This course has an optional writing credit.

Details.

- Write a paper on a topic that is closely related to the course material.
- The style should be similar to a typical math textbook or research paper.
- The paper should be typeset instead of hand written.
- The paper should be approximately 10 pages long. Of course this will include white space because typeset mathematical formulas always need white space.
- The paper should include a series of small results and definitions, leading up to the proof of an interesting theorem. The definitions, statements and proofs should be written clearly and correctly.
- The paper should include an abstract and bibliography.
- The first draft must be submitted to me by Thursday March 9. I will provide feedback and then you must submit a final version incorporating this feedback. The final due date is the day that would be the day of our final exam, which has not been released yet (as far as I know).
- I will be happy to set up Zoom appointments to discuss possible topics.

Some Possible Topics.

- We say that a point in the Cartesian plane is constructible if it can be obtained from the points $(0,0)$ and $(1,0)$ using "straightedge and compass", as in Euclidean geometry. Prove that the point (x, y) is constructible if and only if the real numbers x, y can be expressed in terms of integers and square roots.
- The RSA cryptosystem is based on the following theorem. Let $p, q \in \mathbb{Z}$ be prime numbers with $p \neq q$. Then for all integers $m, k \in \mathbb{Z}$ we have

$$
p q \mid\left(m-m^{(p-1)(q-1) k+1}\right) .
$$

Prove this theorem and explain the RSA cryptosystem.

- Wilson's Theorem says that an integer $n \geqslant 2$ is prime if and only if $(n-1)!+1$ is divisible by n. Prove this theorem.
- The ring of Gaussian integers is defined as follows:

$$
\mathbb{Z}[\sqrt{-1}]=\{a+b \sqrt{-1}: a, b \in \mathbb{Z}\} .
$$

Prove that this ring is a Euclidean domain and describe its prime elements.

- The power sum and elementary symmetric polynomials are defined as follows:

$$
\begin{aligned}
& p_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots+x_{n}^{k}, \\
& e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
\end{aligned}
$$

Prove Newton's identities relating these polynomials:

$$
k e_{k}=e_{k} p_{1}-e_{k-1} p_{2}+e_{k-2} p_{3}-\cdots+(-1)^{k} e_{1} p_{k-1}+(-1)^{k-1} p_{k} .
$$

- Consider a cubic equation $x^{3}+p x+q=0$ with real coefficients p, q. If $(q / 2)^{2}+(p / 3)^{3}<0$ then the equation has only real roots. Prove that these roots can be expressed as

$$
x=r \cos \left(\theta+\frac{2 \pi k}{3}\right) \quad \text { for } k=0,1,2,
$$

for some positive real number $r>0$ and some angle θ.

- The general quartic equation

$$
a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

is solvable by radicals. Discuss the solution.

- The quadratic polynomial $x^{2}+a x+b=(x-r)(x-s)$ has discriminant $\Delta=(r-s)^{2}=$ $a^{2}-4 b$, which tells us when the equation has a repeated root. In fact, any polynomial has a discriminant. Higher degree polynomials also have discriminants. If $f(x)$ can be factored as $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$ then its discriminant is defined as

$$
\Delta_{f}=\prod_{i<j}\left(r_{i}-r_{j}\right)^{2}
$$

The discriminant of a polynomial $f(x)$ can always be expressed in terms of the coefficients. Find this formula in the case of degree 3.

- Let $\omega=e^{2 \pi i / n}$. The n-th cyclotomic polynomial is defined as

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(x-\omega^{k}\right) .
$$

Prove that $x^{n}-1$ equals the product of $\Phi_{d}(x)$ for integers $1 \leqslant d \leqslant n$ dividing n. For example, $x^{6}-1=\Phi_{1}(x) \Phi_{2}(x) \Phi_{3}(x) \Phi_{6}(x)$. Use this rule to compute the polynomials $\Phi_{n}(x)$ for $1 \leqslant n \leqslant 8$. Use induction to prove that $\Phi_{n}(x)$ always has integer coefficients.

- The ring of quaternions \mathbb{H} was the first known example of a non-commutative ring. To be specific, \mathbb{H} consists of expressions of the form $a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ with $a, b, c, d \in \mathbb{R}$, where the abstract symbols $\mathbf{i}, \mathbf{j}, \mathbf{k}$ satisfy

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-\mathbf{1}
$$

Check that these rules do indeed define a ring (except for commutative multiplication). Show that the quadratic polynomial $x^{2}+1$ has infinitely many roots in \mathbb{H}, which shows that Descartes' Theorem fails for non-commutative rings.

