Now we apply multiplicative cancellation to the equation (UF) to obtain

p2 ¨ ¨ ¨ pk “ ˘q2 ¨ ¨ ¨ q`

By repeating the argument and relabeling the primes qi as necessary we will find that p2 “
˘q2, . . . , pk “ ˘qk. Finally, we assume for contradiction that ` ě k ` 1. After canceling the
first k factors we obtain the equation

1 “ ˘qk`1 ¨ ¨ ¨ q`,

which implies that qk`1|1. But then we must have qk`1 “ ˘1 which contradicts the fact that
qk`1 (being prime) is not a unit.

In summary, each non-zero integer n P Z has a unique prime factorization. It is often conve-
nient to express this in the following form:

Denote the positive primes by 2 “ p1 ă p2 ă p3 ă ¨ ¨ ¨ . Then for all 0 ‰ n P Z
there exists a unique sequence of non-negative exponents e1, e2, e3, e4, . . . (all but
finitely many equal to zero) such that

n “ ˘pe11 p
e2
2 p

e3
3 p

e4
4 ¨ ¨ ¨

Exercises. The language of unique factorization gives us a new way to think about divisibility.
For these exercise we will fix two non-zero integers a, b P Z with unique prime factorizations

a “ ˘pa11 p
a2
2 p

a3
3 ¨ ¨ ¨ ,

b “ ˘pb11 p
b2
2 p

b3
3 ¨ ¨ ¨ .

(a) Prove that a|b if and only if ai ď bi for all i.

(b) Prove that the greatest common divisor is given by

gcdpa, bq “ p
minpa1,b1q
1 p

minpa2,b2q
2 p

minpa3,b3q
3 ¨ ¨ ¨ .

(c) Find a similar formula for the least common multiple lcmpa, bq and use it to prove that

gcdpa, bq ¨ lcmpa, bq “ ab.
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3.5 Chinese Remainder Theorem

Finally, we will use the unique prime factorization of a positive integer n to compute the value
of the Euler totient function ϕpnq. Let me state the result right away and then we will work
up to the proof.

Theorem (Value of the Totient Function). Let n be a positive integer. Then the totient
function is given by

ϕpnq “ n ¨
ź

p|n

p´ 1

p
,

where the product is taken over the distinct positive prime factors of n. //

For example, our Party Trick used the fact that ϕp100q “ 40. Now we can see why this is
true. The prime factorization 100 “ 22 ¨ 52 shows us that the distinct prime factors of 100 are
2 and 5. Then the formula gives

ϕp100q “ 100 ¨
1

2
¨

4

5
“ 40.

The theorem depends on two lemmas. The first one is straightforward.

Lemma 1 (Totient of a Prime Power). Consider two positive integers p, n where p is
prime. Then we have

ϕppnq “ ppn ´ pn´1q “ pn
ˆ

1´
1

p

˙

“ pn ¨
p´ 1

p
.

//

Proof. I claim that for all a P Z we have

gcdpa, pnq “ 1 ðñ p - a.

To give a quick12 proof of this we will apply unique prime factorization. Suppose that some
non-zero integer a has the prime factorization

a “ ˘pe11 p
e2
2 p

e3
3 ¨ ¨ ¨

and suppose that p is the k-th prime so that pn has prime factorization

pn “ p01 ¨ ¨ ¨ p
0
k´1p

n
kp

0
k`1 ¨ ¨ ¨

12A slow proof is also possible.
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Then from the exercises in the previous section we find that the greatest common divisor has
prime factorization given by

gcdpa, pnq “ p01 ¨ ¨ ¨ p
0
k´1p

minpek,nq
k p0k`1 ¨ ¨ ¨ .

From this factorization we observe that gcdpa, pnq “ 1 if and only if minpek, nq “ 0, i.e., if
and only if ek “ 0, i.e., if and only if a is not divisible by p “ pk. In other words, we have

pZ{pnZqˆ “ traspn : 1 ď a ď pn and p - au.

To count the elements of this group, observe that the multiples of p between 1 and pn are

1, 2p, 3p, . . . , ppn´1qp “ pn,

and there are precisely pn´1 of these. Finally, we have

ϕppnq “ #pZ{pnZqˆ

“ #pintegers from 1 to pn not divisible by pq

“ #pintegers from 1 to pnq ´#pmultiples of pq

“ pn ´ pn´1.

The second lemma depends on a significant trick, so it deserves a name. This result was called
the “Chinese Remainder Theorem” by Leonard Dickson in 1929. Apparently it became known
in the West after Wylie’s 1953 article Jottings on the Science of the Chinese Arithmetic. We
now know that the result was discovered by the mathematician Sun Zu in the 3rd century
AD. Some authors have tried to change the name to Sun Zu’s Theorem but it might be too
late.

Lemma 2 (The Chinese Remainder Theorem). For any coprime integers gcdpm,nq “ 1
there exists a one-to-one correspondence between elements of the ring Z{mnZ and pairs of
elements from Z{mZ and Z{nZ:

pZ{mnZq ÐÑ pZ{mZq ˆ pZ{nZq.

This correspondence restricts to the invertible elements

pZ{mnZqˆ ÐÑ pZ{mZqˆ ˆ pZ{nZqˆ,

and it follows from this that the totient function satisfies ϕpmnq “ ϕpmqϕpnq.

Proof. The map from pZ{mnZq to pairs pZ{mZq ˆ pZ{nZq is easy to define: for all integers
a P Z we send the equivalence class rasmn to the pair of equivalence classes prasm, rasnq. To
show that this is a one-to-one correspondence, there are three things to check:
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(1) The map is “well-defined”. Assume that rasmn “ ra
1smn, so we have pa´ a1q “ mnk

for some k P Z. In particular, since pa ´ a1q “ mpnkq we have rasm “ ra1sn, and since
pa´ a1q “ npmkq we have rasn “ ra

1sn. Thus the pairs prasm, rasnq and pra1sm, ra
1snq are equal

as desired. //

(2) The map is “one-to-one”. Assume that the pairs prasm, rasnq and prbsm, rbsnq are equal.
In this case we want to show that rasmn “ rbsmn. By assumption we have rasm “ rbsm so that
m|pa ´ bq and we have rasn “ rbsn so that n|pa ´ bq. Then a result from HW3 tells us that
pmnq|pa´ bq and hence rasmn “ rbsmn as desired. //

(3) The map is “onto”. This is the part where we need a trick. For any two integers a, b P Z
we need to show that the pair prasm, rbsnq has the form prcsm, rcsnq for some common integer
c P Z. And here’s the trick: Since gcdpm,nq “ 1 we know from the Euclidean Algorithm that
there exist some integers x, y P Z such that mx` ny “ 1. Then we define

c :“ any ` bmx.

To check that rcsm “ rasm we note that

rcsm “ rany ` bmxsm

“ ranysm ` rmpbxqsm

“ ranysm ` r0sm

“ ranysm

“ rap1´mxqsm

“ rasm ´ rmpaxqsm

“ rasm ´ r0sm

“ rasm.

The proof that rcsn “ rbsn is similar. //

To complete the proof we need to show that this one-to-one correspondence matches the inver-
ticle elements rasmn P pZ{mnZqˆ with pairs of invertible elements prasm, rasnq P pZ{mZqˆ ˆ
pZ{nZqˆ.13 In other words, we need to show that for all integers a P Z we have

gcdpa,mnq “ 1 ðñ gcdpa,mq “ 1^ gcdpa, nq “ 1.

For this we don’t even need the assumption gcdpm,nq “ 1. We will use the fact that two
integers p, q P Z are coprime if and only if there exist integers x, y P Z such that px`qy “ 1.
[Remind yourself why this is true.] First assume that gcdpa,mnq “ 1 so there exist integers
x, y P Z such that ax`mny “ 1. Then since ax`mpnyq “ 1 we have gcdpa,mq “ 1 and since
ax ` npmyq “ 1 we have gcdpa, nq “ 1. Conversely, assume that we have gcdpa,mq “ 1 and

13We could give an abstract proof by showing that the correspondence preserves ring operations and then by
showing that the group of units of a “product ring” R ˆ S satisfies pR ˆ Sqˆ “ Rˆ ˆ Sˆ, but that would be
too abstract for this class.
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gcdpa, nq “ 1, so there exist integers x, y, x1, y1 P Z such that ax`my “ 1 and ax1 ` ny1 “ 1.
Multiplying these two equations gives

pax`myqpax1 ` ny1q “ 1

apxax1 ` xny1 `myx1q `mnpyy1q “ 1,

and hence gcdpa,mnq “ 1 as desired. In conclusion, we have a one-to-one correspondence
between the sets pZ{mnZqˆ and pZ{mZqˆ ˆ pZ{nZqˆ. By comparing cardinalities we obtain

#pZ{mnZqˆ “ #
“

pZ{mZqˆ ˆ pZ{nZqˆ
‰

#pZ{mnZqˆ “ #pZ{mZqˆ ¨#pZ{nZqˆ

ϕpmnq “ ϕpmqϕpnq.

Proof of the Theorem. Suppose that a positive integer n ě 2 has prime factorization

n “ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k

for some distinct primes 1 ă p1 ă p2 ă ¨ ¨ ¨ ă pk. One can easily check that the factors peii
and p

ej
j are coprime for all i ‰ j. Thus from the two previous lemmas we have

ϕpnq “ ϕppe11 p
e2
2 ¨ ¨ ¨ p

ek
k q

“ ϕppe11 qϕpp
ek
2 q ¨ ¨ ¨ϕpp

ek
k q Lemma 2

“ pe11 ¨
p1 ´ 1

p1
¨ pe22 ¨

p2 ´ 1

p2
¨ ¨ ¨ pekk ¨

pk ´ 1

pk
Lemma 1

“ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k ¨

p1 ´ 1

p1
¨
p2 ´ 1

p2
¨ ¨ ¨

pk ´ 1

pk

“ n ¨
k
ź

i“1

pi ´ 1

pi

“ n ¨
ź

p|n

p´ 1

p
.

To end the section I will give a probabilistic interpretation of this theorem. For example,
consider our favorite number 100 “ 22 ¨ 52 and consider any integer 1 ď a ď 100. We know
that gcdpa, 100q “ 1 if and only if a is not a multiple of 2 and a is not a multiple of 5. To
remove the multiples of 2 we can multiply by 1{2 to get

100 ¨
1

2
“ 50,
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and to remove the multiples of 5 we can multiply by 4{5 to get

100 ¨
4

5
“ 80.

It seems plausible that we could remove both kinds of numbers by multiplying by both
fractions to get

100 ¨
1

2
¨

4

5
“ 40.

In other words, we are assuming that for integers 1 ď a ď 100 the two events

“a is not a multiple of 2” and “a is not a multiple of 5”

are probabilistically independent. The theorem above guarantees that this is correct.

Epilogue (Sun Zu Suan Jing). The original purpose of the Chinese Remainder Theorem
was to solve systems of simultaneous linear “congruences”. For example, here is a problem
from the fourth-century text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):

There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

In modern terms we can phrase the problem as follows: Find all integers c P Z such that
$

&

%

rcs3 “ r2s3
rcs5 “ r3s5
rcs7 “ r2s7.

We will solve this by dealing with the equations two at a time. Let’s begin with the first two
equations:

(SunZu)

"

rcs3 “ r2s3
rcs5 “ r3s5.

Now let’s recall what the Chinese Remainder Theorem says. If gcdpm,nq “ 1 then there
exists a unique element rcsmn P Z{mnZ with the property prcsm, rcsnq “ prasm, rbsnq, and this
element is given explicitly by

rcsmn “ rany ` bmxsmn,

where x, y P Z are any integers satisfying mx ` ny “ 1. In our case we have pa, bq “ p2, 3q,
pm,nq “ p3, 5q and I found px, yq “ p´3, 2q by trial-and-error. Thus the pair of equations
(SunZu) has a unique solution mod 3 ¨ 5 “ 15 which is given by

rcs15 “ rany ` bmxs15

“ r2 ¨ 5 ¨ 2` 3 ¨ 3 ¨ p´3qs15

“ r20´ 27s15

“ r´7s15

“ r8s15.
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In other words, the pair of equations (SunZu) is equivalent to the single equation rcs15 “
r8s15 and the original system of three equations is equivalent to the following system of two
equations:

"

rcs15 “ r8s15
rcs7 “ r2s7.

We can solve this with the same method; this time we have pa, bq “ p8, 2q, pm,nq “ p15, 7q
and I found px, yq “ p1,´2q by trial-and-error. Finally, the Chinese Remainder Theorem tells
us that the original system has a unique solution mod 15 ¨ 7 “ 105, which is given by

rcs105 “ rany ` bmxs105

“ r8 ¨ 7 ¨ p´2q ` 2 ¨ 15 ¨ 1s105

“ r´112` 30s105

“ r´82s105

“ r23s105

In other words, the complete solution of the problem is c “ 23 ` 105k for all integers k P Z.
Sun Zu used a similar method, but he solved all three equations at the same time. First
he (somehow) found the integers px, y, zq “ p2, 1, 1q such that prx´1s5¨7, ry

´1s3¨7, rz
´1s3¨5q “

pr1s5¨7, r1s3¨7, r1s3¨5q and then he computed the solution

rcs105 “ r2px ¨ 5 ¨ 7q ` 3p3 ¨ y ¨ 7q ` 2p3 ¨ 5 ¨ zqs105

“ r2p70q ` 3p21q ` 2p15qs105

“ r233s105

“ r23s105.

Apparently this solution was even recorded in a folk song called “The Song of Master Sun”:

Not in every third person is there one aged three score and ten,
On five plum trees only twenty-one boughs remain,
The seven learned men meet every fifteen days,
We get our answer by subtracting one hundred and five over and over again.14

Here is the general statement Sun Zu’s method in modern language. Suppose that the sequence
of moduli m1,m2, . . . ,mn P N are pairwise coprime. Then for any integers a1, a2, . . . , an P Z
the system of congruences rcsmi “ raismi has a unique solution rcsM moduloM :“ m1m2 ¨ ¨ ¨mn,
which can be computed as follows. For each index 1 ď i ď n, use the Euclidean Algorithm to
find an integer xi P Z such that

rx´1i smi “ rm1 ¨ ¨ ¨mi´1mi`1 ¨ ¨ ¨mnsmi .

Then the complete solution is given by

rcsM “ ra1px1m2 ¨ ¨ ¨mnq ` a2pm1x2m2 ¨ ¨ ¨mnq ` ¨ ¨ ¨ ` anpm1m2 ¨ ¨ ¨mn´1xnqsM .

14Quoted from The Crest of the Peacock by George Ghereghese Joseph.
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The later work Shu Shu Jiu Zhang (1247) by the mathematician Qin Jiushao describes algo-
rithms (da yan shu) for solving linear systems that were unknown in Europe until over 500
years later. Eventually theses methods were rediscovered by Euler (1743) in his work on linear
differential equations and by Gauss (1801) in his work on least-squares regression.

3.6 Applications to Cryptography

The dividing line between “arithmetic” and “higher arithmetic” (i.e., number theory) was
traditionally placed at the point where arithmetic ceases being useful. From recreational
problems such as Sylvester’s postage stamp problem, to significant challenges such as Fermat’s
Last Theorem, a common feature of all types of number theory was its lack of applications.15

This all changed in the 1960s and 70s, when researchers working in academia and behind the
scenes at US and British intelligence agencies came up with a new kind of cryptography, called

asymmetric cryptography.

To understand asymmetric cryptography we first have to discuss its precursor, symmetric
cryptography. Suppose that Alice and Bob16 want to send secret messages to each other.
This traditionally involved two steps:

Key Exchange. Alice and Bob meet in secret or establish a secure channel to exchange
the keys for a symmetric cryptosystem.

Message Exchange. Now Alice and Bob can exchange encrypted messages from over
an insecure channel.

The term “symmetric cryptosystem” means that Alice and Bob will both use the same process
for encryption and decryption; I will assume that relatively good schemes are available. The
real difficulty of symmetric cryptography is that is seems to require a secure channel in order
to exchange the keys. As the US Department of Defense developed the ARPANET in the
1960s, pressure mounted to find some way to perform this key exchange over an
insecure channel.

The desire to solve this problem forced people to consider the possibility of an asymmetric
cryptosystem. In brief, this is a scheme in which the encryption key is public and only
the decryption key needs to be private. (For this reason it is also called “public-key cryp-
tography”.) Thus, in order to send messages back and forth, Alice and Bob must set up two
separate systems. Here is what Alice’s system looks like:

15The number theorist G.H. Hardy wrote an essay in 1940 called A Mathematician’s Apology in which he
celebrated the fact that his science was “gentle and clean” and could never be applied to military purposes.

16I am legally obligated to use these names.
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Presumably we will encode both the plaintext and the ciphertext as numbers. Thus the tech-
nical problem is to find a mathematical “encryption function” m ÞÑ epmq with the following
properties:

• Given some plaintext message m it is easy to compute the ciphertext epmq.

• The function e is one-to-one, so that a given ciphertext epmq corresponds to a unique
plaintext message m.

• Given the ciphertext epmq it is generally difficult to compute the plaintext message m
(i.e., to “decipher” the ciphertext), however there is a secret key that allows Alice to
compute it quickly.

Such a function m ÞÑ epmq is called a trapdoor function because of the secret door that allows
only Alice to compute the inverse epmq ÞÑ m quickly. However, it is not clear whether any
practical trapdoor functions exist. William Stanley Jevons tried to apply number theory to
the problem in his book The Principles of Science (1874):

Can the reader say what two numbers multiplied together will produce the number
8616460799? I think it unlikely that anyone but myself will ever know.

Here he is referring to the fact that it is relatively easy to multiply two numbers (in this
case the prime numbers 89681 and 96079) but that it is relatively difficult to factor them
apart again. Unfortunately Jevons was not able to incorporate a trapdoor into the prime
factorization problem.

The breakthrough came in the early 1970s when researchers working at GCHQ (the British
counterpart of the NSA) and at American universities independently came up with the same
solutions to the problem. The government discoveries were first, but since the work was
classified the algorithms were named after the public discoverers. For the rest of this section
I will discuss the two key protocols of asymmetric cryptography, called Diffie-Hellman Key
Exchange and the RSA Cryptosystem.
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Protocol 1: Diffie-Hellman and ElGamal. Before we discussed Euler’s Totient Theorem
I wrote down the sequence of powers of 71 mod 1024:

1, 71, 945, 535, 97, 743, 529, 695, . . .

Since ϕp1024q “ ϕp29q “ 29p1 ´ 1{2q “ 512, Euler’s theorem tells us that the multiplicative
order ord1024p71q divides 512; in fact, my computer tells me that ord1024p71q “ 128. In other
words, the sequence of powers will repeat after 128 steps. However, other than this repetition
mod 128 there seems to be no discernable pattern in the sequence. I will phrase this as an
assumption:

Assumption: computing discrete logarithms is hard.

By a “discrete logarithm” I mean that we are given an element of pZ{1024Zqˆ of the form
r71`s1024 and we are asked to find the exponent `. This ` (which is well-defined modulo the
order ord1024p71q “ 128) is something like a “logarithm to the base 71” modulo 1024. More
generally, if gcdpa, nq “ 1 then we will assume that it is difficult to compute the exponent `
given an element of the form ra`sn P pZ{nZqˆ.

On the other hand, we have the following fact:

Fact: computing discrete exponentials is easy.

That is, given integers a, ` and n it is easy to compute the element ra`sn P pZ{nZq; in fact we
can do it in less than 4 ¨ log2p`q operations by the method of “repeated squaring”. The trick
is to repeatedly use the formula

xn “

#

x ¨ px2qpn´1q{2 for n odd

px2qn{2 for n even

so that we only have to compute binary products and squares. To see how this works, let’s
compute the reduced form of the element r7143s1024. First we repeatedly apply the above
formula to obtain

r7143s1024 “ r71s1024 ¨
`

r712s1024
˘21

“ r71s1024 ¨ r94521s1024,

r94521s1024 “ r945s1024 ¨
`

r9452s1024
˘10

“ r945s1024 ¨ r9710s1024,

r9710s1024 “
`

r972s1024
˘5
“ r1935s1024,

r1935s1024 “ r193s1024 ¨
`

r1932s1024
˘2
“ r193s1024 ¨ r3852s1024,

r3852s1024 “ r769s1024.

Then we back-substitute to obtain

r7143s1024 “ r71s1024 ¨ r945s1024 ¨ r193s1024 ¨ r769s1024,

“ r71s1024 ¨ r945s1024 ¨ r961s1024,

“ r71s1024 ¨ r881s1024,

“ r87s1024.
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In total we computed 5 squares and 3 binary products, and for each of these we performed
a single reduction mod 1024. If we regard each multiplication, squaring and reduction mod
1024 as a single operation, then we used a total of 16 operations, which is indeed less than
4 ¨ log2p43q « 4 ¨ p5.42q “ 21.7.

In contrast, suppose that someone tells you that r87s1024 is a power of r71s1024. No one has
yet found a method to compute the logarithm that is significantly faster than the brute force
method of computing each element the sequence r1s1024, r71s1024, r712s1024, . . . and waiting until
we hit r87s1024.

The idea of public-key cryptography was proposed by Whitfield Diffie and Martin Hellman in
1976. In this paper they proposed a method that allows two people (not yet called Alice and
Bob) to agree on a shared secret number over an insecure channel. This method is now called
the Diffie-Hellman Key Exchange. Here’s how it works:

• Alice and Bob agree publicly on a large prime number p and an invertible element
rgsp P pZ{pZqˆ such that the multiplicative order ordppgq is as large as possible.17

• Alice chooses a secret number a and Bob chooses a secret number b.

• Alice transmits rAsp “ rg
asp to Bob and Bob transmits rBsp “ rg

bsp to Alice.

• Alice computes rK1sp “ rBasp in standard form and Bob computes rK2sp “ rAbsp in
standard form.

But now observe that

rK1sp “ rB
asp “ rpg

bqasp “ rpg
aqbsp “ rA

bsp “ rK2sp.

Since the elements are in standard form, the uniqueness of remainders implies that K1 “ K2.
This number K :“ K1 “ K2 is the “secret key” that Alice and Bob can now use as the
foundation for a symmetric cryptosystem.

Let’s investigate why this system is secure. If Eve the eavesdropper is listening to all trans-
missions between Alice and Bob then she will know the numbers p, g, A “ ga and B “ gb

(reduced mod p). To break the system Eve needs to use these numbers to somehow compute
K “ gab. At present it seems that the only way to do this is to compute the discrete logs
of A and B to obtain the exponents a and b, and computing discrete logs is assumed to be
computationally expensive.

One weakness of the Diffie-Hellman Key Exchange is that neither of Alice or Bob gets to choose
the secret number K in advance, thus it cannot be used to directly transmit messages. Instead,
Alice and Bob can use the secret number K as a “key” to set up a symmetric cryptosystem.
In the same paper (1976) Diffie and Hellman proposed the idea of “public key cryptography”
and “trapdoor functions”, but they didn’t provide any explicit examples. The Diffie-Hellman
Key Exchange was upgraded to a full cryptosystem in 1985 by Taher ElGamal. Here is the
ElGamal Protocol, which allows everyone (including Bob) to send secret messages to Alice:

17We know from Euler’s Totient Theorem that ordppgq always divides ϕppq “ p´1. Moreover, one can prove
that there always exists an element g with ordppgq “ p´ 1; this is called the “primitive root theorem”.
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• Alice chooses a large prime p and and element rgsp P pZ{pZqˆ of order p´ 1, just as in
the Diffie-Hellman protocol.

• Alice chooses a secret number 0 ă a ă p and computes rAsp “ rg
asp in reduced form.

She publishes the numbers pp, g, Aq as her public key. She retains a as her private key.

• Bob converts his message to a number 0 ă m ă p.18 To encrypt the message he chooses
a secret number 0 ă b ă p and computes the numbers rBsp “ rg

bsp and rKsp “ rA
bsp in

reduced form. He sends the pair of numbers prBsp, rmKspq to Alice.

• To decrypt the message, Alice first computes the shared secret number rKsp “ rB
asp, just

as in the Diffie-Hellman protocol. Then she uses the Euclidean Algorithm to compute
the inverse rK´1sp and multiplies with the encrypted message rmKsp to obtain

rmKsp ¨ rK
´1sp “ rmsp ¨

`

rKsp ¨ rK
´1sp

˘

“ rmsp.

The ElGamal Protocol is slower than some other public-key cryptosystems (see the RSA
Cryptosystem below), however it has the advantage that it can be generalized to other mathe-
matical situations. That is, instead of choosing an element rgsp in the group of units pZ{pZqˆ
one can use any element of any group, as long as the group computations can be encoded
efficiently in a computer. One popular choice is the “group of rational points on an elliptic
curve”, which is unfortunately a bit too advanced for this course.

Protocol 2: The RSA Cryptosystem. The most popular public-key cryptosystem was
discovered in 1977 by Ron Rivest, Adi Shamir, and Leonard Adelman of MIT. It was also
discovered in 1973 by Clifford Cocks working for the UK intelligence agency GCHQ. However,
since Cocks’ work was classified until 1997, the system is known as RSA.

The security of the RSA Cryptosystem is based on the following assumption, which is the
same idea that was proposed by William Stanley Jevons in 1874:

Assumption: factoring integers is hard.

Specifically, if p and q are large prime numbers then it is much easier to multiply them to
obtain n “ pq than it is to factor n back into p and q. Now let me describe the RSA Protocol,
which allows everyone (including Bob) to send secret messages to Alice. It is mathematically
a bit more sophisticated than ElGamal but it turns out to be more efficient in practice.

• Alice chooses two large prime numbers p and q and computes their product n “ pq.
Then she chooses a random number e that is coprime to pp´1qpq´1q and she publishes
the numbers pn, eq as her public key.

• Next Alice uses the Euclidean Algorithm to compute the inverse of e mod pp´1qpq´1q,

rdspp´1qpq´1q “ re
´1spp´1qpq´1q,

and she keeps the secret number d as her private key. The individual primes p and q
must also be kept secret.

18If th message is long he can repeat the process several times.
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• Bob converts his message to a number 0 ď m ă n (or a sequence of numbers of this
form) and then he computes the number

rcsn “ rm
esn

in standard form. [Recall that modular exponentiation can be done in logarithmic time.]
He sends the “ciphertext” number c to Alice.

• To decode the message, Alice uses her private key d to compute the number

rm1sn “ rc
dsn

in standard form. I claim that the number m1 “ m and hence Alice has recovered Bob’s
secret message.

Proof that m1 “ m. Since e and d are inverses mod pp´ 1qpq´ 1q we know that there exists
some integer k P Z such that

de “ pp´ 1qpq ´ 1qk ` 1.

Now we compute

rm1sn “ rc
dsn

“ rcdsn

“ prcsnq
d

“ prmesnq
d

“ rmdesn

“ rmpp´1qpq´1qk`1sn.

In the likely case that Bob’s message m is coprime to n “ pq then since ϕpnq “ pp´ 1qpq´ 1q,
Euler’s Totient Theorem tells us that

rmpp´1qpq´1qk`1sn “
´

rmpp´1qpq´1qsn

¯k
¨ rmsn

“

´

rmϕpnqsn

¯k
¨ rmsn

“ pr1snq
k
¨ rmsn

“ rmsn,

and hence rm1sn “ rmsn. Then since 0 ď m ă n and 0 ď m1 ă n, the uniqueness of remainders
implies that m1 “ m as desired.

In the unlikely case that Bob’s message m is not coprime to n “ pq,19 then the generalization
of Euler’s Totient Theorem proved on HW3.6 tells us that the equation

rmpp´1qpq´1qk`1sn “ rmsn

19Bob doesn’t know the individual primes p and q so he has no way to guarantee that this does not happen.
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is true anyway. So the RSA Cryptosystem works even when Bob is unlucky.

Finally, let’s discuss why the RSA Cryptosystem is secure. If Eve the eavesdropper is listening
to all transmissions between Alice and Bob she knows the numbers n, e and c and she wants
to somehow combine these numbers to compute the secret message m. At present it seems
that the only way to do this is to first compute the secret number d and then compute rddsn,
just as Alice does, and since d is the inverse of e mod pp ´ 1qpq ´ 1q, Eve will be able to do
this if she can find the number pp´ 1qpq ´ 1q. Thus, here is the problem Eve needs to solve:

compute pp´ 1qpq ´ 1q given pq.

At present it seems that the only way to do this is to compute the prime factors p and q of
pq, which is assumed to be computationally expensive.

Remark: The security of the Diffie-Hellman/ElGamal and RSA systems is based on the as-
sumption that the problems of computing discrete logs and factoring integers are computation-
ally expensive. We do not yet have any mathematical theorems to justify these assumptions.20

However, armies of well-paid mathematicians have been working on the problem now for a
few decades with little success; perhaps that’s just as good as a mathematical theorem.

4 Interlude on Quadratic Forms

In Chapter 2 we considered the linear Diophantine equation

(LDE) ax` by ` c “ 0

as motivation for the basic concepts of number theory, including the greatest common divisor
and the Euclidean Algorithm. We dressed up the topic in modern clothing (using a bit of
linear algebra) but the ideas here were completely classical, going back to Euclid’s Elements
(c. 200 BC).

Then in Chapter 3 we extended the discussion to the finite number systems Z{nZ. The fun-
damental theorems here were Euler’s Totient Theorem and the Chinese Remainder Theorem,
which gave us the tools to discuss applications of number theory to public-key cryptography.
After preliminary work by Fermat and Euler, the theory of “modular arithmetic” was given
its modern form in Gauss’ Disquisitiones Arithmeticae (1798).21

The results in Chapters 2 and 3 can be regarded as the essential core of an undergraduate
number theory course; after this there is a bit of freedom in the selection of topics. In this
course we will spend the rest of our time investigating the general quadratic Diophantine
equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

20There do exist efficient “quantum algorithms” to solve both problems, so both systems will be broken when
(and if) quantum computers are developed. Quantum cryptography is a completely different subject.

21written when he was 21 and published when he was 24
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with integer coefficients a, b, c, d, e, f P Z. This is a nice topic because in principle the solution
is completely understood.22 However, the solution of (QDE) is much more involved than the
solution of (LDE). In particular, it will not fit in a single chapter.

So I will break up the discussion into three separate phases:

The current chapter is mostly algebraic. First we will prove a theorem relating rational solu-
tions of Diophantine equations to “primitive” integer solutions of “homogeneous” Diophantine
equations. Then we will discuss how to reduce the solution of the general quadratic equation
(QDE) to a collection of standard cases. We will see that the geometric picture of (QDE) is a
“conic section” in the real x, y-plane, thus our problem is to find all integer points on a given
conic section.

This problem is too difficult to approach directly, so in Chapter 5 we will retreat temporarily
to consider rational points px, yq P Q2 on the conic section (QDE). It turns out that if we
can find one rational point then a geometric method (called the Diophantus chord method)
will give us an explicit one-to-one correspondence between rational solutions of (QDE) and
rational numbers t P Q. The question of whether any rational points exist is completely solved
by Legendre’s Theorem and Quadratic Reciprocity, however it more difficult to actually find
a rational point.

Finally, in Chapter 6 we return to the problem of integer points on conics. Lagrange showed
that in the worst case scenario (QDE) can be reduced to a pair of equations of the form

(PE) x2 ´∆y2 “ k

where ∆ “ b2 ´ 4ac and k P Z. The equation (PE) was solved several times throughout
history. The last European to rediscover the solution was Fermat in 1657 and he posed it as a
challenge to other mathematicians. Lord Brouncker described a solution in terms of continued
fractions, which Euler misattributed to John Pell, hence we know (PE) as Pell’s equation.
Lagrange gave the first rigorous proof that Brouncker’s algorithm always terminates and then
Dirichlet gave a shorter (nonconstructive) proof of existence of solutions using his “pigeonhole
principle” (German: Schubfachprinzip). The search for a deeper understanding of (PE) leads
to class field theory but I’m sure we won’t get that far.

4.1 Rational Versus Integer Solutions

Our first task is to distinguish clearly between rational and integer solutions of Diophantine
equations. To begin, let’s recall from Chapter 2 how we dealt with the linear Diophantine
equation in two variables:

(LDE) ax` by ` c “ 0.

If a or b is zero then (LDE) is an equation in one variable whose solution is trivial. Therefore
we will assume that a and b are both nonzero with greatest common divisor d :“ gcdpa, bq.

22Diophantine equations of degree ě 3 are a different matter.
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If d - c then there is no solution so we will assume that d|c. When c ‰ 0 then the equation
(LDE) is called inhomogeneous. In order to find the complete solution of the inhomogeneous
equation we reduce it to a pair of related homogeneous equations:

• We can use a bit of linear algebra to show that the complete solution of ax` by` c “ 0
is deteremined by one particular solution ax1`by1`c “ 0 together with the complete
solution of the associated homogeneous equation in two variables:

(HLDE) ax` by “ 0.

The general solution of ax` by “ 0 is easy to find using Euclid’s Lemma.

• Finding a particular solution ax1 ` by1 ` c “ 0 is a bit more challenging. In order to do
this we consider the associated homogeneous equation in three variables:

(HLDE’) ax` by ` cz “ 0.

Since the collection of solutions px, y, zq P Z3 to (HDE’) is closed under vector addition
and scalar multiplication by integers, we are able to combine simple solutions via the
Euclidean Algorithm in order to obtain a solution of the desired form px1, y1, 1q.

The main benefit of reducing the inhomogeneous equation (LDE) to the pair of homogeneous
equations (HLDE) and (HLDE’) is that homogeneous equations are amenable to the techniques
of linear algebra, and linear algebra is something that we humans are good at.

The same general strategy can be applied to Diophantine equations of arbitrary degree, with
varying degrees of success. For example, in order to solve the quadratic Diophantine equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

we will focus our attention on the associated homogeneous equation in two variables

(HQDE) ax2 ` bxy ` cy2 “ 0

and the associated homogeneous equation in three variables

(HQDE’) ax2 ` bxy ` cy2 ` dxz ` eyz ` fz2 “ 0,

both of which are amenable to techniques of linear algebra.

Before moving on to the analysis of (HQDE) and (HQDE’), let me define some terminology
for the general situation. A general Diophantine equation has the form

(DE) fpx1, . . . , xnq “ 0

where fpx1, . . . , xnq P Zrx1, . . . , xns is a polynomial in n variables with integer coefficients.
What does it mean to say that f is a “homogeneous” polynomial?
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Definition of Homogeneous Polynomials. Consider a polynomial in n variables with
integer coefficients23

fpx1, . . . , xnq P Zrx1, . . . , xns.

We say that f is homogeneous of degree d if for any number λ we have

fpλx1, . . . , λxnq “ λdfpx1, . . . , xnq.

In older books, homogeneous polynomials are called forms. Thus you might see homogeneous
polynomials of degrees 1, 2 and 3 referred to linear forms, quadratic forms and ternary forms,
respectively. //

For example, consider the polynomial fpx, yq “ ax2`bxy`cy`d. By making the substitution
px, yq ÞÑ pλx, λyq we obtain

fpλx, λyq “ apλxq2 ` bpλxqpλyq ` cpλyq ` d

“ λ2pax2 ` bxyq ` λ1pcyq ` λ0pdq.

This suggests that we should define the auxiliary polynomials

f2px, yq :“ ax2 ` bxy,

f1px, yq :“ cy,

f0px, yq :“ d,

where each fipx, yq is homogeneous of degree i. Then we can express fpx, yq as the sum of its
homogeneous parts:

fpx, yq “ f2px, yq ` f1px, yq ` f0px, yq

In this case we say that the non-homogeneous polynomial fpx, yq has degree 2 and we say
that the homogeneous polynomial (quadratic form) f2px, yq is its leading form.

More generally, given any polynomial fpxq :“ fpx1, . . . , xnq P Zrx1, . . . , xns, we can express
fpxq uniquely as a sum of homogeneous polynomials

fpxq “ fdpxq ` fd´1pxq ` ¨ ¨ ¨ ` f1pxq ` f0pxq,

where fipxq P Zrx1, . . . , xns is a homogeneous polynomial of degree i called the i-th homo-
geneous part of f . If fdpxq is not the zero polynomial then we say that fpxq has degree d
and we call fdpxq the leading form. Furthermore, for any number λ, the change of variables
x “ px1, . . . , xnq ÞÑ pλx1, . . . , λxnq “ λx has the folloing result:

fpλxq “ fdpλxq ` fd´1pλxq ` ¨ ¨ ¨ ` f1pλxq ` f0pλxq

“ λdfdpxq ` λ
d´1fd´1pxq ` ¨ ¨ ¨ ` λ

1f1pxq ` λ
0f0pxq.

23We could also define homogeneous polynomials with coefficients in an arbitrary commutative ring.
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Now there are two obvious ways we can convert the Diophantine equation (DE) into a homo-
geneous equation. On the one hand, we could just focus on the leading form:

(HDE) fdpxq “ 0.

This equation is useful, but it is not sufficient to solve (DE) because it loses information.
On the other hand, we can preserve more information by promoting (DE) to a homogeneous
Diophantine equation with one extra variable, which we call xn`1. To be precise, we
substitute λ “ 1{xn`1 into the above equation to obtain

fpλxq “ λdfdpxq ` λ
d´1fd´1pxq ` ¨ ¨ ¨ ` λ

1f1pxq ` λ
0f0pxq

f

ˆ

x1
xn`1

, . . . ,
xn
xn`1

˙

“
1

xdn`1
fdpxq `

1

xd´1n`1

fd´1pxq ` ¨ ¨ ¨ `
1

xn`1
f1pxq ` f0pxq

and then after multiplying both sides by xdn`1 we obtain a homogeneous degree d polynomial
in the variables xn`1, x1, . . . , xn called the homogenization of f :

F px1, . . . , xn, xn`1q :“ xd0 ¨ f

ˆ

x1
x0
, . . . ,

xn
x0

˙

“ fdpx1, . . . , xnq ` x0 ¨ fd´1px1, . . . , xnq ` ¨ ¨ ¨ ` x
d
0 ¨ f0px1, . . . , xnq.

Exercise: Check that F px1, . . . , xn, xn`1q P Zrx1, . . . , xn, xn`1s is indeed homogeneous.

To illustrate this definition, consider the non-homogeneous polynomial fpx, yq “ f2px, yq `
f1px, yq`f0px, yq “ pax

2`bxyq`pcyq`pdq from our example above. Then its “homogenization”
is given by

F px, y, zq “ pax2 ` bxyq ` zpcyq ` z2pdq “ ax2 ` bxy ` cyz ` dz2,

which is homogeneous of degree 2. To recover the original polynomial (that is, to dehomoge-
nize) we just substitute z “ 1 to obtain

F px, y, 1q “ fpx, yq.

The main goal of this section is to describe a close relationship between the following concepts:

• Rational solutions of non-homogeneous Diophantine equations.

• Integer solutions of homogeneous Diophantine equations.

We begin with the following definition and theorem on integer solutions of homogeneous
equations.

Definition of GCD and Primitive Vectors. Consider a nonzero integer vector

p0, . . . , 0q ‰ pa1, . . . , anq P Zn
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and let Divpa1, . . . , anq “ td P Z : @i, d|aiu be the set of common divisors. Observe that
1 P Divpa1, . . . , anq and, since the integers ai are not all zero, the set Divpa1, . . . , anq is
bounded above by the minimum of the absolute values |a1|, . . . , |an|. Thus by Well-Ordering
there exists a greatest element of the set which we call the greatest common divisor:

1 ď gcdpa1, . . . , anq ď mint|a1|, . . . , |an|u.

We say that the vector pa1, . . . , anq P Zn is primitive when

gcdpa1, . . . , anq “ 1.

//

Theorem (Unique Primitive Reduction of Homogeneous Equations). Consider a
homogeneous polynomial

F px1, . . . , xnq P Zrx1, . . . , xns

of degree d. Note that the zero vector is always a solution because we have

F p0, . . . , 0q “ F p0 ¨ x1, . . . , 0 ¨ xnq “ 0d ¨ F px1, . . . , xnq “ 0

for any values of x1, . . . , xn P Z. Now consider an arbitrary nonzero integer vector p0, . . . , 0q ‰
pa1, . . . , anq P Zn such that

F pa1, . . . , anq “ 0.

I claim that the exists a unique positive integer 1 ď λ P Z and a unique primitive vector
pa11, . . . , a

1
nq P Zn such that

• pa1, . . . , anq “ λ ¨ pa11, . . . , a
1
nq

• F pa11, . . . , a
1
nq “ 0.

That is, every integer solution of F pxq “ 0 can be written uniquely as a positive multiple of
a primitive integer solution. //

The proof will require the following Lemma, which it interesting enough to have its own name.

Lemma (Vector Bézout Identity). For every nonzero integer vector p0, . . . , 0q ‰ pa1, . . . , anq P
Zn there exist integers x1, . . . , xn P Z such that

gcdpa1, . . . , anq “ a1x1 ` ¨ ¨ ¨ anxn.

//

Proof of the Lemma. We already know that this statement is true for n “ 2 because of the
Vector Euclidean Algorithm. Now we will assume for induction that the statement is true
for some n “ k ě 2, and in this case we will prove that the statement is true for n “ k ` 1.
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So consider an arbitrary nonzero integer vector

p0, . . . , 0q “ pa1, . . . , ak`1q P Zk`1.

In this case I claim that we have

(˚) gcdpa1, . . . , akq “ gcdpgcdpa1, . . . , akq, akq.

To see this we will show that the following sets of common divisors are equal, since then their
greatest elements will also be equal:

Divpa1, . . . , ak`1q “ Divpgcdpa1, . . . , akq, ak`1q.

So consider any integer d P Z. If d is in the right hand set then we have d|ak`1 and
d|gcdpa1, . . . , akq. Since d divides some common divisor of a1, . . . , ak it must divide each
ai individually, and we conclude that d is in Divpa1, . . . , ak`1q as desired. Conversely, suppose
that d is a common divisor of a1, . . . , ak`1. We have assumed for induction that there exist
integers y1, . . . , yk P Z such that

(˚˚) gcdpa1, . . . , akq “ a1y1 ` ¨ ¨ ¨ akyk.

Then since d|ai for all 1 ď i ď k we see from equation (˚˚) that d|gcdpa1, . . . , akq and it follows
that d is in the right hand set as desired.

Finally, from equation (˚) and the Euclidean Algorithm (EA) there exist integers x, y P Z
such that

gcdpa1, . . . , ak`1q “ gcdpgcdpa1, . . . , akq, ak`1q (˚)

“ gcdpa1, . . . , akqx` ak`1y (EA)

“ pa1y1 ` ¨ ¨ ¨ ` akykqx` ak`1y (˚˚)

“ a1py1xq ` ¨ ¨ ¨ akpykxq ` ak`1y.

We conclude that the statement of the theorem is true for n “ k ` 1, which completes the
proof by induction.

Proof of the Theorem. Let F px1, . . . , xnq P Zrx1, . . . , xns be homogeneous of degree d and
consider a nonzero integer solution

F pa1, . . . , anq “ 0.

Let 1 ď λ “ gcdpa1, . . . , anq so that we have ai “ λa1i for some integers a1i. Note that the
vector pa11, . . . , a

1
nq is primitive since if ε ą 1 is any common divisors of a11, . . . , a

1
n then λε ą λ

is a common divisor of a1, . . . , an, which contradicts the fact that λ was the greatest common
divisor. Furthermore, since λ ‰ 0 (and also λd ‰ 0) we have

F pa1, . . . , anq “ F pλa11, . . . , λa
1
nq

0 “ λd ¨ F pa11, . . . , a
1
nq

0 “ F pa11, . . . , a
1
nq.
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We have shown that the integer solution pa1, . . . , anq P Zn can be expressed as

pa1, . . . , anq “ λ ¨ pa11, . . . , a
1
nq

where 1 ď λ P Z and whenre pa11, . . . , a
1
nq P Zn is a primitive integer solution.

It only remains to show that this expression is unique. So suppose that we have another
positive integer 1 ď µ P Z and another primitive vector pa21, . . . , a

2
nq P Zn such that

pλa11, . . . , λa
1
nq “ pa1, . . . , anq “ pµa

2
1, . . . , µa

2
nq

Since gcdpa11, . . . , a
1
nq “ 1 it follows from the previous lemma that there exist integers y1, . . . , yn P

Z such that 1 “ a11y1 ` ¨ ¨ ¨ a
1
nyn. Then multiplying both sides by λ gives

λ “ λpa11y1 ` ¨ ¨ ¨ a
1
nynq

“ pλa11qy1 ` ¨ ¨ ¨ pλa
1
nqyn

“ pµa21qy1 ` ¨ ¨ ¨ pµa
2
nqyn

“ µpa21y1 ` ¨ ¨ ¨ ` a
2
nynq.

It follows that µ|λ, and a similar argument shows that λ|µ. In other words, there exist integers
k, ` P Z such that λ “ kµ and µ “ `λ. Since λ ‰ 0 this implies that

λ “ kµ

λ “ k`λ

p1´ k`qλ “ 0

p1´ k`q “ 0

1 “ k`,

and hence we have either k “ ` “ 1 or k “ ` “ ´1. But since λ “ kµ and since λ and µ are
both positive we must have k “ ` “ 1 and hence λ “ µ. Finally, by cancelling the non-zero
factor λ in the equations

λa11 “ µa21 “ λa21
...

λa1n “ µa21 “ λa2n

we conclude that pa11, . . . , a
1
nq “ pa

2
1, . . . , a

2
nq as desired.

We have shown that the complete integer solution of a homogeneous Diophantine equation
is determined by its primitive solutions. The next theorem shows that rational solutions
of non-homogeneous Diophantine equations are determined by primitive solutions of the
homogenized equation.

Theorem (Rational Versus Integer Solutions). Consider a polynomial in n variables
with integer coefficients

fpx1, . . . , xnq P Zrx1, . . . , xns.
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If f (which is not necessarily homogeneos) has degree d then we define its homogenization by

F px1, . . . , xn, xn`1q :“ xdn`1 ¨ f

ˆ

x1
xn`1

, . . . ,
xn
xn`1

˙

P Zrx1, . . . , xn, xn`1s.

I claim that rational solutions px1, . . . , xnq P Qn of the non-homogeneous equation

(DE) fpx1, . . . , xnq “ 0

are in one-to-one correspondence with primitive integer solutions px1, . . . , xn, xn`1q P Zn`1
of the homogenized equation

(HDE’) F px1, . . . , xn, xn`1q “ 0

in which xn`1 ě 1. //

Proof. Consider an arbitrary integer solution F pa1, . . . , an, bq “ 0 with gcdpa1, . . . , an, bq “ 1
and b ě 1. Since b ‰ 0 (and bd ‰ 0) it follows that

F pa1, . . . , an, bq “ bd ¨ fpa1{b, . . . , an{bq

0 “ cd ¨ fpa1{b, . . . , an{bq

0 “ fpa1{b, . . . , an{bq

and hence we have found a rational solution px1, . . . , xnq “ pa1{b, . . . , an{bq of the equation
fpx1, . . . , xnq “ 0. I claim that the mapping Zn`1 Ñ Qn defined by

pa1, . . . , an, bq ÞÑ pa1{b, . . . , an{bq

is the desired one-to-one correspondence. There are two things to show:

(1) The map is “onto”. Consider an arbitrary rational solution fpx1, . . . , xnq “ 0. By
finding a common denominator we can write px1, . . . , xnq “ pa1{b, . . . , an{bq for some integers
pa1, . . . , an, bq P Zn`1 with b ě 1. Then since b ‰ 0 (and bd ‰ 0) we have

F pa1, . . . , an, bq “ bd ¨ fpa1{b, . . . , an{bq “ bd ¨ fpx1, . . . , xnq “ 0

so that pa1, . . . , an, bq P Zn`1 is an integer solution of F pa1, . . . , an, bq “ 0. It follows from
the previous theorem that there exists an expression pa1, . . . , an, bq “ λ ¨ pa11, . . . , a

1
nq with

1 ď λ P Z and gcdpa1, . . . , an, bq “ 1 such that F pa11, . . . , a
1
n, b

1q “ 0, and since b “ λb1 with
b ě 1 and λ ě 1 we must have b1 ě 1. Finally, observe that the primitive integer solution
pa11, . . . , a

1
n, b

1q gets sent under our map to pa11{b
1, . . . , a1n{b

1q “ pa1{b, . . . , a1{bq “ px1, . . . , xnq
as desired.

(2) The map is “one-to-one”. Suppose that we can write

pa1{b, . . . , an{bq “ px1, . . . , xnq “ pa
1
1{b

1, . . . , a1n{b
1q

for some integers ai, b, a
1
i, b
1 P Z satisfying
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• gcdpa1, . . . , an, bq “ gcdpa11, . . . , a
1
n, b

1q “ 1,

• b ě 1 and b1 ě 1.

To show that pa1, . . . , an, bq “ pa
1
1, . . . , a

1
n, b

1q we will follow a similar strategy to the proof of
uniqueness in the previous theorem. Since gcdpa1, . . . , an, bq “ 1 the Vector Bézout Identity
says that there exist integers x1, . . . , xn, y P Z such that

1 “ a1x` ¨ ¨ ¨ anxn ` by

b1 “ b1pa1x1 ` ¨ ¨ ¨ anxn ` byq

b1 “ pb1a1qx1 ` ¨ ¨ ¨ ` pb
1anqxn ` b

1pbyq

b1 “ pba11qx1 ` ¨ ¨ ¨ ` pba
1
nqxn ` bpb

1yq

b1 “ bpa11x1 ` ¨ ¨ ¨ a
1
nxn ` b

1yq,

and we conclude that b|b1. A similar argument shows that b1|b then since b and b1 are both
positive we must have b “ b1. Finally, since b ‰ 0 and since ba1i “ b1ai “ bai for all i we
conclude that ai “ a1i for all i as desired.

Thus we have shown that the problem of finding rational solutions to general Diophantine
equations is equivalent to the problem of finding integer solutions fo homogeneous Diophan-
tine equations. We can approach both of these problems with linear algebra. Unfortunately,
the problem of finding integer solutions to general Diophantine equations is more difficult
because it it not as susceptible to linear algebraic techniques.

4.2 A Moderate Amount of Linear Algebra

In the previous section we proved that rational solutions of the general quadratic Diophantine
equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

are equivalent to primitive integer solutions of the homogenized equation

(HQDE’) ax2 ` bxy ` cy2 ` dxz ` eyz ` fz2 “ 0

in which z ě 1. In this section we will use a moderate amount of linear algebra in order to
reduce the equation (QDE) to a small number of standard forms and in the next section we
will deal with (QDE”).

The first step is to express the equation (QDE) in the language of matrix multiplication.
Observe that we have

ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

`

x y
˘

ˆ

a b{2
b{2 c

˙ˆ

x
y

˙

`
`

d e
˘

ˆ

x
y

˙

` f “ 0

xTAx` dTx` f “ 0,
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where the 2ˆ 1 column vectors d,x and the 2ˆ 2 matrix A are defined by

d “

ˆ

d
e

˙

, x “

ˆ

x
y

˙

, and A “

ˆ

a b{2
b{2 c

˙

.

There is some non-uniqueness in the choice of the matrix A. Indeed, it would be equally
correct to choose

A “

ˆ

a b
0 c

˙

or A “

ˆ

a 0
b c

˙

.

I made the choice I did because I want A to be a symmetric matrix, i.e., AT “ A. You
might worry about the entry b{2 if we are working over the integers, but we will see later that
this is not a big problem.

Now that we have expressed the equation (QDE) in terms of matrices and vectors, it makes
sense to look for a change of variables x “ px, yq ÞÑ px1, y1q “ x1 that can also be expressed
in this language. In general we will consider so-called affine transformations, which have the
form

x “ Px1 ` u(AT)
ˆ

x
y

˙

“

ˆ

p q
r s

˙ˆ

x1

y1

˙

`

ˆ

u
v

˙

“

ˆ

px1 ` qy1 ` u
rx1 ` sy1 ` v

˙

.

Later we may require the numbers p, q, r, s, u, v to be integers or rational numbers but for now
they can be arbitrary. For the next step, recall that the matrix transpose satisfies pM`NqT “
MT ` NT and pMNqT “ NTMT whenever the matrix sum and product are defined. Then
substituting the change of variables x “ Px1`u into the equation (QDE) and using a moderate
amount of matrix arithmetic yields

xTAx` dTx` f “ 0

pPx1 ` uqTApPx1 ` uq ` dT pPx1 ` uq ` f “ 0

ppx1qTP T ` uT qApPx1 ` uq ` dT pPx1 ` uq ` f “ 0

px1qT pP TAP qx1 ` px1qTP TAu` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0

px1qT pP TAP qx1 `
“

px1qTP TAu
‰T
` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0 p!q

px1qT pP TAP qx1 ` uTATPx1 ` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0

px1qT pP TAP qx1 ` uTAPx1 ` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0 p!!q

px1qT pP TAP qx1 `
“`

2uTA` dT
˘

P
‰

x1 `
`

uTAu` dTu` f
˘

“ 0

px1qT pP TAP qx1 `
“

P T p2Au` dq
‰T

x1 `
`

uTAu` dTu` f
˘

“ 0 p!!q

px1qTA1x1 ` pd1qTx1 ` f 1 “ 0(QDE’)

where the 2ˆ 2 matrix A1, the 2ˆ 1 column vector d1 and the 1ˆ 1 number f 1 are defined by

A1 “ P TAP, d1 “ P T p2Au` dq, and f 1 “ uTAu` dTu` f.
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Observe that in step (!) I used the fact that px1qTP TAu “
“

px1qTP TAu
‰T

, which is true
because px1qTP TAu is just a 1ˆ 1 matrix (i.e., a “number”) and every 1ˆ 1 matrix is equal
to its own transpose. The steps labeled (!!) are true because AT “ A.

In summary, we began with the quadratic equation

(QDE) xTAx` dTx` f “ 0.

Then we made the affine transformation

(AT) x “ Px1 ` u

and substituted this into (QDE) to obtain the transformed equation

(QDE’) px1qTA1x1 ` pd1qTx1 ` f 1 “ 0

where
A1 “ P TAP, d1 “ P T p2Au` dq, and f 1 “ uTAu` dTu` f.

If the matrix P is invertible then the affine transformation (AT) is also invertible, with inverse
given by

(AT’) x1 “ P´1px´ uq,

and this case we observe that

x is a solution of (QDE) ðñ x1 is a solution of (QDE’).

The goal now is to choose an invertible matrix P and a vector u so that the equation (QDE’)
is as simple as possible. If we can find the complete solution of (QDE’) then we will obtain
the complete solution of the original (QDE) after applying the change of variables (AT).

So far all of this is pure algebra that holds over any commutative ring. However, if we are
looking for solutions in a specific ring (such as R, Q or Z) then we will need to place restrictions
on the matrix P and the vector u.

Observations:

• Real Case. Suppose that P and u have entries in R. If P is invertible then its inverse is
given by

P´1 “

ˆ

p q
r s

˙´1

“
1

ps´ qr

ˆ

s ´q
´r p

˙

,

which also has entries in R. In this case we see that

x P R2 ô x1 P R2,

so that the real solutions of (QDE) correspond to the real solutions of (QDE’). We will
examine this case below to get a feeling for the geometry of the problem.
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• Rational Case. Suppose that P and u have entries in Q. If P is invertible then we see
from the formula above that P´1 also has entries in Q and we conclude that

x P Q2 ô x1 P Q2.

Thus the rational solutions of (QDE) correspond to the rational solutions of (QDE’).
The reduction in this case is only a bit trickier than the real case.

• Integer Case. Suppose that P and u have entries in Z. Suppose furthermore that P
is invertible and that the inverse P´1 has entries in Z. (By the formula above this is
equivalent to having ps´ qr “ ˘1.) In this case we see that

x P Z2 ô x1 P Z2,

so the integer solutions of (QDE) correspond to the integer solutions of (QDE’). This
case is much trickier and we will postpone a full discussion until the next chapter.

//

General Strategy: With these observations in mind, here is the general strategy that we
will pursue. Consider a ring K P tR,Q,Zu. To find solutions x P K2 of the equation (QDE)
we perform the following steps:

• First we search for a matrix P such that P and P´1 both have entries in K and such
that the matrix A1 is “diagonal”:

A1 “ P TAP “

ˆ

a1 0
0 c1

˙

.

This has the effect of eliminating the xy-term from (QDE’):

a1px1q2 ` c1py1q2 ` pd1qTx1 ` f “ 0.

We will find that this is always possible when K P tR,Qu. In the case K “ R the
desired matrix P is just a rotation of the plane. In the case K “ Z it is not always
possible.

• Then we search for a vector u with entries in K such that

d1 “ P T p2Au` dq “ 0 “

ˆ

0
0

˙

.

This has the effect of eliminating the x-term and y-term from (QDE’):

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

We will find that this is almost always possible when K P tR,Qu. Algebraically we can
think of it as “completing the squares”. Geometrically it is a translation of the plane.
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• Finally, we attempt to characterize the full solution x P K2 of the equation (QDE”).
If we can do this then we obtain the full solution of (QDE) by inverting the change of
variables.

//

The rest of the section is devoted to carrying out strategy, first for K “ R and then for K “ Q.

Reduction of (QDE) for real numbers. There is a general theorem of linear algebra that
says the following:

Principal Axes Theorem. Let A be a real nˆ n matrix. If A is symmetric (i.e., if
AT “ A) then there exists a real nˆ n matrix P with the following properties

• P is invertible with inverse equal to its transpose (i.e., P´1 “ P T )

• P TAP is diagonal.

We will not use this theorem, but at least it tells us what kind of solution to look for. The
real 2ˆ 2 matrices P satisfying P´1 “ P T are just the reflections and rotations of the plane
that leave the origin fixed. In particular, for any angle θ the matrix

Rθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

has the effect of rotating every point around the origin, counterclockwise by θ. So let us
assume that P “ Rθ and see if we can find an angle θ such that P TAP is diagonal. I will
temporarily use the notation C :“ cos θ and S :“ sin θ to save space.24 Then we have

P TAP “

ˆ

C S
´S C

˙ˆ

a b{2
b{2 c

˙ˆ

C ´S
S C

˙

“

ˆ

aC2 ` bSC ` cS2 pc´ aqSC ` b
2pC

2 ´ S2q

pc´ aqSC ` b
2pC

2 ´ S2q aS2 ´ bSC ` cC2

˙

.

Observe that this matrix is diagonal if and only if

pc´ aqSC `
b

2
pC2 ´ S2q “ 0

pc´ aq sin θ cos θ `
b

2
pcos2 θ ´ sin2 θq “ 0

c´ a

2
sinp2θq `

b

2
cosp2θq “ 0

pa´ cq sinp2θq “ b cosp2θq.

If b “ 0 then θ “ 0 is a solution. Indeed, in this case the matrix A is already diagonal so we
only need to “rotate by zero”. If pa ´ cq “ 0 then θ “ π{4 is a solution since in this case we
have

pa´ cq sinpπ{2q “ 0 “ b cospπ{2q.

24Trigonometry is beautiful except for the notation.
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Finally, if we have b ‰ 0 and pa ´ cq ‰ 0 then we must have either sinp2θq “ cosp2θq “ 0
(which is impossible) or we must have sinp2θq ‰ 0 and cosp2θq ‰ 0. In this last case we can
solve the equation to obtain

sinp2θq

cosp2θq
“

b

a´ c

tanp2θq “
b

a´ c
.

And since the tan function takes on all real values, we can always find a solution θ. In
summary, there exists an invertible real matrix P with the property

P TAP “

ˆ

a1 0
0 c1

˙

,

and thus the transformed equation (QDE’) takes the form

a1px1q2 ` c1py1q2 ` dTx1 ` f 1 “ 0,

where
d1 “ P T p2Au` dq and f 1 “ uTAu` f.

Our next goal is to choose the vector u “
`

u v
˘T

so that d1 “ 0T “
`

0 0
˘T

. Since the
matrix P (and hence also P T ) is invertible, we observe that this will happen if and only if

(˚) 2Au` d “ 0.

The question is whether this equation (˚) has a solution. The rest of the discussion depends
on a specific integer ∆ P Z, which is called the discriminant of the equation (QDE):

∆ :“ b2 ´ 4ac.

We observe that the determinant of the matrix A is

det

ˆ

a b{2
b{2 c

˙

“ ac´

ˆ

b

2

˙2

“ ac´
b2

4
“

4ac´ b2

4
“ ´

∆

4
,

and hence the matrix A is invertible if and only if ∆ ‰ 0. Furthermore, recall that we have
detpMT q “ detpMq and detpMNq “ detpMq detpNq for all matrices M and N for which these
expressions make sense. Now observe that

a1c1 “ det

ˆ

a1 0
0 c1

˙

“ detpP TAP q

“ detpP T q detpAq detpP q

“ detpP qdetpAqdetpP q

“ detpAqdetpP q2

“ ´
∆

4
detpP q2.
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Since detpP q ‰ 0 (because P is invertible) we must have detpP q2 ą 0 and this implies that
a1c1 is negative/positive/zero precisely when ∆ is positive/negative/zero.25 There are three
cases:

‚ If ∆ “ b2 ´ 4ac “ 0 then we also have a1c1 “ 0, so at least one of a1 and c1 is zero. If they
are both zero then we get A1 “ 0 and hence A “ 0, so that (QDE) and (QDE’) are each the
equation of a line. Otherwise, by switching x and y if necessary, we can assume that a1 ‰ 0
and c1 “ 0. Then the equation (QDE’) takes the form

a1px1q2 ` d1x1 ` e1y1 ` f 1 “ 0

and by “completing the square” in x1 we obtain

px1q2 `
d1

a1
x1 `

e1

a1
y1 `

f 1

a1
“ 0

ˆ

x1 `
d1

2a1

˙2

`
e1

a1
y1 `

f 1

a1
´

ˆ

d1

2a1

˙2

“ 0

px2q2 ` e2y1 ` f2 “ 0.

If e2 “ 0 then this is the equation of a line (when f2 “ 0), two parallel lines (when f2 ă 0)
or has no real solution (when f2 ą 0). If e2 ‰ 0 then we identify this as the equation of a
parabola.

‚ If ∆ “ b2 ´ 4ac ă 0 then we also have a1c1 ą 0 so that a1 and c1 have the same parity. Since
∆ ‰ 0, the matrix A is invertible and we can solve the equation (˚) for u to obtain

2Au` d “ 0

u “ ´
1

2
A´1d.

This forces d1 “ 0 and so equation (QDE’) takes the form

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

If f 1 has the same parity as a1 and c1 then there is no real solution. If f 1 “ 0 then the
solution is the single point px1, y1q “ p0, 0q and if f 1 has opposite parity from a1 and c1 then
we identify (QDE”) as the equation of an ellipse.

‚ If ∆ “ b2 ´ 4ac ą 0 then we also have a1c1 ă 0 so that a1 and c1 have opposite parity. Since
∆ ‰ 0 we can again force d1 “ 0 by choosing u “ ´A´1d{2 so equation (QDE’) takes the
form

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

25In the current situation we have detpP q “ 1, but this will not be the case below so I wanted to keep the
discussion as general as possible.
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If f 1 “ 0 then we can solve this to obtain y1{x1 “ ˘
a

´a1{c1, which is the equation of two
lines meeting at the point px1, y1q “ p0, 0q. If f 1 ‰ 0 then we identify (QDE”) as the
equation of a hyperbola.

In summary, we can choose a rotation matrix P and a translation vector u so that (QDE’) is
the equation of a conic section in standard position in the x1, y1-plane. This tells us that the
original (QDE) is the equation of a conic section in non-standard position in the x, y-plane.
See below for an explanation of the words “conic section”.

//

Reduction of (QDE) for rational numbers. The general outline here is the same as the
computation over the real numbers, however we will not be able to choose the matrix P so
that P´1 “ P T . Indeed, the rotation matrix Rθ almost never has rational entries.

To find a suitable matrix P we will use a different method called Hermite reduction. You
may remember that we can perform an invertible “row operation” on a 2 ˆ 2 matrix A by
multiplying on the left by one of the elementary matrices

E “

ˆ

1 `
0 1

˙

,

ˆ

1 0
` 1

˙

or

ˆ

0 1
1 0

˙

.

The goal of Gaussian row-reduction is to multiply on the left by a sequence of elementary
matrices until we reach a diagonal matrix, or at least an upper-triangular matrix. This is
often expressed as an algorithm to compute the inverse of a matrix. First we place A next
to an identity matrix:

`

A I
˘

.

Then we perform a sequence of row operations E1, E2, . . . , Ek on the whole matrix to obtain

`

A I
˘

`

E1A E1

˘

`

E2E1A E2E1

˘

...
`

Ek ¨ ¨ ¨E2E1A Ek ¨ ¨ ¨E2E1

˘

`

PA P
˘

where P “ Ek ¨ ¨ ¨E2E1 is the product of the elementary matrices. If it is possible to reduce
A to the identity matrix in this way then we will eventually reach PA “ I and the inverse
matrix P “ A´1 will appear on the right hand side:

`

PA P
˘

“
`

I A´1
˘

.
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There is also a variant of this method called column-reduction which performs invertible column
operations by multiplying on the right by elementary matrices:

ˆ

A

I

˙

Ñ

ˆ

AE1

E1

˙

Ñ ¨ ¨ ¨ Ñ

ˆ

AE1E2 ¨ ¨ ¨Ek
E1E2 ¨ ¨ ¨Ek

˙

“

ˆ

AP

P

˙

.

The idea of Hermite reduction is to perform both of these processes simultaneously. To
begin we start with a matrix of the form

ˆ

A I

I

˙

.

It doesn’t matter what we put in the bottom right because we are never going to touch it. If
we perform a column operation on the first n columns (suppose A is an n ˆ n matrix) then
this has the effect of multiplying on the right by an elementary matrix

ˆ

A I

I

˙

Ñ

ˆ

AE I

E

˙

.

Note that the upper-right corner is left untouched by this process. Now we perform “the
same” row operation on the on the first n rows. This has the effect of multiplying on the left
by the transposed elementary matrix:

ˆ

A I

I

˙

Ñ

ˆ

AE I

E

˙

Ñ

ˆ

ETAE ET

E

˙

.

It doesn’t matter in which order we perform the two operations because of the associative
property of matrix multiplication: pETAqE “ ET pAEq. After performing a sequence of
simultaneous row/column operations then we obtain

ˆ

A I

I

˙

Ñ

ˆ

ET1 AE1 ET1
E1

˙

Ñ ¨ ¨ ¨ Ñ

ˆ

ETk ¨ ¨ ¨E
T
1 AE1 ¨ ¨ ¨Ek ETk ¨ ¨ ¨E

T
1

E1 ¨ ¨ ¨Ek

˙

.

The end result is a matrix of the form
ˆ

A I

I

˙

Ñ

ˆ

P TAP P T

P

˙

where P “ E1E2 ¨ ¨ ¨Ek is the product of the elementary matrices. The goal now is to choose
the simultaneous row/column operations so that we can reduce A to a diagonal matrix.

It turns out that if AT “ A has rational entries then this is always possible.26 Let’s see how
the Hermite reduction algorithm works on our favorite 2ˆ 2 matrix

A “

ˆ

a b{2
b{2 c

˙

.

26More generally, it is always possible for a symmetric matrix with entries in a given field. It is not always
possible over the integers.
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First let’s assume that a ‰ 0. Then we can subtract b{2a times the first row from the second
row and subtract b{2a times the first column from the second column to obtain

¨

˚

˚

˝

a b{2
b{2 c

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a b{2
0 c´ b2{4a

1 0
´b{2a 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a 0
0 c´ b2{4a

1 0
´b{2a 1

1 ´b{2a
0 1

˛

‹

‹

‚

.

From the remarks above, it follows that by choosing

P “

ˆ

1 ´b{2a
0 1

˙

we obtain the diagonalization

P TAP “

ˆ

1 0
´b{2a 1

˙ˆ

a b{2
b{2 c

˙ˆ

1 ´b{2a
0 1

˙

“

ˆ

a 0
0 c´ b2{4a

˙

.

Note that the matrix P is certainly not a rotation matrix, but it is still invertible with

P´1 “

ˆ

1 `b{2a
0 1

˙

.

The main feature of the matrix P is that it has rational entries so that it preserves the
rationality of solutions of the Diophantine equation.

The case c ‰ 0 is similar. Here we subtract b{2c times the second row/column from the first
row/column to obtain

¨

˚

˚

˝

a b{2
b{2 c

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a´ b2{4c 0
b{2 c

1 ´b{2c
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a´ b2{4c 0
0 c

1 ´b{2c
0 1

1 0
´b{2c 1

˛

‹

‹

‚

.

Thus by choosing

P “

ˆ

1 0
´b{2c 1

˙

we obtain the rational diagonalization

P TAP “

ˆ

1 0
´b{2c 1

˙ˆ

a b{2
b{2 c

˙ˆ

1 ´b{2c
0 1

˙

“

ˆ

a´ b2{4c 0
0 c

˙

.
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If a “ b “ c “ 0 then there is nothing to do, thus the last case we must consider is when
a “ c “ 0 and b ‰ 0. This one is a bit harder. First we have to add the second row/column
to the first row/column to get a nonzero entry on the diagonal. Then we subtract 1{2 of the
first row/column from the second row/column to eliminate the off-diagonal entries. At this
point the matrix is diagonalized, but we can clean it up a bit more by multiplying the second
row/column by 2:

¨

˚

˚

˝

0 b{2
b{2 0

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

b b{2
b{2 0

1 1
0 1

1 0
1 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

b 0
0 ´b{4

1 1
´1{2 1{2

1 ´1{2
1 1{2

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

b 0
0 ´b

1 1
´1 1

1 ´1
1 1

˛

‹

‹

‚

.

In summary, by choosing

P “

ˆ

1 ´1
1 1

˙

we obtain the diagonalization

P TAP “

ˆ

1 1
´1 1

˙ˆ

0 b{2
b{2 0

˙ˆ

1 ´1
1 1

˙

“

ˆ

b 0
0 ´b

˙

.

Maybe we could have come up with all of these tricks through cleverness, but I prefer the
systematic way.

The rest of the reduction is identical to the real case, since all of the translation vectors u
we chose in that case had entries that were rational expressions of the previous entries. In
summary, by an invertible rational affine transformation we can reduce (QDE) to one of the
following three forms:

• If A “ 0 then the original equation (QDE) had the form

a1x` b1y ` c1 “ 0

for some integers a1, b1, c1 P Z.

• If ∆ “ b2 ´ 4ac “ 0 and A ‰ 0 then the equation (QDE) can be reduced to the form

a1x2 ` b1y ` c1 “ 0 or a1y2 ` b1x` c1 “ 0

for some integers a1, b1, c1 P Z with a1 ‰ 0.

84



• If ∆ “ b2 ´ 4ac ‰ 0 then the equation (QDE) can be reduced to the form

a1x2 ` b1y2 ` c1 “ 0

for some integers a1, b1, c1 P Z with a1b1 ‰ 0.

This was all pure algebra. In the next chapter we will return to the problem of finding the
complete rational solution px, yq P Q2 to each of these equations. But first:

4.3 Why Do We Call Them Conic Sections?

To end the chapter I’ll show you something that I wish someone had shown to me a long time
ago. We have seen that the equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

defines either a point, a line, two lines, a parabola, an ellipse or a hyperbola in the real x, y-
plane. It turns out that each of these shapes can be described as the intersection of a plane
with a cone27 in three dimensional space, thus these shapes are often referred to as conic
sections.

But why does this happen? In other words:

why do solutions of quadratic equations look like conic sections?

To understand this we must return to the homogenized version of (QDE):

(HQDE’) ax2 ` bxy ` cy2 ` dxz ` eyz ` fz2 “ 0.

If we can find the geometric shape of the solution to (HQDE’) in cartesian x, y, z-space, then
we will obtain the geometric shape of the solution to (QDE) by intersecting this shape with
the plane defined by z “ 1. Thus our goal is to show that the solutions of (HQDE’) look like
a cone (in the generic case).

To do this, we first express the equation in terms of matrix arithmetic as follows: we have

`

x y z
˘

¨

˝

a b{2 d{2
b{2 c e{2
d{2 e{2 f

˛

‚

¨

˝

x
y
z

˛

‚“ 0

xTHx “ 0,

where the 3ˆ 1 column vector x and the 3ˆ 3 symmetric matrix HT “ H are defined by

x “

¨

˝

x
y
z

˛

‚ and H “

¨

˝

a b{2 d{2
b{2 c e{2
d{2 e{2 f

˛

‚.

27Except for the degenerate case of two parallel lines, which we will see is the intersection of a plane with
two other planes.
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Now we will use the Principal Axes Theorem which was stated in the previous section (but we
still won’t prove it). Since H is a symmetric real matrix we know that there exists an 3 ˆ 3
orthogonal matrix QT “ Q´1 such that QTHQ is diagonal, i.e., such that

H 1 “ QTHQ “

¨

˝

a1 0 0
0 c1 0
0 0 f 1

˛

‚.

Then after performing the change of variables x “ Qx1 we see that (HQDE’) is equivalent to
the transformed equation

xTHx “ 0

pQxqT H
`

Qx1
˘

“ 0

px1qT
`

QTHQ
˘

x1 “ 0

px1qTH 1x1 “ 0

a1px1q2 ` c1py1q2 ` f 1pz1q2 “ 0.(˚)

Note that px1, y1, z1q “ p0, 0, 0q is always a solution. If a1 “ c1 “ f 1 “ 0 then every triple
px1, y1, z1q P R3 is a solution to (˚) and there is nothing to show. If exactly one of a1, c1, f 1

equals zero then the solution of (˚) is either a line or a pair of planes through the origin in
x1, y1, z1-space. Finally, if a1c1f 1 ‰ 0 then the solution of (˚) is either the single point p0, 0, 0q
or an elliptic cone (a cone whose perpendicular cross sections are ellipses) in x1, y1, z1-space.

Suppose that we are in the most interesting case when (˚) defines an elliptic cone in x1, y1, z1-
space. Then since (HQDE’) is equivalent to (˚) under an orthogonal (i.e., distance-preserving)
change of coordinates we see that the equation (HQDE’) defines an elliptic cone in x, y, z-space.
Finally, the solution to the original (QDE) is the intersection of this elliptic cone with the
plane z “ 1 in x, y, z-space. This explains why we call the general equation (QDE) a “conic
section”.

Remark: I believe that it is possible in all cases to realize the solution of (QDE) as the
intersection of the plane z “ 1 with a right circular cone28 in x, y, z-space (i.e., not just an
elliptic cone). Unfortunately I do not know a similarly slick (or really any) proof of this fact.
If you know one please tell me.

5 Rational Points on Conics

The topic of this chapter is to find the complete rational solution px, yq P Q2 to the quadratic
equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

28or a circular cylinder, which we think of as a cone with its apex “at infinity”.
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for general integers a, b, c, d, e, f P Z. The steps involved in the solution are the same as
the steps involved when we solved the linear equation in Chapter 2. Here are the steps in
increasing order of difficulty:

• Reduce the general equation to a standard form (primitive, homogeneous, etc.)

• Determine whether a solution exists.

• Find one specific solution.

• Find the complete solution.

In the previous chapter we saw that the general equation (QDE) can be reduced by an in-
vertible affine transformation with rational coefficients to one of three standard forms. To be
specific, if the equation (QDE) is not of the form 0 “ 0 or 0 “ 1 then there exist integers
a, b, c P Z with gcdpa, b, cq “ 1 and a ‰ 0 such that (QDE) is rationally equivalent to one of
the following:

ax` by ` c “ 0(linear)

ax2 ` by ` c “ 0(parabolic)

ax2 ` by2 ` c “ 0(elliptic/hyperbolic)

Furthermore, we have seen that the problem of finding all rational solutions px, yq P Q2 is
equivalent to the problem of finding all integer solutions px, y, zq P Z3 with gcdpx, y, zq “ 1
and z ě 1 to the associated homogenized equation:

ax` by ` cz “ 0(linear)

ax2 ` byz ` cz2 “ 0(parabolic)

ax2 ` by2 ` cz2 “ 0(elliptic/hyperbolic)

We already understand the linear case so let’s quickly dispense with it. Suppose that we have
integers a, b, c, x, y, z P Z of the stated form satisfying ax` by ` cz “ 0. If d “ gcdpa, bq then
the equality tells us that d|cz. Then since gcdpa, b, cq “ gcdpd, cq “ 1 Euclid’s Lemma tells us
that d|z, say z “ dk. Since z ě 1 we must have k ě 1. Finally, for any fixed value of k ě 1 we
can find the complete integer solution px, yq P Z2 to the equation ax ` by ` cdk “ 0 exactly
as in Chapter 2.

The rest of this chapter will deal with the parabolic and the elliptic/hyperbolic cases.

5.1 Pythagorean Triples

Just as with the case of linear equations, it turns out that if we can find one particular
solution to a quadratic Diophane equation (that is, one particular rational solution or one
particular integer solution of the homogenized equation) then the complete solution is easy to
obtain. I will illustrate the general method as it applies to the following specific equation:

(UC) x2 ` y2 “ 1.
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If we temporarily allow x and y to be real numbers, then we can think of (UC) as the equation
of a circle of radius 1 centered at the origin of the x, y-plane:

Note that the equation (UC) has exactly four integer solutions:

px, yq P tp1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

There is nothing more to say about this, so we move on to rational solutions of (UC).29

Suppose that we have rational solution px, yq P Q2. By finding a common denominator we can
write x “ a{c and y “ b{c and by canceling the greatest common divisor we can assume that
gcdpa, b, cq “ 1 with c ě 1. Then equation (UC) becomes

pa{cq2 ` pb{cq2 “ 1

a2{c2 ` b2{c2 “ 1

a2 ` b2 “ c2.(PT)

Integer solutions to the equation (PT) are called Pythagorean triples and solutions with
gcdpa, b, cq “ 1 and c ě 1 are called primitive Pythagorean triples. You are probably fa-
miliar with the primitive Pythagorean triple 32 ` 42 “ 52 and the fact that for any integer
λ P Z we have p3λq2 ` p4λq2 “ p5λq2. The results of Section 4.1 immediately imply the
following general theorem.

29In general, elliptic Diophantine equations have only finitely many integer solutions. Integer solutions of
hyperbolic equations are more interesting. However, for rational solutions there is no difference.
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Theorem (Reduction to Primitive Pythagorean Triples). Each Pythagorean triple
pa, b, cq P Z3 has a unique expression of the form

pa, b, cq “ λ ¨ pa1, b1, c1q

where λ P Z and where pa1, b1, c1q P Z3 is a primitive Pythagorean triple. //

Thus the problem of classifying Pythagorean triples is reduced to the problem of classifying
primitive Pythagorean triples. And the classification of primitive triples is reduced to the
problem of classifying rational points on the unit circle. It turns out that there is a beautiful
geometric trick for finding these points. The method was hinted at in the Arithmetica by
Diophantus of Alexandria (c. 200–284), althouth he didn’t describe it in geometric terms.

The idea is to choose one specific rational point and to consider the line of slope t passing
through this point. In this case we’ll choose the point p´1, 0q:

For any finite value of t this will intersect the circle in exactly one other point, which we call
pxt, ytq. To compute the coordinates of this point, first note that the equation of the line is

t “ priseq{prunq

t “ py ´ 0q{px´ p´1qq

tpx` 1q “ y.
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We substitute this into the equation of the circle to obtain

1 “ x2 ` y2

1 “ x2 ` t2px` 1q2

0 “ x2pt2 ` 1q ` xp2t2q ` pt2 ´ 1q.

Now we can use the quadratic formula to solve for x. Note that a very lucky cancellation
happens under the square-root sign:

x “
´2t2 ˘

a

p2t2q2 ´ 4pt2 ` 1qpt2 ´ 1q

2pt2 ` 1q

“
´2t2 ˘

a

4t4 ´ 4pt4 ´ 1qq

2pt2 ` 1q

“
´2t2 ˘

a

4t4 ´ 4pt4 ´ 1qq

2pt2 ` 1q

“
´2t2 ˘

?
4

2pt2 ` 1q

“
´2t2 ˘ 2

2pt2 ` 1q

“
´t2 ˘ 1

t2 ` 1

“
´t2 ´ 1

t2 ` 1
or

´t2 ` 1

t2 ` 1

“ ´1 or
1´ t2

1` t2

The solution x “ ´1 corresponds to the point px, yq “ p´1, 0q and thus we have xt “ p1 ´
t2q{p1` t2q. Finally, we substitute this formula for xt into the equation of the line to obtain

yt “ tpxt ` 1q “ t

ˆ

1´ t2

1` t2
` 1

˙

“ t

ˆ

1´ t2

1´ t2
`

1´ t2

1` t2

˙

“
2t

1` t2
.

In summary, we have the following two equations relating the slope t to the coordinates of the
point pxt, ytq. These equations hold for any real number t:

t “
yt

xt ` 1
(1)

pxt, ytq “

ˆ

1´ t2

1` t2
,

2t

1` t2

˙

(2)

But recall that we are only interested in the rational points on the circle. Here is the key
fact.
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Theorem (Diophantus’ Chord Method for the Circle). The mapping t ÞÑ pxt, ytq
defines a one-to-one correspondence between rational numbers t P Q and the rational points
on the unit circle, excluding p´1, 0q. //

Proof. Every real point on the unit circle except for p´1, 0q has the form pxt, ytq for some
unique real number t. Furthermore, from equation (1) above we see that

pxt, ytq P Q2 ùñ t P Q

and from equation (2) above we see that

t P Q ùñ pxt, ytq P Q2.

In other words, we have a one-to-one correspondence between rational values of t and rational
points on the circle except for p´1, 0q.

It turns out that exactly the same trick works for any quadratic Diophantine equation as long
as we are able to find one specific rational point to begin with. Finding a rational point
on the unit circle was easy, but unfortunately this will not always be the case.

Next let’s investigate the rational points pxt, ytq in detail so we can extract a classification of
Pythagorean triples.

The general rational point on the unit circle has the form pxt, ytq P Q2 for some rational
number t P Q. Let us write t in lowest terms so that t “ u{v for some unique integers u, v P Z
with gcdpu, vq “ 1 and v ě 1. Then we have

pxt, ytq “

ˆ

1´ t2

1` t2
,

2t

1` t2

˙

“

ˆ

1´ pu{vq2

1` pu{vq2
,

2pu{vq

1` pu{vq2

˙

“

ˆ

v2

v2
¨

1´ pu{vq2

1` pu{vq2
,
v2

v2
¨

2pu{vq

1` pu{vq2

˙

“

ˆ

v2 ´ u2

v2 ` u2
,

2uv

v2 ` u2

˙

.

From the above remarks we also know that

(˚)

ˆ

a

c
,
b

c

˙

“ pxt, ytq “

ˆ

v2 ´ u2

v2 ` u2
,

2uv

v2 ` u2

˙

for some unique integers a, b, c P Z with gcdpa, b, cq “ 1 and c ě 1. To determine the re-
lationship between the unique integers a, b, c and the unique integers u, v it only remains to
determine the greatest common divisor of the integers v2 ´ u2, 2uv, v2 ` u2.
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Lemma. Consider integers u, v P Z with gcdpu, vq “ 1. Then we have

gcdpv2 ´ u2, 2uv, v2 ` u2q “ 1 or 2.

//

Proof. Let d :“ gcdpv2´ u2, 2uv, v2` u2q. Now let p be any odd prime divisor of d. Since
p divides each of v2 ´ u2 and v2 ` u2 it must also divide

“

pv2 ´ u2q ` pv2 ` u2q
‰

“ 2v2.

Then since p - 2, Euclid’s Lemma tells us that p|v2 and hence p|v. Similarly we see that p
divides

“

pv2 ` u2q ´ pv2 ´ u2q
‰

“ 2u2

and it follows from Euclid’s Lemma that p|u. But this contradicts the fact that gcdpu, vq “ 1
so we conclude that d has no odd prime divisors and it follows that d is a power of 2. I claim
that d “ 2k for k “ 0 or k “ 1.

To see this, assume for contradiction that d is divisible by 4 “ 22. Then by the same argument
as above we see that 4 divides each of 2v2 and 2u2. Since 4|2v2 there exists an integer ` P Z
such that 2v2 “ 4` “ 2p2`q and canceling ` gives v2 “ 2`. Then since 2 is prime, Euclid’s
Lemma tells us that 2|v. Then a similar argument gives 2|u, which again contradicts the fact
that gcdpu, vq “ 1. This completes the proof.

In the case gcdpv2 ´ u2, 2uv, v2 ` u2q “ 1 we conclude from equation (˚) that

pa, b, cq “ pv2 ´ u2, 2uv, v2 ` u2q.

In the case gcdpv2 ´ u2, 2uv, v2 ` u2q “ 2 we can divide through by 2 to obtain

gcd

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

“ 1,

and then it follows from equation (˚) that

pa, b, cq “

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

.

This completes the classification of Pythagorean triples, but I don’t like the look of the fractions
in the previous equation. Maybe we can get rid of them?

Observe that since a “ pv2 ´ u2q{2 is an integer, it must be the case that v2 and u2 have the
same parity, and it follows from this that u and v also have the same parity. Thus we can
define new integers u1, v1 P Z with the following change of variables:

"

u1 “ pu´ vq{2
v1 “ pu` vq{2

"

u “ v1 ´ u1

v “ v1 ` u1
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From the system of equations on the right we see that the common divisors of u and v are the
same as the common divisors of u1 and v1 and hence gcdpu1, v1q “ gcdpu, vq “ 1. Finally, we
have the miraculous simplification

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

“ p2u1v1, pv1q2 ´ pu1q2, pv1q2 ` pu1q2q.

In summary, we have the following theorem.

Theorem (Classification of Pythagorean Triples). Consider a nonzero integer vector
p0, 0, 0q ‰ pa, b, cq P Z3 such that a2 ` b2 “ c2. Then exactly one of the following applies:

• There exist unique integers λ, u, v P Z with gcdpu, vq “ 1 and v ě 1 such that

pa, b, cq “ λ ¨
`

v2 ´ u2, 2uv, v2 ` u2
˘

.

• There exist unique integers λ, u, v P Z with gcdpu, vq “ 1 and v ě 1 such that

pa, b, cq “ λ ¨
`

2uv, v2 ´ u2, v2 ` u2
˘

.

In either case we have gcdpv2 ´ u2, 2uv, u2 ` v2q “ 1. //

This theorem was by no means trivial to prove. The algebraic step of parametrizing the ra-
tional points in terms of t P Q was straightforward; however, the process of finding a unique
representation for the integer Pythagorean triples involved some tricky number-theoretic ar-
guments. And there are still some mysteries hiding in the final answer. For example, here is
a puzzle:

It follows from the previous theorm that if pa, b, cq is a Pythagorean triple then a
and b cannot both be odd. But this fact never showed up explicitly in the proof.
Why is it true?

Believe it or not, the easeist way to “explain” this phenomenon is by thinking about the
“square elements” in the ring Z{4Z !

Here is the relevant definition, which will play a central role later in this chapter.

Definition of Quadratic Residue. Consider integers a, n P Z with n ą 0. We say that a is
a quadratic residue mod n if there exists an integer x P Z such that

rasn “ rx
2sn “ prxsnq

2 .

Equivalently, the element rasn P Z{nZ has some square root rxsn in the ring Z{nZ.

//
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The following exercise explains the puzzle.

Exercise.

(a) Show that r0s4 and r1s4 are the only square elements in the ring Z{4Z.

(b) Consider any integers a, b, c P Z such that a2 ` b2 “ c2. Reduce this equation mod 4 to
obtain

ra2s4 ` rb
2s4 “ rc

2s4.

Now apply part (a) to show that a and b cannot both be odd.

5.2 Diophantus’ Chord Method in General

5.3 Legendre’s Theorem

In the previous section we showed that if we can find one specific rational solution to a
parabolic or hyperbolic/elliptic Diophantine equation then we can find the complete rational
solution by using Diophantus’ chord method. Thus the problem of finding the complete
rational solution of a quaderatic Diophantine equations has been reduced to the question of

existence of solutions.

The following example shows that rational solutions do not necessarily exist.

Example: There are no rational points on the circle x2 ` y2 “ 3.

Remark: We could prove this by reducing the equation a2 ` b2 “ 3c2 mod 4 as we did at the
end of section 4.1. However, that was a bit of a lucky trick. Now I want to follow a method
of proof that will extend to the general hyperbolic/elliptic case.

Proof. Assume for contradiction that there exist rational numbers px, yq P Q2 such that
x2 ` y2 “ 3. By finding a common denominator we can write px, yq “ pa{c, b{cq for some
integers a, b, c P Z with c ě 1 and by canceling common factors as in Section 4.1 we can
assume that gcdpa, b, cq “ 1. We obtain the equation

x2 ` y2 “ 3

pa{cq2 ` pb{cq2 “ 3

a2 ` b2 “ 3c2.
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Now I claim that 3 is not a common divisor of a and b. Indeed, if we had a “ 3a1 and b “ 3b1

for some integers a1, b1 P Z then we would obtain

a2 ` b2 “ 3c2

p3a1q2 ` p3b1q2 “ 3c2

32
“

pa1q2 ` pb1q2
‰

“ 3c2

3
“

pa1q2 ` pb1q2
‰

“ c2.

Now since 3|c2, Euclid’s Lemma tells us that 3|c and we conclude that 3 is a common factor
of a, b, c. This contradicts the fact that gcdpa, b, cq “ 1.

Finally, let us reduce the equation a2 ` b2 “ 3c2 mod 3 to obtain

ra2 ` b2s3 “ r3c
2s3

ra2s3 ` rb
2s3 “ r0s3.

Since 3 is not a common multiple of a and b we can assume without loss of generality that
3 - a so that the elements ras3 and ra2s3 are invertible, and we obtain

ra2s3 ` rb
2s3 “ r0s3

ra2s3 “ r´b
2s3

ra2s3 ¨ ra
´2s3 “ r´1s3 ¨ rb

2s3 ¨ ra
´2s3

r1s3 “ r2s3 ¨ rb
2s3 ¨ ra

´2s3

r2s3 ¨ r1s3 “ r2s3 ¨ r2s3 ¨ rb
2s3 ¨ ra

´2s3

r2s3 “
`

r2s3 ¨ rbs3 ¨ ra
´1s3

˘2
.

This last equation says that the element r2s3 P Z{3Z is a perfect square. But we can see that
this is a contradiction by squaring all three elements of Z{3Z:

r02s3 “ r0s3 ‰ r2s3, r12s3 “ r1s3 ‰ r2s3 and r22s3 “ r1s3 ‰ r2s3.

In summary, we find that the equation x2`y2 “ 3 has no rational solution because the element
r2s3 has no square root in the ring Z{3Z. In this section we will prove a celebrated theorem
of Legendre (1785) which says that the existence of rational solutions to a general quadratic
Diophantine equation is controlled by the existence of certain modular square roots.

Legendre’s Theorem. Fix integers pa, b, cq P Z3 such that:

• a, b, c are squarefree (i.e., have no repeated prime factors),

• a, b, c are pairwise coprime (i.e., gcdpa, bq “ gcdpa, cq “ gcdpb, cq “ 1),
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• abc ‰ 0, not all of the same sign.

Then the equation
ax2 ` by2 ` cz2 “ 0

has a solution p0, 0, 0q ‰ px, y, zq P Z3 if and only if the following elements have square roots:

r´absc P Z{cZ, r´acsb P Z{bZ and r´bcsa P Z{aZ.

Moreover, in this case we will show that there exists a solution satisfying

0 ă |a|x2 ` |b|y2 ` |c|z2 ă 8|abc|.

//

[Remark: The bound ă 8|abc| is not the best possible30 but we include it because it follows
from our proof of existence with no extra work. The bound shows that we can find a solution
(or prove that none exists) by a finite computation.]

Before proving the theorem let us oberve why it completely solves the problem of the existence
of rational points on conic sections. There are two cases to consider:

Existence of Rational Points on a Parabola: Given integers pa, b, cq P Z3 with gcdpa, b, cq “
1 and a ‰ 0, we want to determine if there exist rational numbers px, yq P Q2 such that

ax2 ` by ` c “ 0.

If b ‰ 0 then we note that px, yq “ p0,´c{bq is a solution, so let us assume that b “ 0. Then
the equation becomes

ax2 ` c “ 0

x2 “ ´c{a.

In other words, we need to determine whether the rational number ´c{a has a rational square
root. If we write d “ gcdpa, cq with a “ da1 and b “ dc1 then we observe that ´c{a “ ´c1{a1

has a rational square root if and only if

• a1 and c1 have opposite signs,

• |a1| and |c1| are perfect squares.

Existence of Rational Points on a Hyperbola or Ellipse: Given integers pa, b, cq P Z3

we want to determine if there exist rational numbers px, yq P Q2 such that

ax2 ` by2 ` c “ 0.

30The best possible bound is ď 2|abc|. See the paper Small Solutions of the Legendre Equation (1998) by
Cochrane and Mitchell.
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If a “ 0 or b “ 0 then this was already solved in the parabolic case above so we will assume
that ab ‰ 0. If c “ 0 then the equation becomes px{yq2 “ ´b{a, which was also solved above,
so we can assume that abc ‰ 0. If a, b, c all have the same sign (say positive) then for any
px, yq P Q2 we obtain ax2 ` by2 ě 0 ą ´c, so the equation has no solution. Furthermore,
by dividing the equation by the greatest common denominator of a, b, c we can assume that
gcdpa, b, cq “ 1.

We have reduced the problem of existence to the case when gcdpa, b, cq “ 1 and abc ‰ 0, not
all of the same sign. By finding a common denominator we also see that the existence of a
rational solution px, yq P Q2 is equivalent to the existence of integers px, y, zq P Z3 with z ‰ 0
such that

ax2 ` by2 ` cz2 “ 0,

and since this equation is symmetric in a, b, c we might as well look for nontrivial integer
solutions p0, 0, 0q ‰ px, y, zq P Z3.

Next we will reduce to the “squarefree” case, but first we need a definition.

Definition/Theorem. Consider an integer 0 ‰ a P Z with unique prime factorization

a “ ˘pe11 p
e2
2 p

e3
3 ¨ ¨ ¨ .

By reducing each exponent ei mod 2 we obtain unique quotients and remainders ei “ 2qi ` ri
with ri P t0, 1u. Then we can write a “ ˘āα2 where

ā :“ pr11 p
r2
2 p

r3
3 ¨ ¨ ¨

α :“ pq11 p
q2
2 p

q3
3 ¨ ¨ ¨ .

The unique integers ā and α2 are called the squarefree part and the square part of a, respec-
tively. We say that 0 ‰ a P Z is squarefree if and only if α “ 1. //

So consider integers pa, b, cq P Z3 with gcdpa, b, cq “ 1 and abc ‰ 0, not all of the same sign,
and consider the unique square/squarefree decompositions: a “ āα2, b “ b̄β2, c “ c̄γ2. Note
that we have gcdpā, b̄, c̄q “ 1 because any common divisor of ā, b̄, c̄ is also a common divisor
of a, b, c. Now consider the following equations:

ax2 ` by2 ` cz2 “ 0(1)

āx2 ` b̄y2 ` c̄z2 “ 0.(2)

I claim that (1) has a nontrivial integer solution if and only if (2) does. To see this let
p0, 0, 0q ‰ px, y, zq P Z3 be a solution to (1). Then we have

ax2 ` by2 ` cz2 “ 0

pāα2qx2 ` pb̄β2qy2 ` pc̄γ2qz2 “ 0

āpαxq2 ` b̄pβyq2 ` c̄pγzq2 “ 0
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and it follows that the equation (2) has a solution p0, 0, 0q ‰ pαx, βy, γzq P Z3. Conversely, if
(2) has a solution p0, 0, 0q ‰ px, y, zq P Z3 then we have

āx2 ` b̄y2 ` c̄z2 “ 0

a

α2
x2 `

b

β2
y2 `

c

γ2
z2 “ 0

ax2β2γ2 ` by2α2γ2 ` cz2α2β2 “ 0

apxβγq2 ` bpyαγq2 ` cpzαβq2 “ 0

and it follows that equation (1) has a solution p0, 0, 0q ‰ pxβγ, yαγ, zαβq P Z3.

Thus we have reduced our problem to the following. Given squarefree integers pa, b, cq P Z3

such that gcdpa, b, cq “ 1 and abc ‰ 0, not all of the same sign, determine whether there exist
integers p0, 0, 0q ‰ px, y, zq P Z3 such that

ax2 ` by2 ` cz2 “ 0.

To complete the reduction, I claim that we can also assume that gcdpa, bq “ gcdpa, cq “
gcdpb, cq “ 1. To see this, suppose that a, b, c are not pairwise-coprime. By the symmetry
of a, b, c we can assume without loss of generality that d :“ gcdpa, bq ą 1. Now let a “ da1

and b “ db1 and consider the following two equations:

ax2 ` by2 ` cz2 “ 0,(1)

a1x2 ` b1y2 ` cdz2 “ 0.(2)

I claim that (1) has a nontrivial integer solution if and only if (2) does. Indeed, suppose that
(1) has a solution p0, 0, 0q ‰ px, y, zq P Z3 so that ax2 ` by2 “ ´cz2. Since d is a common
divisor of a and b this implies that d divides cz2. But we also know that

1 “ gcdpa, b, cq “ gcdpgcdpa, bq, cq “ gcdpd, cq,

so Euclid’s Lemma tells us that d|z2. Finally, since a and b are squarefree, d is also squarefree
so that d|z2 implies d|z, say z “ dz1. It follows that

ax2 ` by2 ` cz2 “ 0

pda1qx2 ` pdb1qy2 ` cpdz1q2 “

dpa1x2 ` b1y2 ` cdpz1q2q “ 0

a1x2 ` b1y2 ` cdpz1q2 “ 0

and hence (2) has a nontrivial solution p0, 0, 0q ‰ px, y, z1q P Z3. Conversely, suppose that (2)
has a solution p0, 0, 0q ‰ px, y, zq P Z3. Then it follows that

a1x2 ` b1y2 ` cdz2 “ 0

dpa1x2 ` b1y2 ` cdz2q “ 0

pda1qx2 ` pdb1qy2 ` cd2z2 “ 0

ax2 ` by2 ` cpdzq2 “ 0
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and hence (1) has a nontrivial solution p0, 0, 0q ‰ px, y, dzq P Z3.

We have shown that equations (1) and (2) are equivalent. Now observe the following:

• Since gcdpd, cq “ 1 the integers pa1, b1, cdq P Z3 are squarefree.

• Since gcdpa1, b1q “ 1 we have gcdpa1, b1, cdq “ 1.

• Since 1 ă d we have

0 ă |a1b1pcdq| ă d ¨ |a1b1pcdq| “ |pa1dqpb1dqc| “ |abc|.

If the coefficients of (2) are still not pairwise-coprime then the first two observations above tell
us that we can repeat the argument, and the third observation tells us that the process will
eventually stop. In the end we will arrive at an equation that is equivalent to (1) in which the
coefficients are pairwise-coprime. As an example of this reduction procedure consider three
distinct (positive or negative) primes p, q, r. Then the solvability of the following equations
are equivalent:

pqx2 ` pry2 ` qrz2 “ 0

qx2 ` ry2 ` pqrz2 “ 0

x2 ` qry2 ` prz2 “ 0

rx2 ` qy2 ` pz2 “ 0.

In summary, we have reduced the problem of the existence of rational points on a conic section
to the case of Legendre’s Theorem. //

Proof of Legendre’s Theorem. So consider any squarefree integers pa, b, cq P Z3 with
gcdpa, bq “ gcdpa, cq “ gcdpb, cq “ 1 and abc ‰ 0, not all of the same sign. We want to show
that the equation

ax2 ` by2 ` cz2 “ 0

has a nontrivial solution p0, 0, 0q ‰ px, y, zq P Z3 if and only if the elements r´absc, r´acsb and
r´bcsa have square roots.

First the easy direction. Assume that a nontrivial solution exists. We will show that r´absc
has a square root and then the other cases will follow from symmetry. Since the equation

ax2 ` by2 ` cz2 “ 0

is homogeneous in x, y, z we can assume that gcdpx, y, zq “ 1. Then I claim that gcdpx, cq “ 1.
To see this, assume for contradiction that c and x have a common prime divisor p, so that
p divides ax2 ` cz2 “ ´by2. But we know that p - b because gcdpb, cq “ 1 so Euclid’s Lemma
tells us that p|y. Then since p|x and p|y we see that p2 divides ax2 ` by2 “ ´cz2. But we
already know that p|c, and since c is squarefree this implies that p2|cz2 ñ p|z. We have shown
that p is a common divisor of x, y, z which contradicts the fact that gcdpx, y, zq “ 1.
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In summary we conclude that gcdpx, cq “ 1 and hence the element rxsc P Z{cZ is invertible.
Finally, we reduce the equation ax2 ` by2 ` cz2 “ 0 mod c to obtain

rax2 ` by2 ` cz2sc “ r0sc

rax2 ` by2sc “ r´cz
2sc

rax2 ` by2sc “ r0sc

rax2sc “ r´by
2sc

rasc “ r´by
2sc ¨ rx

´2sc

r´bsc ¨ rasc “ r´bsc ¨ r´bysc ¨ rx
´2sc

r´absc “
`

r´bsc ¨ rysc ¨ rx
´1sc

˘2
,

and hence r´absc is square.

Now the hard direction. Assume that each of the elements r´absc, r´acsb and r´bcsa has
a square root. Our goal is to prove that there exist integers p0, 0, 0q ‰ px, y, zq P Z3 such that

ax2 ` by2 ` cz2 “ 0.

There are two steps:

(1) Since we have abc ‰ 0, not all of the same sign, we can assume without loss of generality
that exactly two of a, b, c are negative and hence abc ě 1. We will prove that there exist
integers A,B,C,D,E, F P Z such that for any integers px, y, zq P Z3 we have

rax2 ` by2 ` cz2sabc “ rAx`By ` Czsabc ¨ rDx` Ey ` Fzsabc.

To do this we consider any integers px, y, zq P Z3 and then we reduce the integer ax2`by2`cz2 P
Z mod a. Since gcdpa, bq “ 1 we know that there exists b˚ P Z with rbb˚sa “ r1sa and since
r´bcsa is square we have r´basa “ rk

2sa for some k P Z. Then we obtain

rax2 ` by2 ` cz2sa “ rby
2 ` cy2sa

“ rbsa ¨ ry
2 ` b˚cz2sa

“ rbsa ¨ ry
2 ´ pb˚q2p´bcqz2sa

“ rbsa ¨ ry
2 ´ pb˚q2k2z2sa

“ rbsa ¨ ry
2 ´ pb˚kzq2sa

“ rbsa ¨ rpy ´ b
˚kzqpy ` b˚kzqsa

“ r0x` by ´ kzsa ¨ r0x` y ` b
˚kzsa.

In other words, there exist integers A1, B1, C1, D1, E1, F1 P Z such that

rax2 ` by2 ` cz2sa “ rA1x`B1y ` C1zsa ¨ rD1x` E1y ` F1zsa

and similar arguments show that there exist integers A2, . . . , F3 P Z such that

rax2 ` by2 ` cz2sb “ rA2x`B2y ` C2zsb ¨ rD2x` E2y ` F2sb

rax2 ` by2 ` cz2sc “ rA3x`B3y ` C3zsc ¨ rD3x` E3y ` F3sc.
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Now since a, b, c are pairwise coprime, the Chinese Remainder Theorem from Section 3.5 tells
us that there exists an integer A P Z satisfying

rAsa “ rA1sa

rAsb “ rA2sb

rAsc “ rA3sc,

and similarly we have integers B,C,D,E, F P Z so that

rax2 ` by2 ` cz2sa “ rAx`By ` Czsa ¨ rDx` Ey ` Fzsa

rax2 ` by2 ` cz2sb “ rAx`By ` Czsb ¨ rDx` Ey ` Fzsb

rax2 ` by2 ` cz2sc “ rAx`By ` Czsc ¨ rDx` Ey ` Fzsc.

Finally, recall from HW3.4 that if we have rdsa “ resa and rdsb “ resb for some integers a, b, d, e
with gcdpa, bq “ 1 then it follows that rdsab “ resab. Since a, b, c are pairwise coprime we can
apply this argument twice to the above system of three congruences to obtain

(˚) rax2 ` by2 ` cz2sabc “ rAx`By ` Czsabc ¨ rDx` Ey ` Fzsabc

as desired.

(2) The congruence (˚) suggests a strategy to find integers p0, 0, 0q ‰ px, y, zq P Z3 such that
ax2 ` by2 ` cz2 “ 0. Observe that the expression

rAx`By ` Czsabc P Z{abcZ

can take on at most abc distinct values. Since there exist infinitely many integer triples
px, y, zq P Z3 there must be two distinct triples px1, y1, z1q ‰ px2, y2, z2q with the property

rAx1 `By1 ` Cz1sabc “ rAx2 `By2 ` Cz2sabc

rpAx1 `By1 ` Cz1q ´ pAx2 `By2 ` Cz2qsabc “ r0sabc

rApx1 ´ x2q `Bpy1 ´ y2q ` Cpz1 ´ z2qsabc “ r0sabc.

In other words, we have found integers px, y, zq :“ px1 ´ x2, y1 ´ y2, z1 ´ z2q ‰ p0, 0, 0q such
that rAx`By ` Czsabc “ r0sabc and then from the congruence (˚) we obtain

(˚˚) rax2 ` by2 ` cz2sabc “ r0sabc.

This doesn’t necessarily mean that ax2`by2`cz2 “ 0, but it does mean that ax2`by2`cz2 “
abck for some k P Z. Our goal is to choose the points px1, y1, z1q and px2, y2, z2q sufficiently
close together so that k “ 0. To do this we consider the following rectangular box of integer
points:

Box :“ tpx, y, zq P Z3 : 0 ď x ď
a

|bc|, 0 ď y ď
a

|ac|, 0 ď z ď
a

|ab|u
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Observe that the number of x P Z satisfying 0 ď x ď
a

|bc| is strictly greater than
a

|bc| and
a similar observation holds for y and z. Thus the number of points in the box satisfies

#Box ą
a

|bc|
a

|ac|
a

|ab| “
a

pabcq2 “ |abc|.

Since there are more than |abc| points in the box it follows that we can choose the two points
px1, y1, z1q ‰ px2, y2, z2q from inside the box. Then since a, b, c are pairwise coprime and
abc ‰ 0 is squarefree we see that none of

a

|bc|,
a

|ac| and
a

|ab| is an integer. Thus the point
px, y, zq “ px1 ´ x2, y1 ´ y2, z1 ´ z2q ‰ p0, 0, 0q satisfies

|x| ă
a

|bc|, |y| ă
a

|ac| and |z| ă
a

|ab|,

and hence also
0 ă |a|x2 ` |b|y2 ` |c|z2 ă 3|abc|.

Finally, since a, b, c don’t all have the same sign we can assume without loss of generality
that a is positive and b, c are negative. In particular, this implies that |abc| “ abc ą 0.
Then we have

ax2 ` by2 ` cz2 ă ax2 ă abc

and
ax2 ` by2 ` cz2 ě by2 ` cz2 ą bp´acq ` cp´abq “ ´2abc.

And combining these inequalities with the congruence (˚˚) gives

ax2 ` by2 ` cz2 P t0,´abcu.

If ax2 ` by2 ` cz2 “ 0 then we are done so let us assume that ax2 ` by2 ` cz2 “ ´abc. Then
we can make the clever31 change of variables

px1, y1, z1q :“ pxz ´ by, yz ` ax, z2 ` abq ‰ p0, 0, 0q

to obtain

apx1q2 ` bpy12q ` cpz1q2 “ apxz ´ byq2 ` bpyz ` axq2 ` cpz2 ` abq2

“ pax2 ` by2 ` cz2qz2 ` 2abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ p´abcqz2 ` 2abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ abpax2 ` by2 ` cz2q ` a2b2c

“ abp´abcq ` a2b2c

“ 0.

Thus we have found the desired solution p0, 0, 0q ‰ px1, y1, z1q P Z3. To complete the proof of
the bound, one can show by an easy and tedious computation that

0 ă |a|px1q2 ` |b|py1q2 ` |c|pz1q2 “ apx1q2 ´ bpy1q2 ´ cpz1q2 ă 8|abc|.

Since the bound is symmetric in a, b, c we observe that it is independent of our assumption
that a ą 0 ą b, c. This completes the proof of Legendre’s Theorem.

31too clever
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5.4 Primitive Roots and Euler’s Criterion

In the last section we considered the Legendre equation

ax2 ` by2 ` cz2 “ 0

with integer coefficients pa, b, cq P Z3 satisfying abc ‰ 0. We proved Legendre’s Theorem
which says that a nontrivial integer solution p0, 0, 0q ‰ px, y, zq P Z3 exists if and only if
certain elements have modular square roots. As a free corollary of the existence proof we
also obtained a bound on the size of the smallest nontrivial solution, however our bound was
not optimal. The sharpest possible bound was obtained by Holzer (1950) for the case when
a, b, c are squarefree and pairwise relatively prime. Mordell (1951) gave an elementary proof
of Holzer’s result and then Williams (1988) generalized the result to arbitrary a, b, c. I will
state their result without proof.

Theorem (Smallest Solution to Legendre’s Equation). Consider any integers pa, b, cq P
Z3 with abc ‰ 0 and d “ gcdpa, b, cq. If the Legendre equation

ax2 ` by2 ` cz2 “ 0

has a nontrivial integer solution p0, 0, 0q ‰ px, y, zq P Z3 then it has a solution satisfying

|x| ď

a

|bc|

d
, |y| ď

a

|ac|

d
and |z| ď

a

|ab|

d
.

//

Thus by testing every integer point in the box

!

px, y, zq P Z3 : 0 ď x ď
a

|bc|{d, 0 ď y ď
a

|ac|{d, 0 ď z ď
a

|ab|{d
)

we obtain an algorithm of complexity |abc|{d3 that either finds a nontrivial solution to Legen-
dre’s Equation or proves that no such solution exists. For the purpose of computing a solution
there is probably no faster method.

However, this algorithm is in some sense unsatisfying because it ignores the criterion from
Legendre’s Theorem on the existence of certain square roots. In this section and the next we
will pursue a deeper study of square roots in order to understand the nature of the solutions.
At the end of the chapter we will obtain a much faster algorithm that determines whether a
solution exists without actually finding a solution. This discussion will lead us naturally into
some deeper concepts of number theory.

Our general goal is to determine when a given integer is a quadratic residue (i.e., has a square
root) mod n. To begin the study we assume that n “ p is prime.
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Definition of the Legendre Symbol. For any integers a, p P Z with p prime we define the
Legendre symbol as follows:

ˆ

a

p

˙

2

“

$

&

%

1 if Dx P Z with rasp “ rx
2sp

´1 if Ex P Z with rasp “ rx
2sp

0 if rasp “ r0sp

Warning: Most authors omit the subscript “2” from the Legendre symbol, which I think
results in one of the most confusing notations in any branch of mathematics. //

When p “ 2 we observe that pa{2q2 “ 0 for a even and pa{2q2 “ 1 for a odd, and there is
nothing else to say, so let us assume that p is an odd prime. The main theorem of this section
is an explicit and easily computable32 formula for the Legendre symbol.

Theorem (Euler’s Criterion). Let p be an odd prime. Then for any integer p we have
„ˆ

a

p

˙

2



p

“

”

app´1q{2
ı

p
.

//

As an immediate corollary we obtain the following important fact.

Corollary of Euler’s Criterion. Let p be an odd prime. Then for all a, b P Z we have
ˆ

a

p

˙

2

¨

ˆ

b

p

˙

2

“

ˆ

ab

p

˙

2

.

//

In fancier terms, we can say that the function pZ{pZqˆ Ñ t˘1u defined by rasp ÞÑ pa{pq2 is a
“homomorphism” of multiplicative groups. In even fancier terms, the function rasp ÞÑ pa{pq2
is called a “character” of the group pZ{pZqˆ, and for this reason the Legendre symbol pa{pq2
is also called the quadratic character of a mod p.

Proof of the Corollary. We don’t really need Euler’s Criterion to prove this, but with
Euler’s Criterion the proof becomse trivial:

„ˆ

a

p

˙

2



p

¨

„ˆ

b

p

˙

2



p

“ rapp´1q{2sp ¨ rb
pp´1q{2sp

“ rapp´1q{2 ¨ bpp´1q{2sp

“ rpabqpp´1q{2sp

“

„ˆ

ab

p

˙

2



p

.

32because modular exponentiation is easy
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Then the result follows because p ą 2.

Instead of presenting the quickest proof of Euler’s Criterion I will present the best proof,
and this will also give me an excuse to introduce some ideas that should be part of every
undergraduate number theory course. I will state these ideas as three separate lemmas.

Lemma 1 (Counting Reduced Fractions). For all n P Z with n ě 1 we have

n “
ÿ

1ďd|n

ϕpdq,

where the sum runs over all positive divisors of n. //

Proof. For each integer n ě 1 we define the following two sets of fractions:

Fn :“

"

1

n
,

2

n
, ¨ ¨ ¨ ,

n

n

*

,

F 1n :“

"

k

n
: 1 ď k ď n^ gcdpk, nq “ 1

*

.

Note that by definition we have #Fn “ n and #F 1n “ ϕpnq. By reducing each fraction in Fn
to lowest terms, I will show that Fn decomposes as the disjoint union

Fn “
ž

1ďd|n

F 1d,

and then the theorem will follow by taking the cardinality of each side. There are three things
to show:

(1) Fn Ď Y1ďd|nF
1
d : Consider any fraction k{n P Fn, i.e., with 1 ď k ď n, and suppose

that we have λ “ gcdpk, nq with k “ λk1 and n “ λn1. By by dividing the numberator and
denominator by their greatest common divisor we obtain

k

n
“
λk1

λn1
“
k1

n1
.

with gcdpk1, n1q “ 1 and 1 ď k1 ď n1. [Why?] It follows that k{n P F 1n1 and then since n1 is a
positive divisor of n we obtain k{n P Y1ďd|nF

1
d as desired.

(2) Y1ďd|nF
1
d Ď Fn : Suppose that the fraction α P Q is an element of the union Y1ďd|nF

1
d.

Then by definition we must have α P Fd for some positive divisor d|n, i.e., we must have
α “ k{d with gcdpk, dq “ 1 and 1 ď k ď d. But then since d is a divisor of n we have n “ λd
for some 1 ď λ P Z and it follows that

k

d
“
λk

λd
“
λk

n
P Fn

as desired. [Why is 1 ď λk ď n?]
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(3) Y1ďd|nF
1
d “

š

1ďd|n F
1
d : To show that the union is disjoint, assume for contradiction that

there exists a fraction α P Q such that we have α P F 1dXF
1
e for distinct positive integers d ‰ e.

Since α P F 1d we must have α “ k{d for some 1 ď k ď d with gcdpk, dq “ 1 and since α P F 1e
we must have α “ k1{e for some 1 ď k1 ď e with gcdpk1, eq “ 1. Since k{d “ α “ k1{e we see
that

ke “ k1d.

But now since e|k1d with gcdpk1, eq “ 1, Euclid’s Lemma says that e|d, and a similar argument
shows that d|e. Finally, since d and e are both positive we must have d “ e, which is the
desired contradiction.

For example, note that the positive divisors of n “ 15 “ 3 ¨ 5 are 1, 3, 5 and 15. Then note
that we have

ϕp1q ` ϕp3q ` ϕp5q ` ϕp15q “ 1` p3´ 1q ` p5´ 1q ` p3´ 1qp5´ 1q “ 1` 2` 4` 8 “ 15

as expected. The totient function value ϕp1q is not really defined but we will adopt the
convention ϕp1q :“ 1 precisely so this formula works out.

The next lemma has to do with counting solutions of polynomial equations in the rings Z{nZ
for various n. As an extreme case, one can check by hand that the equation

rx2 ´ 1s8 “ r0s8

is true for every element of the ring rxs8 P Z{8Z. However, it turns out that something very
special happens in the rings Z{pZ for prime p.

Lemma 2 (Lagrange’s Polynomial Congruence Theorem). Let p P Z be prime and
consider a polynomial of degree d with integer coefficients:

fpxq “ adx
d ` ¨ ¨ ¨ ` a1x` a0

with a0, a1, . . . , ad P Z and ad ‰ 0. If radsp ‰ r0sp then I claim that the equation

rfpxqsp “ r0sp

has at most d distinct solutions rxsp P Z{pZ. //

Remark: This follows from a well-known theorem in abstract algebra. That is, if K is any field
and if fpxq P Krxs is a polynomial of degree d then there exist at most d distinct solutions
x P K of the equation fpxq “ 0. The lemma then follows because Z{pZ is a field. However, I
prefer to present the proof in language that Lagrange would recognize.

Proof. We will use induction on the degree d. If d “ 1 then the polynomial has the form

fpxq “ a1x` a0
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with a1, a0 P Z and ra1sp ‰ r0sp. Then since gcdpa1, pq “ 1 we see that the element ra1sp is
invertible and we obtain a unique solution:

ra1x` a0sp “ r0sp

ra1sp ¨ rxsp “ r´a0sp

rxsp “ ra
´1
1 sp ¨ r´a0sp.

Now let us fix d ě 2 and assume for induction that the theorem is true for polynomials
of degree d´ 1. If the equation rfpxqsp “ r0sp has no solutions then we are done, so suppose
that there exists b P Z with rfpbqsp “ r0sp. If this is the only solution then we are still done
because d ě 2. So suppose that we have another solution rfpcqsp “ r0sp with rbsp ‰ rcsp. If we
can show that there are at most d ´ 1 such solutions rcsp with rcsp ‰ rbsp then it will follow
that rfpxqsp “ r0sp has at most d solutions as desired.

To prove this we will use the fact that for all integers x, n P Z with n ě 1 we have

pxn ´ bnq “ px´ bqpxn´1 ` xn´2b` ¨ ¨ ¨ ` xbn´2 ` bn´1q.

Then since rfpbqsp “ r0sp we compute that

rfpxqsp “ rfpxqsp ´ rfpbqsp

“ rfpxq ´ fpbqsp

“ radpx
d ´ bdq ` ¨ ¨ ¨ ` a1px´ bq ` 0sp

“ rpx´ bqpadx
d´1 ` lower terms in x qsp

“ rx´ bsp ¨ rgpxqsp

for some polynomial gpxq P Zrxs of degree d ´ 1 whose leading coefficient ad is not divisible
by p. Now if rcsp is any solution of rfpcqsp “ r0sp with rcsp ‰ rbsp, then since the element
rc´ bsp ‰ r0sp is invertible we obtain

r0sp “ rfpcqsp

r0sp “ rc´ bsp ¨ rgpcqsp

r0sp “ rgpcqsp.

It follows from the induction hypothesis that there exist at most d´1 distinct such rcsp, which
completes the proof.

To set up the last of the three lemmas, recall from Chapter 3 that for all integers a, n P Z
with gcdpa, nq “ 1 there exists a positive integer ordnpaq ě 1 with the following properties:

• raordnpaqsn “ r1sn,

• raksn ‰ r1sn for all 0 ă k ă ordnpaq.
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The integer ordnpaq is called the multiplicative order of a mod n and it follows from Euler’s
Totient Theorem that ordnpaq|ϕpn´ 1q. However, the precise value of ordnpaq is very difficult
to predict in general. Suppose for the sake of argument that there exists an element rgsn P
pZ{nZqˆ with the property that ordnpgq “ ϕpnq. Then it follows that every element of
pZ{nZqˆ can be expressed as a power of this element:

pZ{nZqˆ “
!

rgsn, rg
2sn, . . . , rg

ϕpnqsn “ r1sn

)

.

In this case we say that the group pZ{nZqˆ is cyclic and we say that rgsn P pZ{nZqˆ is a
genertor (hence the letter “g”). An alternative and older notation would call g a primitive
root mod n.

[Warning: The additive group pZ{nZ,`, r0snq is always cyclic with generator r1sn. Here we
are asking whether the multiplicative group ppZ{nZqˆ,ˆ, r1snq is cyclic, which is a separate
issue.]

A primitive root is a nice thing to have because then we can phrase all properties of pZ{nZqˆ
in terms of powers of g. In particular, we would see that an element rasn P pZ{nZqˆ has a
square root if and only if it is an even power of rgsn. Unfortunately, primitive roots don’t
always exist. For example, recall that we have ϕp8q “ 4 with

pZ{8Zqˆ “ tr1s8, r3s8, r5s8, r7s8u .

The following table lists the multiplicative order of each element of the group:

a 1 3 5 7

ord8paq 1 2 2 2

Observe that we always have ord8paq|ϕp8q “ 4 as required by Euler’s Totient Theorem, but
it is never the case that ord8paq “ ϕp8q. This is related to the fact that the equation
rx2 ´ 1s8 “ r0s8 has too many solutions (i.e., more than 2) in the ring Z{8Z.

The celebrated “Primitive Root Theorem” says that primitive roots always exist in the group
pZ{pZqˆ when p is prime.33 Unfortunately, the proof is non-constructive, i.e., it does not
tell us how to actually find a primitive root. However, we will see that there exist exactly
ϕpϕppqq “ ϕpp´ 1q primitive roots mod p so at least we know how long it will take us to find
one via random search.

Lemma 3 (The Primitive Root Theorem). For any prime p P Z the group of units
pZ{pZqˆ is cyclic. That is, there exists an element rgsp P pZ{pZqˆ with multiplicative order
ordppgq “ ϕppq “ p´1. More precisely, we will show that there are exactly ϕpϕppqq “ ϕpp´1q
such “primitive roots”. //

33The general theorem says that the group pZ{nZqˆ is cyclic if and only if n “ 2pk for some odd prime p,
but we won’t prove this.
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Sadly, there is no really short proof of this fact. We will have to get our hands dirty.

Proof. Recall from Euler’s Totient Theorem that each element of pZ{pZqˆ has order d for
some positive divisor 1 ď d|ϕppq. We will prove that the number of elements of order d is
exactly ϕpdq. Then the result follows by putting d “ ϕppq.

So fix any positive divisor 1 ď d|ϕppq and suppose that there exists an element rasp P pZ{pZqˆ
of order d. By definition this means that the elements

(˚) rasp, ra
2sp, . . . , ra

d´1sp, ra
dsp “ r1sp

are all distinct, since otherwise we would have raksp “ ra
`sp for some 1 ď k ă ` ď d and it

would follow that ra`´ksp “ r1sp for some 1 ď ` ´ k ă d, contradicting the fact that d is the
smallest positive integer such that radsp “ r1sp. Furthermore, since radsp “ r1sp we see that

rpakqdsp “ rpa
dqksp “

´

radsp

¯k
“ pr1spq

k
“ r1sp

for all integers k P Z. It follows that the d distinct elements (˚) are all solutions to the equation
rxd ´ 1sp “ r0sp. But Lemma 2 says that this equation has at most d solutions, so (˚) is
the complete solution.

We have seen that every element rxsp P pZ{pZqˆ of order d is in the list (˚), and hence
the number of such elements is ď d. But this is not a sharp estimate because some of the
elements (˚) have order less than d. To be precise, consider a fixed element raksp and let
λ :“ gcdpk, dq with k “ λk1 and d “ λd1. Then I claim that the order of the element raksp is
precisely d1 “ d{gcdpk, dq. To see this, first note that

rpakqd
1

sp “ ra
λk1d1sp “ rpa

λd1qksp “ rpa
dqk

1

sp “

´

radsp

¯k1

“ pr1spq
k1
“ r1sp.

Now assume that we have rpakqnsp “ ra
knsp “ r1sp for some positive integer 1 ď n P Z. Since

d is the order of rasp this implies that d divides kn. [Remind yourself why this is true. Hint:
Divide d by kn and show that the remainder must be zero.] Thus we have kn “ d` for some
` P Z. Then since λ ‰ 0 we have

kn “ d`

pλk1qn “ pλd1q`

λpk1nq “ λpd1`q

k1n “ d1`.

Finally, since d1|k1n and gcdpk1, d1q “ 1, Euclid’s Lemma says that d1|n and since n is positive
this implies that d1 ď n. This completes the proof that ordppa

kq “ d{gcdpk, dq. We conclude
that if the group pZ{pZqˆ contains an element rasp of order d, then the complete set of
elements of order d is

!

raksp : 1 ď k ď d^ d{gcdpk, dq “ d
)

“

!

raksp : 1 ď k ď d^ gcdpk, dq “ 1
)

,
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and there are precisely ϕpdq of these elements. In summary, for any positive divisor 1 ď d|ϕppq,
the group pZ{pZqˆ contains either 0 or ϕpdq elements of order d.

It only remains to count them up and see what we have. So let νd denote the number of
elements of order d and recall that νd P t0, ϕpdqu. Then on the one hand we have

(˚) p´ 1 “ ϕppq “ #pZ{pZqˆ “
ÿ

1ďd|n

νd ď
ÿ

1ďd|n

ϕpdq

with equality if and only if νd “ ϕpdq for all 1 ď d|ϕppq. On the other hand, we know from
Lemma 1 that

ÿ

1ďd|ϕppq

ϕpdq “ ϕppq “ p´ 1.

Thus the inequality (˚) is really an equality, and it follows that νd “ ϕpdq for all 1 ď d|ϕppq
as desired.

That was a lot of work, but we learned some wholesome things that will help us later.

Proof of Euler’s Criterion. Let p be an odd prime so that pp´ 1q{2 P Z and consider any
integer a P Z. We want to prove that rpa{pq2sp “ ra

pp´1q{2sp.

If rasp “ r0sp then by definition we have pa{pq2 “ 0 and hence

rapp´1q{2sp “ praspq
pp´1q{2

“ pr0spq
pp´1q{2

“ r0sp “

„ˆ

a

p

˙

2



p

.

So let us assume that rasp ‰ r0sp, i.e., rasp P pZ{pZqˆ. Then Euler’s Totient Theorem gives

„

´

app´1q{2
¯2
´ 1



p

“ rap´1sp ´ r1sp “ ra
ϕppqsp ´ r1sp “ r1sp ´ r1sp “ r0sp.

But Lagrange’s Congruence Theorem says that the equation rx2 ´ 1sp “ r0sp has at most two
solutions rxsp P Z{pZ. Since rxsp “ r1sp and rxsp “ r´1sp are solutions we conclude that

rapp´1q{2sp “ r1sp or r´1sp.

Similarly we have by definition that
ˆ

a

p

˙

2

“ 1 or ´ 1

and it only remains to show that the functions rapp´1q{2sp and rpa{pq2sp are equal to r1sp for
the same values of a.

To show this we will use the Primitive Root Theorem, which tells us that there exists a
generator rgsp such that pZ{pZqˆ “ trgsp, rg

2sp, . . . , rg
p´1sp “ r1spu. In particular, we have

rasp “ rg
ksp for some 1 ď k ď p´ 1. There are two things to show:

110



(1) We have rapp´1q{2sp “ r1sp if and only if k is even. Suppose that k is even with
k “ 2k1. Then by Euler’s Totient Theorem we have

rapp´1q{2sp “

„

´

g2k
1
¯pp´1q{2



p

“

”

pgk
1

qp´1
ı

p
“ r1sp

and hence rapp´1q{2 ´ 1sp “ r0sp. We have seen that the equation rxpp´1q{2 ´ 1sp “ r1sp holds
for the pp´ 1q{2 distinct elements

rxsp P
 

rg2sp, rg
4sp, . . . , rg

p´1sp “ r1sp
(

.

But then since the polynomial xpp´1q{2´1 P Zrxs has degree pp´1q{2, Lagrange’s Congruence
Theorm tells us that this is the full solution.

(2) We have pa{pq2 “ 1 if and only if k is even. If k is even (say k “ 2k1) then we see

that rasp “ rg
2k1sp “

´

rgk
1

sp

¯2
is square and hence pa{pq2 “ 1. Conversely, let k be odd and

assume for contradiction that pa{pq2 “ 1, i.e., that we have rgksp “ rx2sp for some x P Z.
Since rgsp is a generator we have rxsp “ rg

`sp for some ` P Z and then

rgksp “ rx
2sp ùñ rgksp “ rpg

`q2sp ùñ rgk´2`sp “ r1sp.

But since ϕppq “ p ´ 1 is the order of rgsp this implies that pp ´ 1q|pk ´ 2`q. Finally, since
p´ 1 is even this implies that 2|pk ´ 2`q which contradicts the fact that k is even.

This completes the proof of Euler’s Criterion.

Special cases a “ ´1 and a “ 2. For odd primes p we have
ˆ

´1

p

˙

2

“ p´1qpp´1q{2 “

"

1 p “ `1 pmod 4q
´1 p “ ´1 pmod 4q

ˆ

2

p

˙

2

“ p´1qpp
2´1q{8 “

"

1 p “ ˘1 pmod 8q
´1 p “ ˘3 pmod 8q

Application: Infinitely many primes “ 1, 3, 5, 7 mod 8.

5.5 Quadratic Reciprocity

A bit of group theory.

Zolotarev Reciprocity and dealing cards.

6 Integer Points on Conics

The equations x2 ` y2 “ p and x2 ´ 2y2 “ p.

Unique factorization in Zr
?
Ds.

Integer solutions of x2 ´Dy2 “ k.
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