MTH 505: Number Theory Spring 2017
Homework 2 Drew Armstrong

The Frobenius Coin Problem. Consider the equation
ax +by =c

where a, b, ¢, x,y are natural numbers. We can think of $a and $b as two denominations of
coins and $c as some value that we want to pay. The equation has a solution (z,y) € N? if
and only if we can make change for $¢, and in this case we say that ¢ is (a, b)-representable.
More generally, we will consider the set of (a, b)-representations of c:

Ra,b,c = {($7y) € N2 rar + by = C}.

The problem is trivial when ab = 0 so we will always assume that ab # 0, i.e., that a and b are
both nonzero.

2.1. Consider natural numbers a,b, ¢ € N with d = ged(a, b), where a = da’ and b = db’.
(a) If df c prove that R, . = .

(b) If d|c with ¢ = dc’ prove that Rqp. = Ra p . [Unlike the case of Diophantine equa-
tions, it is possible that both of these sets could be empty.]

The previous result allows us to restrict our attention to coprime a and b.

2.2. Let a,b,c € Nwith ab # 0 and ged(a,b) = 1. If Ry # & (i.e., if cis (a, b)-representable)
prove that there exists a unique representation (u,v) € R, with the property

O<u<b-—1.

[Hint: For existence, let (x,y) € Ryp . be an arbitrary solution. Since b # 0 there exists a
quotient and remainder of x mod b. For uniqueness, use the coprimality of a and b to apply
Euclid’s Lemma.]

2.3. Let a,b e N be coprime with ab # 0. If ¢ = (ab — a — b) prove that R, . = . That is,
prove that the number (ab—a —b) is not (a, b)-representable. [Hint: Let ¢ = (ab—a —b)
and assume for contradiction there exists a representation (z,y) € R, .. Show that the cases
x < band z > b both lead to the contradiction y < 0. You can use 2.2 for the case = < b.]

2.4. Let a,b € N be coprime with ab # 0. In this exercise you will prove by induction that
every number ¢ > (ab —a — b) is (a,b)-representable.

(a) Prove the result when a =1 or b = 1.

(b) From now on we will assume that a > 2 and b > 2. In this case prove that the number
(ab—a—0b+1) is (a,b)-representable. [Hint: From the Euclidean Algorithm and 2.2
there exist 2,y € Z with az’ + by’ =1 and 0 < 2’ < b— 1. Prove that (2’ —1) e N
and (y' + a—1) € N, and hence

a(@ = 1) +b(y +a—1)=(ab—a—b+1)

is a valid representation. ]



(c) Let n = (ab—a—0b+ 1) and assume for induction that n is (a, b)-representable. In this
case prove that n + 1 is also (a, b)-representable. [Hint: Let 2/, ¢y’ be as in part (b). By
the induction hypothesis and 2.2 there exist z,y € N with ax + by = n and 0 < x < b.
Note that

a(z+2)+bly+y)=(n+1).
If y + 4’ = 0 then you are done. Otherwise, show that
a(z+2' —b)+bly+y +a)=(n+1)

is a valid representation. ]

Let a,b € N be coprime with ab # 0. So far you have proved that ]Ra’b7(ab,a,b)| =0 and
|Rapc| =1 forall ¢ > (ab—a—b).

The next problem gives a rough lower bound for the total number of (a, b)-representations.

2.5. Let a,b € N be coprime with ab # 0. Prove that

|Rapcl = [iJ = max{n € N:n < ¢/(ab)}.

[Hint: We know from class that the integer solutions of ax + by = ¢ have the form
(z,y) = (' + kV,y/ —ka') VkeZ,
where 2/, 9 € Z are some specific integers satisfying az’ + by’ = 1. By 2.2 you can assume that

2’ > 0 and y < 0. Now prove that the natural number solutions correspond to values of
k € Z such that

o(~y) o’
Counting these integers is delicate but you should be able to give a rough bound.]

Unfortunately this rough bound gives us no information when ¢ < ab, i.e., when |¢/(ab)| = 0.
With a bit more work one could compute the exact formula: for any ax’ + by’ = 1 we have

c cy’ cx’
Ropel=———1—9+ 1,
() [Rapel = { . } { 2 }Jr

where {2} := x — |z| is the fractional part of the rational number 2 € Q. This formula is due
to Tiberiu Popoviciu in 1953.

2.6. Let a,b € N be coprime with ab # 0. Given an integer 0 < ¢ < ab such that a { ¢ and
bt ¢, use Popoviciu’s formula (%) to show that

’Ra,b,c’ + ’Ra,b,(ab—c)‘ =L
[Hint: Use the fact that {—z} = 1 — {z} when = ¢ Z.]

In conclusion, one can show from 2.6 that there exist exactly % natural numbers that are

not (a,b)-representable. This fact was first proved by James Joseph Sylvester in 1884.



