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Introduction

What is algebra? The word “algebra” comes from the Arabic “al-jabr”, meaning restoration
or completion. In modern terms this refers to the method of simplifying an equation by adding
the same positive quantity to each side. The word came into English from a Latin translation
of the title of a 9th century work by Mohammed ibn Musa al-Khwarizmi (780–850).1 This
work is regarded as the first systematic treatise on the solution of equations.

Al-Khwarizmi’s work was translated to Latin in the 12th century and exerted a strong influence
on the development of mathematics in Europe. The word “algebra” came to refer to the general
study of equations involving unknown quantities. The subject developed to a very high degree
of sophistication, as summarized by Lagrange in his 1770 work on the “algebraic resolution of
equations”. In fact, the study of equations had become so complicated that a completely new
language was necessary to make further progress.

This new language, today referred to as “abstract algebra”, developed throughout the 1800s
until it was systematized in van der Waerden’s 1930 textbook called Modern Algebra. The
word “algebra” no longer refers only to the study of equations, but more generally to the study
of “abstract structure” in mathematics. The the most common kinds of abstract structures go
by the technical names of “group”, “ring”, “field”, “vector space”, and “module”. There has
been an increasing tendency toward generalization and abstraction that brings the subject of
algebra closer to logic and philosophy than to science.

The official title of MTH 461 is “Survey of Modern Algebra”. This is also the title of a famous
textbook written by Birkhoff and Mac Lane in 1941. Their goal was to translate the ideas from
van der Waerden’s German textbook into English for the benefit of undergraduate students
at Harvard. Birkhoff and Mac Lane’s book went through four editions and became a standard
textbook at American universities. But today the textbook (and the term “modern algebra”
itself) is slightly out of date.

In this course I will not follow any specific textbook because my teaching style is a bit un-
usual. There are a few different considerations one must take into account when designing a
mathematics course:

(1) The logical structure of the ideas.

(2) Examples, problems and applications.

(3) History and motivation.

1Al-Khwarizmi was one of the earliest scholars working at the House of Wisdom in Baghdad. He is known
today primarily for his work in arithmetic and algebra. His work on the Indian system of decimal arithmetic was
translated into Latin as Dixit Algorithmi [thus spoke al-Khwarizmi]. This work was responsible for introducing
Hindu-Arabic numeral system to the Western world and is the origin of the English word “algorithm”.
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The traditional teaching style for most of the twentieth century has been

p1q p2q p3q.

In this style, one first presents formal definitions and then proves a series of lemmas and
theorems. Afterward an example or two is given and applications are mentioned. Finally, the
instructor might say a word or two about the historical context in which the ideas developed
(though this third step is often omitted). In this course I will use the opposite teaching style:

p3q p2q p1q.

That is, I will introduce the ideas roughly in their order of historical development. Through
the discussion of concrete and historical examples, I will try to present each new idea as the
answer to a previous question. Finally, I will state formal definitions and prove some theorems
in order to systematize what we have learned. The drawback of this teaching style is that we
will not cover as much of the standard curriculum as a traditional course. The benefit, I hope,
is that you will understand and appreciate the material at a deeper level.

To the experts: By adopting this teaching style, I put arithmetic (integers, polynomials and
Euclidean domains) near the beginning of the course. Group theory, being more modern, gets
pushed to the end. Unfortunately, this does not leave time for an abstract treatment of groups.
Finite abelian groups appear as part of modular arithmetic. Permutations are mentioned but
we do not study the symmetric group. Groups of geometric transformations do not appear.

Students who want (or need) to see a more thorough treatment should instead take the two-
semester sequence MTH 561/562. Alternatively, you might choose to take those courses next
year if you enjoy this course; the way I teach 461 does not overlap too much with 561/562.
If you want to see my own approach to the courses 561/562, take a look at my typed course
notes from Fall 2018 and Spring 2019.
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1 Solving Equations

I mentioned that classical algebra is about solving equations, but what kind of equations?

Example: Solve the equation 2x´ 6 “ 0 for the unknown x.

Solution: We have

2x´ 6 “ 0

2x´ 6` 6 “ 0` 6

2x “ 6

x “ 6{2

x “ 3.

Note that we obtained the solution by executing a mindless sequence of formal rules. In other
words, an algorithm. When al-Khwarizmi first treated such problems in the 9th century he
did not have any of this technology. Instead he expressed each step of the algorithm in terms
of words. The first step, in which the quantity 6 is added to each side in order to remove the
subtraction is an example of al-jabr, which means restoration or completion. Yes, once upon
a time that was a big deal. The use of the letters x, y, z for unknown variables goes back to
Descartes’ Geometry (1637). Descartes also introduced the use the letters a, b, c for unknown
constants.

Example: Solve the equation ax` b “ 0 for the unknown x.

Solution: There are two cases:

• If a ‰ 0 then we have

ax` b “ 0

ax “ ´b

x “ ´b{a.
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• If a “ 0 then we have
0x` b “ 0.

Now there are two sub-cases:

– If b ‰ 0 then there is no solution.

– If b “ 0 then every x is a solution.

So far, so good. We may also consider simultaneous equations in more than one unknown.

Example: Solve the following two simultaneous equations for x and y:

piq
piiq

"

x ` y “ 2,
2x ` 3y “ ´1.

Solution: There are two basic ways to solve a system of equations: substitution and elimina-
tion. With the method of substitution we would solve for x (or y) in one equation and then
substitute this expression into the other. With the method of elimination we eliminate x (or
y) by taking a suitable linear combination of the given equations. For example, we can define
a new equation piiiq “ piiq ´ 2piq that has no x by subtracting twice the first equation from
the second:

2x ` 3y “ ´1
´ 2x ` 2y “ 4

y “ ´5

We conclude that y “ ´5 and then back-substituting into either of the previous equations
gives y “ 7.

The Problem of Linear Algebra

A general linear equation has the form

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b,

where

• a1, a2, . . . , an, b are constants and

• x1, x2, . . . , xn are unknowns.

The general problem of linear algebra is to solve a system of m linear equations in n
unknowns.
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I assume that you know a bit about linear algebra because there is a whole course devoted to
it (MTH 210), which is a prerequisite for this course. We tend to separate the topic of linear
algebra from the rest of (non-linear) algebra for two reasons:

• Linear algebra is completely solved, i.e., there are no big open problems in the subject.

• Linear algebra is extremely important in applied mathematics. Therefore we want to
teach it to everyone, without burdening them too much with abstraction.

The problem that we will consider in this course is much harder.

The Problem of Non-Linear Algebra

A polynomial equation of degree d in one variable x has the form

d
ÿ

k“0

akx
k “ adx

d ` ad´1x
d´1 ` ¨ ¨ ¨ ` a1x` a0 “ 0,

where a0, a1, . . . , an are some constants, called the coefficients. A polynomial equation
in two variasbles x, y has the form

ÿ

k,`ě0

ak` x
ky` “ 0,

where only finitely many of the coefficients ak` are nonzero,2 and a polynomial equation
in n variables has the form

ÿ

k1,k2,...,kně0

ak1,k2,...,kn x
k1
1 x

k2
2 ¨ ¨ ¨x

kn
n “ 0,

where only finitely many of the coefficients ak1,k2,...,kn are non-zero. The general problem
of non-linear algebra is to solve a system of m polynomial equations in n unknowns.

This problem is not completely solved. In fact, it is one of the most active areas of current
mathematical research.3 In this course we will spend most of our time studying polynomial
equations in just one variable. One of the major theorems in this subject is the Abel-Ruffini
Theorem (1824), which says the following:

It is impossible to express the solutions of the fifth degree equation

ax5 ` bx4 ` cx3 ` dx2 ` ex` f “ 0

2For example, consider the polynomial equation 8x2y ` 3xy ` 2y2 ` 2x` 3y ´ 12 “ 0. Unlike in the case of
one variable, there is no very obvious way to put the terms in order. Note that it is also difficult to define the
“degree” of a polynomial in two variables.

3The technical name of this subject is “algebraic geometry”.
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in terms of the coefficients and the algebraic operations `, ´, ˆ, ˜,
?

, 3
?

, 4
?

, . . .

2 Quadratic Equations

2.1 Al-Khwarizmi

The general quadratic equation ax2 ` bx` c “ 0 has the following solution:

x “
´b˘

?
b2 ´ 4ac

2
.

I’m sure you remember this formula from high school, but do you know why it is true? Specific
examples were understood by the ancient Greeks, but the first person to write about “the
general quadratic equation” was Mohammed ibn Musa al-Khwarizmi, in his work Al-kitab al-
mukhtasar fi hisab al-jabr wa’l-muqabala („ 820 AD) [The Compendious Book on Calculation
by Completion and Balancing]. Since the concept of negative numbers was not accepted at
the time, al-Khwarizmi divided the problem into three separate cases:4

Type I. x2 ` ax “ b

Type II. x2 “ ax` b

Type III. x2 ` b “ ax

The solution to each case was illustrated with a specific example, though it was understood
that the same reasoning could be applied in general. Here are his three examples.

Type I. A square and ten Roots are equal to thirty-nine Dirhems:

x2 ` 10x “ 39

We think of x2 as the area of a square and 10x are the area of a rectangle:

4Actually he divided quadratic equations into six cases. The other three are x2 “ ax, x2 “ b and ax “ b,
which are too boring to discuss. He also describes equation in words, since he did not have a symbolic notation.
For example, he expressed x2 ` 10x “ 39 by saying that “a square and ten roots are equal to thirty-nine
Dirhems”.
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Now we cut the rectangle into two equal rectangles of area 5x and “complete the square”:

Since the big square has area px` 5q2 we conclude that

px` 5q2 “ x2 ` 5x` 5x` 25

px` 5q2 “ x2 ` 10x ` 25

px` 5q2 “ 39 ` 25

px` 5q2 “ 64

x` 5 “ 8 al-muqabala

x “ 3.

The final step is an example of al-muqabala [balancing] since we subtracted 5 from both sides.
We will see the other fundamental operation al-jabr [completion] in the next example. It is
clear from the geometry that an equation of Type I always has exactly one (positive, real)
solution. In modern notation we can summarize the algorithm as follows:

x2 ` ax “ b ùñ x “

c

b`
a2

4
´
a

2
.
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Type II. Three roots and four of Simple Numbers are equal to a Square:

x2 “ 4` 3x

We cut a rectangle of area 3x from a square of area x2 to obtain the following diagram:

Then we construct the following diagram:

Note that the two rectangles labeled A have equal area since they have equal dimensions.
Furthermore, note that A ` B “ 4 by construction. Finally, note that the square comprised
of A, B and 9{4 has side length x´ 3{2, so that

px´ 3{2q2 “ A`B ` 9{4

px´ 3{2q2 “ 4 ` 9{4

px´ 3{2q2 “ 25{4
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x´ 3{2 “ 5{2

x “ 5{2` 3{2 al-jabr

x “ 4.

We note that this equation again has exactly one (positive, real) solution. In modern notation
we can summarize the algorithm as follows:

x2 “ ax` b ùñ x “

c

b`
a2

4
`
a

2
.

Type III. A square and twenty-one Dirhems are equal to ten Roots:

x2 ` 21 “ 10x

We think of 10x as the area of a rectangle:

Then we cut a square of length x from one side to obtain the following diagram:

Now al-Khwarizmi divides the problem in two subcases.5 Case i. If x ă 5 then we construct
the following diagram:

5Actually, he’s not very clear about this, so I cleaned it up.
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In this case he gives a geometric argument that A`21 “ 25. (You will reproduce his argument
on the first homework.) On the other hand, the square A has side length 5´ x, so that

A` 21 “ 25

p5´ xq2 ` 21 “ 25

p5´ xq2 “ 4 al-muqabala

5´ x “ 2

5 “ 2` x al-jabr

3 “ x. al-muqabala

Here we see an example of al-jabr, when we add the positive quantity x to both sides of the
equation 5 ´ x “ 2 in order to “complete” or “restore” the left hand side to its full value 5.
Case ii. If x ą 5 then we construct the following diagram:
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In this case, al-Khwarizmi gives a completely different geometric argument (which you will
also reproduce on the homework) that A` 21 “ 25. Then since A “ px´ 5q2 we obtain

A` 21 “ 25

px´ 5q2 ` 21 “ 25

px´ 5q2 “ 4 al-muqabala

x´ 5 “ 2

x “ 7. al-jabr

We conclude that the equation x2 ` 21 “ 10x has two different solutions: x “ 3 and x “ 7.
In modern notation we can summarize the algorithm as follows:

x2 ` b “ ax ùñ x “
a

2
`

c

a2

4
´ b or x “

a

2
´

c

a2

4
´ b.

If a2{4 ´ b ą 0 then we obtain two (positive, real) solutions. However, if a2{4 ´ b ă 0 then
there are no solutions. Al-Khwarizmi mentions that this may happen, but he does not give
any geometric explanation.

In summary: Al-Khwarizmi divides quadratic equations into three types since he only accepts
positive numbers. Each of the first two types has a unique solution. The third type has either
two or zero solutions. He provides an explicit algorithm to compute the solutions in each case.

2.2 The Quadratic Formula

The work of Al-Khwarizmi and other Arabic scholars was translated into Latin beginning
in the 12th century and exerted a strong influence on the development of mathematics in
Europe. The next major development in algebra was the solution of the general cubic equation
by Italian scholars in the 16th century. (See the next chapter.) Meanwhile, there was slow
progress in the development of a symbolic notation for the expression of “algorithms”:
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• The symbols `, ´ and
?

were introduced by German mathematicians in the late 1400s
and early 1500s.

• The equals sign “ was introduced by Robert Recorde in The Whetstone of Witte (1557).6

• Francois Viète introduced letters for unknown quantities in his Introduction to the Art
of Analysis (1591). He used vowels for unknowns and consonants for constants.

• René Descartes used the letters a, b, c for constants and x, y, z for variables in his Geom-
etry (1637). In this work he also introduced the superscript notation xy for exponents.

Descartes’ Geometry is one of the most significant works in the history of mathematics. Be-
cause of its wide influence, it is also one of the earliest mathematical works that looks reason-
able to modern eyes.

The benefit of symbolic notation is that it allows us to treat many separate geometric cases
simultaneously. I refer to this phenomenon by the following slogan:

Algebra is smarter than geometry.

Let us now apply modern notation to the solution of quadratic equations. Let a, b, c represent
any numbers with a ‰ 0 and consider the equation

ax2 ` bx` c “ 0.

Since a ‰ 0 we may divide both sides by a to obtain

x2 `
b

a
x`

c

a
“ 0

x2 `
b

a
x “ ´

c

a

x2 `
b

2a
x`

b

2a
x “ ´

c

a

This last step is inspired by the geometric trick of “completing the square”:

6Here is his justification: And to auoide the tediouse repetition of these woordes : is equalle to : I will sette
as I doe often in woorke vse, a paire of paralleles, or Gemowe lines of one lengthe, thus: “, bicause noe .2.
thynges, can be moare equalle.
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The picture suggests that we should now add pb{2aq2 to both sides, so the left hand side
becomes equal to px` b{2aq2. Note that this algebraic identity is still true even in cases when
the geometric picture makes no sense. Thus we have

x2 `
b

2a
x`

b

2a
x “ ´

c

a

x2 `
b

2a
x`

b

2a
x`

b2

4a2
“ ´

c

a
`

b2

4a2
ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2
.

Now what? Even though the quantity b2´ 4ac might be negative, let us assume that there
exists some number δ satisfying δ2 “ b2 ´ 4ac. Then we also have

ˆ

δ

2a

˙2

“
δ2

4a2
“
b2 ´ 4ac

4a2
,

which allows us to solve for x as follows:
ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2

x`
b

2a
“

δ

2a

x “
´b` δ

2a
.

Conversely, if δ is any number satisfying δ2 “ b2 ´ 4ac then we can reverse all of these steps
to show that the number x “ p´b` δq{2a satisfies the original equation ax2 ` bx` c “ 0.

But what does this mean? I purposely avoided using the notation “
?
b2 ´ 4ac” because this

notation is ambiguous. We are accustomed to speaking about the “square root function”
fpxq “

?
x, but this only defines a function if we restrict the domain and range to non-

negative real numbers:
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If we try to extend the domain and range to all real numbers then we find that negative
numbers have no square roots, while positive numbers have two:

Later we will even see an exotic number system in which some numbers have infinitely many
square roots! Because of these ambiguities I will state the following very carefully.

The Quadratic Formula

Let a, b, c be any numbers with a ‰ 0 and consider the polynomial fpxq “ ax2 ` bx` c.
We define the discriminant of the polynomial as follows:

∆ :“ b2 ´ 4ac.

By the above reasoning we see that the equation fpxq “ 0 has one solution x “ ´b`δ
2a for

each square root of the discriminant: δ2 “ ∆. Depending on the number system, there
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may be zero, one or two such square roots. (Maybe even more.)

Of course, Descartes was only interested in the case when a, b, c are real numbers. In this case
we can be more specific:

• The equation fpxq “ 0 has two real solutions when ∆ ą 0.

• The equation fpxq “ 0 has one real solution when ∆ “ 0.

• The equation fpxq “ 0 has no real solutions when ∆ ă 0.

We can illustrate each of these cases by drawing the graph of the function fpxq “ 0 and
observing where the graph intersects the x-axis (for these pictures we assume that a ą 0):7

It is a bit more difficult to determine whether these real roots are positive or negative. For this
purpose Descartes came up with the following clever trick, which I will state without proof.

7Even though Descartes had a notion of coordinates (actually, one ordinate and one abscissa), he did not have
the notion of functions and graphs. These conventions were standardized by Leonhard Euler in his Introduction
to the Analysis of the Infinite (1748), over 100 years after Descartes.
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Descartes’ Rule of Signs

Let fpxq be a polynomial with real coefficients. Then the number of positive real solutions
to the equation fpxq “ 0 is at most the number of sign changes in the sequence of
coefficients (omitting zero coefficients), or is less than this number by a multiple of 2.

For example, consider the equation x2`5x´2 “ 0, whose sequence of coefficients is `1,`5,´2.
Since this sequence has one sign change we conclude that the equation has one positive real
root. On the other hand, the coefficient sequence of the equation x2´ 5x` 2 “ 0 has two sign
changes, so this equation has either two or zero positive real roots. [Which one is it?]

2.3 Does There Exist a Cubic Formula?

Inspired by our success with quadratic equations, we would like to find a formula for the roots
of a general cubic equation:

ax3 ` bx2 ` cx` d “ 0.

In other words, we would like to find some expression for x in terms of the coefficients a, b, c, d
and the basic algebraic operations `,´,ˆ,˜. At some places in the formula we may also need
to choose an arbitrary square root or a cube root of some expression.

It turns out that such a formula does exist, but it is quite complicated. The formula was
discovered in Italy during the 1500s and became known as “Cardano’s formula”. The reason
it was not discovered earlier is because a geometric solution in the style of al-Khwarizmi would
be far too complicated. The only efficient way to the solution is via symbolic algebra.

I will present Cardano’s formula in Chapter 3, but first it is necessary to develop a better
understanding of the abstract algebra of polynomials.

3 Rings, Fields, Polynomials

3.1 A Motivating Example

Consider the cubic polynomial fpxq “ x3´ 7x2` 8x´ 2. By inspection we can see that x “ 1
is a solution to the cubic equation fpxq “ 0. Are there any other solutions? Consider the
graph:
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From this picture it appears that there are two more real solutions; one between 0 and 1
and the other between 5 and 6. It is always possible to find numerical approximations (for
example, with Newton’s method) but we would prefer to have exact formulas for these roots.

Descartes proved in his Geometry (1637) that if x “ 1 is a solution of the polynomial equation
fpxq “ 0 then the polynomial fpxq can be factored as fpxq “ px´ 1qgpxq, where gpxq is some
polynomial of one lower degree. We can find this polynomial by long division:

x2 ´ 6x` 2

x´ 1
˘

x3 ´ 7x2 ` 8x´ 2
´ x3 ` x2

´ 6x2 ` 8x
6x2 ´ 6x

2x´ 2
´ 2x` 2

0

It follows that fpxq “ px´ 1qgpxq where gpxq “ x2´ 6x` 2. Now suppose that α ‰ 1 is some
other root of the equation fpxq “ 0. By substitution we obtain

pα´ 1qgpαq “ fpαq “ 0.

Then since pα ´ 1q ‰ 0 we conclude that gpαq “ 0. Finally, we conclude from the quadratic
formula that

α “
6˘

?
36´ 8

2
“

6˘
?

28

2
“

6˘ 2
?

7

2
“ 3˘

?
7

In summary, we find that the polynomial fpxq “ x3 ´ 7x2 ` 8x ´ 2 has at least three roots:
x “ 1, x “ 3

?
7 and x “ 3 ´

?
7. Could there be any others? It seems clear from the graph

that there are no other real roots, but perhaps there is a complex root hiding somewhere? Or
maybe a root in some more exotic number system?
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Well, it depends on the type of number system. In the next section we will define a specific
type of number system called a field. Later in this chapter we will prove the important theorem
that “a polynomial of degree n with coefficients in a certain field can have at most n roots in
that field”.

3.2 Rings and Fields

I’m sure you are familiar with the following basic number systems:

N Ď Z Ď Q Ď R Ď C.

To be a bit more specific:8

name symbol description

natural numbers N t0, 1, 2, . . .u
integers Z t. . . ,´2,´1, 0, 1, 2, . . .u

rational numbers Q ta{b : a, b P Z, b ‰ 0u
real numbers R tlimits of sequences of rational numbersu

complex numbers C ta` b
?
´1 : a, b P Ru

But these descriptions are only intended to jog your memory; they do not count as formal
definitions. In modern algebra (post-1930) it is necessary to define every concept in terms of
formal axioms. The intuitive concept of “number system” is captured by the formal concept
of a “ring” or a “field”.

Definition of Rings

A ring is a set R together with two special elements 0, 1 P R (called zero and one) and two
binary operations `, ¨ : R ˆ R Ñ R (called addition and multiplication), which satisfy
the following eight axioms:

(A1) @a, b P R, a` b “ b` a (commutative addition)

(A2) @a, b, c P R, a` pb` cq “ pa` bq ` c (associative addition)

(A3) @a P R, a` 0 “ a (additive identity)

(A4) @a P R, Db P R, a` b “ 0 (additive inversion)

(M1) @a, b P R, ab “ ba (commutative multiplication)

(M2) @a, b, c P R, apbcq “ pabqc (associative multiplication)

(M3) @a P R, a1 “ a (multiplicative identity)

(D) @a, b, c P R, apb` cq “ ab` ac (distribution)

8It is quite difficult to give a precise definition of real numbers. You will see such a thing in MTH 433 or
533, but it will not be important in this course.
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If we delete axiom (M1) then we obtain a structure called a non-commutative ring. In
this course all rings will be commutative unless otherwise stated.

In other words, a ring is a number system in which any two numbers can be added or multiplied
and in which all of the basic laws of arithmetic hold. Furthermore, axiom (A4) tells us that
for any element a P R there exists at least one element b P R such that a` b “ 0. I claim that
this element is unique.

Proof. Suppose that we have a` b “ 0 and a` c “ 0 in a ring. It follows that

b “ b` 0 “ b` pa` cq “ pb` aq ` c “ 0` c “ c.

Since the element is unique we should give it a name.

Subtraction in a Ring

Given any element a P R in a ring we have shown that there exists a unique element
b P R satisfying a` b “ 0. We will call this element the additive inverse of a and we will
denote it by the symbol “´a”. Then for any two elements a, b P R we define the notation

“a´ b” :“ a` p´bq.

The following “rules of signs” can be proved directly from the ring axioms:

p´aqb “ ´pabq meno via più fa meno

ap´bq “ ´pabq più via meno fa meno

p´aqp´bq “ ab. meno via meno fa più

These rules were first mentioned by Diophantus of Alexandria in the Arithmetica (3rd cen-
tury AD). This work was unusual among all of Greek mathematics since it admitted the
concept of negative numbers. Diophantus was translated in to Arabic shortly after the time
of al-Khwarizmi and influenced the activities of Arabic mathematicians in the 10th and 11th
centuries. The same rules appeared later in Italy in the works of Dardi of Pisa (1340s), Luca
Pacioli (1494) and Rafael Bombelli (1572), who also translated Diophantus into Latin.9 The
abstract concept of a ring did not appear until the beginning of the twentieth century.

For example, the number systems Z, Q, R and C are rings because they admit addition,
subtraction and multiplication, whereas the number system N is not a ring because it does
not admit subtraction. What about division?

9Bombelli also played a prominent role in the introduction of complex numbers. See below.
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Definition of Fields

Let pF,`, ¨, 0, 1q be a ring.10 We say that F is a field if it satisfies one further axiom:

@a P Fzt0u, Db P F, ab “ 1.

In other words, a field is a (commutative) ring F in which for each nonzero element a P F
there exists at least one element b P F satisfying ab “ 1. Again, it is easy to show that this
element is unique.

Proof. Suppose that we have ab “ 1 and ac “ 1 in a ring. It follows that

b “ b1 “ bpacq “ pbaqc “ 1c “ c.

Since the element is unique we should give it a name.

Division in a Field

Given any nonzero element a P F in a field we have shown that there exists a unique
element b P F satisfying ab “ 1. We will call this element the multiplicative inverse of
a and we will denote it by the symbol “a´1”. Then for any two elements a, b P F with
b ‰ 0 we define the notation

“
a

b
” :“ ab´1.

For example, the rings Q, R and C are fields because they admit division by nonzero elements;
whereas, I claim that the ring of integers Z is a not a field.

Proof. This follows from the fact that there are no integers “between” 0 and 1. For example,
suppose for contradiction that there exists an integer a P Z satisfying 2a “ 1 (i.e., suppose
that we can divide by 2). It follows from this that a ą 0 and therefore a ě 1. But then
multiplying both sides by 2 gives

a ě 1

10In this course I will tend to denote rings by R and fields by F. The German word Ring was introduced by
David Hilbert 1897. Some authors use A for a ring since the French term is anneau. Some authors use K for
a field since the German term is Körper [body], introduced by Richard Dedekind in the 1870s. It is difficult to
find good terminology for abstract mathematics.
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2a ě 2

1 ě 2.

Contradiction.

Nevertheless, the integers are a very interesting and special ring We will have more to say
about this in the next section.

3.3 Polynomials

The Greek approach to mathematics was synthetic, meaning that they would begin with known
objects and then proceed to construct the desired thing. In contrast, the modern approach to
mathematics is analytic, meaning that we first assume the hypothetical existence of the desired
thing and then proceed to deduce its properties. Since Descartes’ Geometry the desired thing
in mathematics is usually denoted by x. But what is x really?

Definition of Polynomials

Let R be a ring and let x be an abstract symbol. By a polynomial in x over R we mean
a formal expression of the form

fpxq “ a0 ` a1x` a2x
2 ` a3x

3 ` ¨ ¨ ¨ “
ÿ

kě0

akx
k,

where the coefficients a0, a1, a2, . . . are elements of R and only finitely many of the
coefficients are nonzero. At first this is just a formal expression. Below we will define
addition and multiplication of polynomials by pretending that the symbol x is a number.
Then it will make sense say things like x` x “ 2x and x ¨ x “ x2.11

Let us denote the set of all polynomials by

Rrxs :“ tpolynomials in x over Ru.

To define a ring structure on Rrxs we first define the zero and one polynomials:

0 :“ 0` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ ,

1 :“ 1` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .

Hopefully it will cause no confusion that we use the same symbols 0, 1 to denote elements
of R and Rrxs. More generally, for any element a P R we define the constant polynomial:

a :“ a` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .

This notation allows us to think of R Ď Rrxs as a subset.12
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Then for any polynomials fpxq “
ř

kě0 akx
k and gpxq “

ř

kě0 bkx
k we define their sum

and product as follows:

fpxq ` gpxq :“
ÿ

kě0

pak ` bkqx
k,

fpxq ¨ gpxq :“
ÿ

kě0

¨

˝

ÿ

i`j“k

aibj

˛

‚xk.

One should check that the structure pRrxs,`, ¨, 0, 1q satisfies the ring axioms, but we
won’t bother to do this. The trickiest part is to show that multiplication of polynomials
is associative.

Polynomials over a general ring can be quite complicated, but it turns out that polynomials
over a field are very nice. In fact, there is a deep analogy between the ring of integers Z and
the ring of polynomials Frxs over a field F. The basic fact about these rings is that they both
have a concept of “division with remainder”. First I will state the theorem and then we’ll
discuss what it means.

The Division Theorem

For Integers: For all integers a, b P Z with b ‰ 0 there exist unique integers q, r P Z
(called the quotient and remainder) satisfying

"

a “ qb` r,
0 ď r ă |b|.

For Polynomials Over a Field:13 Let F be a field. Then for all polynomials fpxq, gpxq P
Frxs with gpxq ‰ 0pxq there exist unique polynomials qpxq, rpxq P Frxs (called the quotient
and remainder) satisfying

"

fpxq “ qpxqgpxq ` rpxq,
degprq ă degpgq.

Note that in each case the remainder must be in some sense “smaller” than the divisor. For
integers we measure the size by the absolute value, while for polynomials we measure the size

11The symbols x2, x3, . . . were invented by Descartes.
12In fact, it is a subring.
13Technical Remark: In fact, our proof will show that the same result holds for the polynomial ring Rrxs

where R is any ring satisfying: (1) for all a, b P R with a ‰ 0 and b ‰ 0 we have ab ‰ 0; and (2) the leading
coefficient of the divisor gpxq P Rrxs has a multiplicative inverse in R. Note that (1) and (2) automatically hold
when R “ F is a field and gpxq is nonzero.
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by the “degree”, which is defined as follows. Before giving the proof of the Division Theorem
we need a rigorous definition of the degree.

Degree of a Polynomial

Let R be a ring and let fpxq P Rrxs be a nonzero polynomial. Then there exists a
unique integer n ě 0 such that

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n and an ‰ 0,

in which case we say that fpxq has degree n:

degpfq “ n.

For any polynomials fpxq, gpxq P Rrxs and constants α, β P R we observe that

degpα ¨ fpxq ` β ¨ gpxqq ď maxtdegpfq, degpgqu.

Indeed, suppose that degpfq “ m and degpgq “ n. To be specific, let fpxq “
ř

k akx
k

and gpxq “
ř

k bkx
k with ak “ 0 for all k ą m and bk “ 0 for all k ą n. Then the

coefficient of xk in αfpxq ` βgpxq is αak ` βbk, which equals zero for all k ą maxtm,nu.

More importantly, if R is a field14 then the degree of a product is the sum of the degrees:

degpfgq “ degpfq ` degpgq,

Proof. Homework.

Each nonzero constant polynomial a has degree 0. For example, degp105q “ 0. But what
about the zero polynomial? I claim that there is no reasonable way to define degp0q. Indeed,
if we could define degp0q then we would like the following formula to be true:

0 “ 0 ¨ fpxq

degp0q “ degp0 ¨ fpxqq

degp0q “ degp0q ` degpfq.

But this implies that degpfq “ 0 for every polynomial fpxq, which is nonsense. Some authors
just say that degp0q is “undefined”. Alternatively, we could give a fake definition:

degp0q “ “´8”.

14It suffices to let R be a domain, i.e., a commutative ring in which ab “ 0 implies that a “ 0 or b “ 0. See
the next section for more details.
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This fake definition has the nice consequence that the formula degpfgq “ degpfq ` degpgq is
still “true” even when one or both of fpxq and gpxq is the zero polynomial.

Now back to the Division Theorem. In each case (integers or polynomials) the proof of
existence of the quotient and remainder is really an algorithm, called “long division”.15 The
formal statement of an algorithm is not very easy for humans to read so you can feel free to
skip the proofs and go right to the examples.

Proof for Integers: Let a, b P Z with b ‰ 0 and consider the set

S “ ta´ qb : q P Zu “ t. . . , a´ 2b, a´ b, a, a` b, a` 2b, . . .u Ď Z.

Let r be the smallest non-negative element of this set.16 By definition we know that a “ qb`r
for some integer q P Z and we also know that 0 ď r. It remains only to show that r ă |b|. So
let us assume for contradiction that r ě |b|. Since b ‰ 0 this implies that

0 ď r ´ |b| ă r.

On the other hand, we observe that r ´ |b| “ pa´ qbq ´ |b| “ a´ pq ˘ 1qb P S. Thus we have
found a non-negative element of S that is strictly smaller than r. Contradiction.

Proof for Polynomials over a Field: Let F be a field and consider two polynomials
fpxq, gpxq P Frxs with gpxq ‰ 0pxq. Furthermore, consider the set

S “ tfpxq ´ qpxqgpxq : qpxq P Frxsu Ď Frxs.

Let rpxq be some element of S with minimal degree (allowing for the possibility that rpxq “
0pxq and hence degp0q “ ´8).17 By definition we know that fpxq “ qpxqgpxq ` rpxq for
some qpxq P Frxs and it remains only to show that degprq ă degpgq. So let us assume for
contradiction that degprq ě degpgq. To be specific, since gpxq ‰ 0pxq we may write

gpxq “ a0 ` a1x` ¨ ¨ ¨ ` amx
m and rpxq “ b0 ` b1x` ¨ ¨ ¨ ` bnx

n,

where am and bn are nonzero elements of F and m ď n. Then since n´m ě 0 and am ‰ 0 we
may construct the following polynomial:18

hpxq :“ rpxq ´
bn
am

xn´mgpxq “

ˆ

bn ´
bn
am

am

˙

xn ` lower degree terms.

Note that the coefficient of xn in hpxq is zero, and hence degphq ă n “ degprq. On the other
hand, we observe that hpxq is an element of S:

hpxq “ rpxq ´
bn
am

xn´mgpxq

15The uniqueness of the quotient and remainder is not important for us so I’ll skip it.
16The Well-Ordering Principle says that any non-empty set of non-negative integers has a smallest element.

This principle cannot be proved and must be taken as an axiom of the integers.
17Again, such a polynomial rpxq exists because of the Well-Ordering Principle.
18Here we are using the fact that F is a field in order to divide by am.
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“ pfpxq ´ qpxqgpxqq ´
bn
am

xn´mgpxq

“ fpxq ´

ˆ

qpxq `
bn
am

xn´m
˙

gpxq P S.

Thus hpxq is an element of S with strictly smaller degree than rpxq. Contradiction.

I assume that you’re familiar with long division of integers, so let’s look at an example of
polynomial long division. Consider the following polynomials in the ring Zrxs:

fpxq “ 2x5 ´ 6x4 ` 5x3 ´ 2x2 ` 3x` 1,

gpxq “ 2x2 ` 1.

Here is a picture of the algorithm:

x3 ´ 3x2 ` 2x` 1
2

2x2 ` 1
˘

2x5 ´ 6x4 ` 5x3 ´ 2x2 ` 3x ` 1
´ 2x5 ´ x3

´ 6x4 ` 4x3 ´ 2x2

6x4 ` 3x2

4x3 ` x2 ` 3x
´ 4x3 ´ 2x

x2 ` x ` 1
´ x2 ´ 1

2

x` 1
2

In words: We initialize by setting f0pxq “ fpxq. Then we cancel the leading term of f0pxq by
subtracting x3 times the divisor:

f1pxq “ f0pxq ´ x
3gpxq “ ´6x4 ` 4x3 ´ 2x2 ` 3x` 1.

Next we cancel the leading term of f1pxq by subtracting ´3x2 times the divisor:

f2pxq “ f1pxq ´ p´3x2qgpxq “ 4x3 ` x2 ` 3x` 1.

We continue by cancelling the leading term of f2pxq as follows:

f3pxq “ f2pxq ´ 2xgpxq “ x2 ` x` 1.

But now we are stuck. It is impossible to cancel the leading term of f3pxq “ x2 ` x` 1 while
remaining inside the ring Zrxs because it is impossible to divide by 2 inside the ring Z. We
may continue, however, if we pass to the larger ring Qrxs. Then we may cancel the leading
term of f3pxq by subtracting 1{2 times the divisor:

f4pxq “ f3pxq ´
1

2
gpxq “ x`

1

2
.
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Note that the degrees of the polynomials f0, f1, f2, f3, f4 are decreasing. Finally, since the
degree of f4pxq is less than the degree of the divisor gpxq, the algorithm stops.

This example illustrates why it is better to consider polynomials with coefficients from a field.
If we regard fpxq and gpxq as elements of Zrxs then there is no quotient and remainder.
However, if we regard fpxq and gpxq as elements of Qrxs Ě Zrxs, then we obtain the following
(unique) quotient and remainder:

qpxq “ x3 ´ 3x2 ` 2x´
1

2
,

rpxq “ x`
1

2
.

In other words, have

2x5 ´ 6x4 ` 5x3 ´ 2x2 ` 3x` 1 “

ˆ

x3 ´ 3x2 ` 2x´
1

2

˙

p2x2 ` 1q `

ˆ

x`
1

2

˙

The same result holds in Rrxs, or Crxs, or in any ring Frxs where F is a field containing Z as
a subring.

3.4 Descartes’ Factor Theorem

In this section we will discuss the first true theorem of algebra, which appeared in the third
book of Descartes’ Geometry (1637). The theorem concerns the relationship between the
roots of a polynomial and its factorization into polynomials of lower degree. In modern terms,
it relates the concept of a “polynomial function” to the concept of polynomials as formal
expressions. Before stating the theorem, let me be clear about this distinction.

Evaluation and Roots of Polynomials

We have defined a polynomial fpxq P Frxs as an abstract expression of the form

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n.

But, as you know, this abstract expression can also be used to define a function f : FÑ F,
taking numbers to numbers. To be precise, for each number α P F we define the number
fpαq P F by evaluating the polynomial at x “ α:

fpαq :“ a0 ` a1α` ¨ ¨ ¨ ` anα
n P F.

If fpαq “ 0 then we say that α P F is a root of the polynomial fpxq P Frxs.

If two polynomials fpxq, gpxq P Frxs are equal as abstract expressions (i.e., if they the same
coefficients) then they clearly determine the same function (i.e., fpαq “ gpαq for all α P F).
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The other direction is not true in general.19 However, you will prove the following result on the
homework: If fpαq “ gpαq for all α P F and if the field F has infinitely many elements, then
it follows that the polynomials fpxq and gpxq have exactly the same coefficients. Descartes
did not distinguish between polynomial functions and formal polynomials because he always
worked over the infinite field Q.

Now here is Descartes’ Theorem in modern language.

Descartes’ Factor Theorem (1637)

Let F be a field.

I. Let fpxq P Frxs be a nonzero polynomial of degree n ě 1. Then for any number
α P F we have fpαq “ 0 if and only if fpxq “ px ´ αqgpxq for some polynomial
gpxq P Frxs of degree n´ 1. In other words:

"

α P F is a root
of fpxq P Frxs

*

ðñ

"

fpxq is divisible by px´ αq
in the ring Frxs

*

.

II. Any polynomial fpxq P Frxs of degree n ě 0 has at most n distinct roots in F.

Before giving the proof, let me show you a consequence. In section 3.1 we found that the
polynomial x2´6x`2 has two real roots: x “ 3`

?
7 and x “ 3´

?
7. Since this polynomial has

degree 2 it follows from Decartes’ theorem that there are no other real roots. More generally, if
F is any field containing the coefficients 1,´6, 2 and the real numbers 3˘

?
7 then Descartes’

theorem tells us that there can be no other roots in this field. That’s comforting, I guess.

Let me also show you an example to preview the main idea of the proof. Consider the
polynomial fpxq “ x3 ` x2 ´ x` 1 with coefficients in, say, Q. Note that the number 2 P Q is
not a root of fpxq because

fp2q “ 23 ` 22 ´ 2` 1 “ 8` 4´ 1` 1 “ 11 ‰ 0.

According to the theorem, this means that fpxq divided by x´2 in Qrxs must have a nonzero
remainder. Let’s check:

19We will see later that there exist fields with finitely many elements, in which case the converse is false.

28



x2 ` 3x ` 5

x´ 2
˘

x3 ` x2 ´ x ` 1
´ x3 ` 2x2

3x2 ´ x
´ 3x2 ` 6x

5x ` 1
´ 5x` 10

11

Indeed, we find that the remainder is the constant polynomial 11. Where have we seen this
number before? That’s right, the remainder of fpxq when divided by x ´ 2 is equal to the
constant polynomial fp2q. Since fp2q ‰ 0 it follows that fpxq is not divisible by the polynomial
x´ 2. We will see that the same thing holds in general.

Proof of Descartes’ Factor Theorem.

Part I. First suppose that fpxq “ px´αqgpxq for some polynomial gpxq P Frxs. By evaluating
at x “ α we find that

fpαq “ pα´ αqgpαq “ 0 ¨ gpαq “ 0.

Conversely, suppose that fpxq P Frxs has degree n ě 1 and consider any number α P F. Now
let us divide fpxq by the degree-one polynomial x´ α. From the Division Theorem we know
that there exist (unique) polynomials qpxq, rpxq P Frxs satisfying

fpxq “ qpxqpx´ αq ` rpxq,

and such that degprq ă degpx ´ αq “ 1. In particular, we must have degprq “ 0 (i.e., rpxq is
a nonzero constant) or degprq “ ´8 (i.e., rpxq is the zero polynomial). So let us write

fpxq “ qpxqpx´ αq ` c for some constant c P F.

By substituting x “ α we obtain

fpxq “ qpxqpx´ αq ` c

fpαq “ qpαqpα´ αq ` c

fpαq “ qpαq ¨ 0` c

fpαq “ c,

and hence
fpxq “ qpxqpx´ αq ` fpαq.

(You will give an alternate proof of this formula on the homework.) Finally, if α is a root of
fpxq then we fiund that fpxq “ qpxqpx´ αq ` 0 for some polynomial qpxq P Frxs. To see that
this polynomial satisfies degpqq “ n´ 1 we observe that

degpfq “ degpqq ` degpx´ αq
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n “ degpqq ` 1

n´ 1 “ degpqq.

Part II. We will prove by induction on n that any polynomial in Frxs of degree n ě 0 has
at most n distinct roots in F. For the base case we note that a polynomial of degree n “ 0 is
just a nonzero constant polynomial, which of course has no roots. Now fix some n ě 0 and
assume for induction that every polynomial in Frxs of degree n has at most n roots in F.
In this case we will show that every polynomial of degree n ` 1 has at most n ` 1 roots. So
consider some fpxq P Frxs with degree n. If fpxq has no roots in F then we are done, so let us
suppose that fpαq “ 0 for some α P F. From Part I we have

fpxq “ px´ αqgpxq for some gpxq P Frxs of degree n.

Now let β P F be any number with fpβq “ 0 and β ‰ α. By substitution we obtain

fpxq “ px´ αqgpxq

fpβq “ pβ ´ αqgpβq

0 “ pβ ´ αqgpβq,

which implies that gpβq “ 0 because β ´ α ‰ 0. In other words, any root of fpxq that is not
equal to α must be a root of gpxq. But since degpgq “ n we know by induction that gpxq has
at most n distinct roots in F. It follows that fpxq has at most n` 1 roots in F.

For example, let’s consider again the polynomial fpxq “ x3 ´ 7x2 ` 8x ´ 2 P Qrxs.20 By
inspection we see that 1 P Q is a root, and then by long division we obtain

fpxq “ px´ 1qgpxq “ px´ 1qpx2 ´ 6x` 2q.

Next let α P F Ě Q be any element of an extension field and assume that fpαq “ 0 so that

0 “ fpαq “ pα´ 1qgpαq.

If α ‰ 1 then it follows that gpαq “ 0, and the quadratic formula gives two possible solutions:

α “
6˘

?
36´ 8

2
“ 3˘

?
7.

These roots do not exist in Q21 however they do exist in the field of real numbers R. In
particular we have gp3`

?
7q “ 0, so Descartes’ Theorem in Rrxs tells us that

gpxq “
´

x´ p3`
?

7q
¯

hpxq

21We have not proved this, but you probably know from a previous course that
?
d is an irrational real

number whenever d P Z and d2 R Z.
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for some polynomial hpxq P Rrxs of degree 1. Next we can substitute x “ 3´
?

7 to obtain

0 “ gp3´
?

7q “
´

3´
?

7´ p3`
?

7q
¯

hp3´
?

7q “ 2
?

7 ¨ hp3´
?

7q,

which implies that hp3´
?

7q “ 0. From one final application of Descartes’ Theorem in Rrxs
we obtain

hpxq “ px´ p3´
?

7qqppxq,

where ppxq P Rrxs is a polynomial of degree 0 with real coefficients, i.e., ppxq “ c P R is a
nonzero constant.22 In summary we have shown that

fpxq “ px´ 1q
´

x´ p3`
?

7q
¯´

x´ p3´
?

7q
¯

c.

Could there possibly be another root somewhere? Let F Ě R be any field containing R and
suppose that we have fpαq “ 0 for some number α P F not equal to 1 or 3˘

?
7. By substitution

this would imply

0 “ fpαq “ pα´ 1q
´

α´ p3`
?

7q
¯´

α´ p3´
?

7q
¯

c.

But this is impossible, because the four factors on the right are all nonzero elements of the
hypothetical field F. We conclude that the polynomial fpxq has at most 3 roots in any field.

We found that the polynomial fpxq “ x3 ´ 7x2 ` 8x ´ 2 can be completely factored in the
ring Rrxs, but not in the ring Qrxs. This inspires the following definition.

Definition of Splitting

Consider a polynomial fpxq P Frxs over a field F and let E Ě F be any field containing F
as a subring. (For example, let E “ R be the real numbers and and F “ Q the rational
numbers.) We say that the polynomial fpxq P Frxs splits over E if there exist some
elements c, α1, α2, . . . , αn P E such that

fpxq “ cpx´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq.

In other words, we say that fpxq P Frxs splits over E if it “has all of its roots” in E.

For example, the polynomial x2 splits over any field:

x2 “ px´ 0qpx´ 0q.

21Of course, this polynomial also lives in the ring Zrxs, but I prefer to use Q because it is a field.
22By comparing coefficients on each side we see that c “ 1, but this is not so important right now.
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The polynomial x2 ´ 2 P Qrxs does not split over Q but it does split over R:

x2 ´ 2 “ px´
?

2qpx`
?

2q.

And the polynomial x2 ` 1 P Qrxs does not split over Q or R, but it does split over C:

x2 ` 1 “ px´
?
´1qpx`

?
´1q.

The complex numbers were not well understood in the time of Descartes. In fact, they were
not fully accepted as numbers until the beginning of the 19th century. Later in this course we
will prove the following important result, called the fundamental theorem of algebra, which is
surprisingly difficult to prove:

Every polynomial with coefficients in C splits over C.

4 Unique Prime Factorization

In the previous section we showed that each of the rings Z and Frxs (where F is a field) has
a division algorithm. This fact is responsible for a deep analogy between these rings, which
we develop in this section. The main consequence is that each of Z and Frxs has a notion of
“unique prime factorization”.

4.1 Integral Domains

The rings Z and Frxs are not fields. In particular, the elements 2 P Z and x P Frxs do not
have multiplicative inverses. Instead, these rings satisfy a weaker property.

Definition of Integral Domains

Let pR,`, ¨, 0, 1q be a ring. We say that R is an integral domain (or just a domain) if for
all elements a, b P R we have

ab “ 0 ùñ a “ 0 or b “ 0.

In particular, every field F is a domain. Indeed, suppose we have ab “ 0 in a field F. If b “ 0
then we are done. Otherwise, the multiplicative inverse b´1 exists and we have

ab “ 0

abb´1 “ 0b´1

a “ 0.
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But not every domain is a field. In particular, Z and Frxs domains but not fields. We can’t
prove that Z is a domain because we haven’t officially defined Z, so I’ll just take this as an
axiom.23 You will prove on the homework that Frxs is a domain for any field F. To be more
specific, you will prove the following formula for the degree of a product:

degpfgq “ degpfq ` degpgq.

Then the result follows since degpfq ě 0 if and only if fpxq ‰ 0. (Recall that degp0q “ ´8.)

To demonstrate that the definition of integral domains is not vacuous, let me show you an
example of a ring that is not a domain. This example comes from the theory of “modular
arithmetic”, which we will discuss later.

Example of a Non-Domain. The following addition and multiplication tables define a ring
structure on the set of symbols R “ t0, 1, 2, 3u:

` 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

¨ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

This ring is not a domain because 2 ¨ 2 “ 0, but 2 is not equal to 0.

4.2 The Group of Units

When it comes to factorization in a ring, there are certain elements of the ring that don’t
matter. For example, the integer 6 P Z can be factored in two ways:

6 “ 2 ¨ 3 “ p´2qp´3q,

And the polynomial x3 ´ 1 P Rrxs can be factored in infinitely many ways:

x3 ´ 1 “

ˆ

1

α
x´

1

α

˙

pαx2 ` αx` αq for any nonzero constant α P R.

But we regard these factorizations as “essentially the same”. To be specific, the integers
˘1 P Z and the nonzero constants α P Rrxs are called “units”.

23The first axiomatic definitions of Z we given by Peano and Dedekind in the 1880s. The key to the definition
is the Well-Ordering Principle, which says that any non-empty set of positive integers has a smallest element.
This is logically equivalent to the principle of induction. It is also logically equivalent to the statement that
a ‰ 0 implies |a| ě 1 for all a P Z. That is, there are no integers between 0 and 1.
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The Group of Units of a Ring

Let R be a commutative ring. We say that u P R is a unit when there exists an element
v P R satisfying uv “ 1. We denote the set of units by24

Rˆ “ tu P R : there exists v P R such that uv “ 1u.

In other words, a unit of R is an element that has a multiplicative inverse.

If a multiplicative inverse exists then it must be unique. Indeed, if uv “ 1 and uw “ 1 then
we must have

v “ 1v “ puwqv “ puvqw “ 1w “ 1.

The unique multiplicative inverse of u is called u´1. But not every element of R is a unit.
For example, 0 P R is not a unit because 0v is never equal to 1. The set of units is often
referred to as a “group” because of the following three properties, which you will check on the
homework:

• 1 is a unit.

• If u is a unit then u´1 is a unit.

• If u and v are units then uv is a unit.

We will talk more about groups in a future chapter.

Example: The Units of a Field. Let F be a field. Then, by definition, every nonzero
element is a unit:

Fˆ “ Fzt0u.

Example: The Units of Z. I claim that

Zˆ “ t1,´1u.

Indeed, one can check that 1 and ´1 are units. To show that there are no other units, suppose
we have u P Zˆ satisfying |u| ě 2. By definition of Zˆ there exists some v P Z satisfying
uv “ 1. Then applying absolute value gives

uv “ 1

|uv| “ 1

|u||v| “ 1,

24The superscript “ˆ” is the multiplication symbol. The notation R˚ is also common, but there is no really
standard notation.
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which implies that 0 ă |v| ď 1{2. Contradiction.

Example: The Units of Frxs. Let F be a field. Then I claim that the units of the ring Frxs
are just the nonzero constant polynomials:

Frxsˆ “ Fˆ “ Fzt0u.

Indeed, one can check that every nonzero constant is a unit. To show that there are no other
units, suppose that we have upxqvpxq “ 1 for some polynomials upxq, vpxq P Frxs. Since upxq
and vpxq are nonzero we can apply degrees to obtain

0 “ degp1q “ degpuvq “ degpuq ` degpvq.

Since degpuq ě 0 and degpvq ě 0, this implies that degpuq “ degpvq “ 0, so that upxq and
vpxq are nonzero constants. More generally, you will show on the homework that

Rrxsˆ “ Rˆ for any ring R.

4.3 The Language of Divisibility

The definition of divisibility is fundamental to the theory of factorization.

Definition of Divisibility

Let R be a ring and consider elements a, b P R. We define the notation

“a|b” ðñ there exists some k P R such that ak “ b.

In this case we say that “a divides b” or that “b is divisible by a”.

We observe that 1|a for all a because a1 “ a. And since 0k “ a implies a “ 0 we observe that
0 - a for all nonzero a. That is,

1 divides everything and 0 divides nothing.25

Furthermore, one can check that the relation of divisibility is reflexive and transitive:

• a|a for all a,

• if a|b and b|c then a|c.

25Technically zero divides itself, but opinions may differ on this.
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Is it also antisymmetric? That is, if a|b and b|a do we necessarily have a “ b? Let’s check.
Suppose that a|b and b|a so that ak “ b and b` “ a for some elements k, ` P R. Then

a “ b`

a “ ak`

ap1´ k`q “ 0.

If R is a domain and if a ‰ 0 then this implies 1´ k` “ 0, or k` “ 1, so that k and ` must be
units. For example, in the ring of integers Z we have

a|b and b|a ùñ a “ ˘b.

In the ring of polynomials Frxs we have

fpxq|gpxq and gpxq|fpxq ùñ fpxq “ αgpxq for some nonzero constant α P Fˆ.

When two elements of a ring differ by26 a unit then they are “essentially the same” from the
point of view of divisibility. Here is a formal definition. The concept is completely standard,
but notation is strangely variable. I will follow the notation from Wikipedia:

https://en.wikipedia.org/wiki/Unit_(ring_theory)

Definition of Associatedness

Let R be a commutative ring. For any elements a, b P R we define the notation

a „ b ðñ there exists a unit u P Rˆ such that au “ b.

In this case we say that a and b are associates in R.

If R is a domain then the above argument shows that

a „ b ðñ a|b and b|a.

4.4 The Language of Principal Ideals

Now I am going to play a trick on you. After having defined “units” and “associatedness”,
we will now switch the notation. The theory of divisibility is today usually expressed in the
language of “principal ideals”. For years I have resisted introducing this language in MTH
461 because it feels too abstract in this context. However, after bumbling through the theory
one too many times, I finally acknowledge that the abstract approach makes the proofs much
easier. I hope you will trust me on this.

26Literally: Differ by multiplication by a unit. Here I am using differ in the English sense, not in the sense
of subtraction.
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Definition of Principal Ideals

Consider an element a P R in a commutative ring. The principal ideal generated by a is
just the set of multiples of a:

aR “ tar : r P Ru.

That’s it.

Cultural Remark: The name “principal ideal” suggests that there are “non-principal ideals”.
An ideal of a ring R is a subset I Ď R that is closed under taking R-linear combinations:

a1, . . . , an P I and r1, . . . , rn P R ùñ a1r1 ` ¨ ¨ ¨ ` anrn P I.

One can check that a principal idea aR is, in fact, an ideal. This definition is absolutely central
to the abstract theory of rings, but I still think it is too general for MTH 461. Here we are using
the word “ideal” as a noun, not a verb. The concept was introduced by Richard Dedekind
in the mid 1800s. The original name for “ideals” was “ideal numbers”, but it eventually got
shortened.

Let us now translate the language of divisibility into the language of principal ideals. First
we observe that

a|b ùñ bR Ď aR.

Proof: Suppose that a|b, so that ak “ b for some k P R. Then for any ` we have

b` “ pakq` “ apk`q,

which implies that every multiple of b is also a multiple of a. In other words, bR Ď aR.
Conversely, suppose that bR Ď aR. In particular, since b is in the set bR (because b “ b1) we
must have b P aR. By definition, this means that b “ ak for some k P R, which implies that
a|b as desired. ˝

John Stillwell summarizes this fact with the following slogan:

“To divide is to contain.”

It follows from the previous fact that

aR “ bR ðñ a|b and b|a.

Indeed, the statement aR “ bR just means that aR Ď bR and bR Ď aR. Your intuition from
the integers might suggest that

a|b and b|a
?
ðñ a “ b.
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But this is not quite correct. If R is a domain27 then we recall from the previous section
that a|b and b|a if and only if a and b are associate, so that

aR “ bR ðñ a „ b.

In the integers, we recall that a „ b if and only if a “ ˘b. In particular, we observe that the
multiples of 2 are the same as the multiples of ´2:

2Z “ p´2qZ.

Here is a table comparing the language of divisibility and principal ideals:28

Divisibility Principal Ideals

a|b bR Ď aR
a „ b aR “ bR
a P Rˆ aR “ R
a “ 0 aR = 0R.

The material of these first few sections applies to general rings and integral domains. In the
next section we will return to our discussion of the rings Z and Frxs. In special rings such as
these we will find that the principal ideals satisfy a special property:

For any a, b P R there exists c P R such that aR` bR “ cR.

See the next section for details.

4.5 Euclidean Domains

Each of the rings Z and Frxs has a notion of “division with remainder”. Instead of proving
each theorem in the subject twice, it is convenient to introduce an abstract definition that
applies to both kinds of rings. The general ideas of this section go back to Euclid’s Elements,
Book VII („ 300 BC). Of course, we will express these ideas in modern abstract language.

Definition of Euclidean Domains

Let R be an integral domain. We say that R is a Euclidean domain if there exists a “size
function” N : Rzt0u Ñ N with the following property:

For all a, b P R with b ‰ 0, there exist q, r P R satisfying

"

a “ qb` r,
r “ 0 or Nprq ă Npbq.

27We will only study divisibility in domains.
28You will prove the remaining facts on the homework.
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Examples: There are two main examples.

• The ring of integers R “ Z with size function Npaq “ |a| is a Euclidean domain.

• For any field F, the ring of polynomials R “ Frxs with size function Npfq “ degpfq is a
Euclidean domain.

Remarks:

• The size function N : Rzt0u Ñ N is sometimes called a “norm function”, hence my
choice the letter N . This notation is not completely standard.

• Because of the example R “ Frxs with Npfq “ degpfq, we don’t in general define the
“size” of the zero element Np0q.

• The quotient q and remainder r need not be unique. They are unique for R “ Frxs and
N “ deg, but they are not unique for R “ Z and N “ | ¨ |. To get uniqueness of integer
remainders we must also insist that the remainder satisfy 0 ď r, but this statement
makes no sense in a general ring because R need not be ordered. Indeed, the ring Frxs
cannot be ordered in any sensible way.

Now we will prove the “fundamental theorem” of Euclidean domains. This theorem is usually
expressed by saying that

every Euclidean domain is a Principal Ideal Domain (PID).

Instead of bothering you with extra jargon, I will try to explain what this means in plainer
language.

Existence and Uniqueness of Greatest Common Divisors

For any two elements in a ring, a, b P R, we may consider the set of R-linear combinations:

aR` bR “ tax` by : x, y P Ru.

If R is a Euclidean domain, then for any a, b P R we can always find a single element
c P R such that

aR` bR “ cR.

Such an element c is called a greatest common divisor (gcd) of a and b. This c is almost
unique. Indeed, if aR ` bR “ c1R and aR ` bR “ c2R then we must have c1R “ c2R,
and we recall from the previous section that this implies c1 „ c2. Hence:

Any two elements a, b P R of a Euclidean domain have a greatest common
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divisor, which is unique up to multiplication by units. We denote this (almost-
unique) element by gcdpa, bq.

Examples.

• Any two integers a, b P Z have a greatest common divisor that is unique up to multipli-
cation by ˘1. We will write

gcdpa, bq “ the unique non-negative greatest common divisor.

For example, the greatest common divisors of 4 and 6 are ˘2, so we take

gcdp4, 6q “ `2.

• Any two polynomials fpxq, gpxq P Frxs with coefficients in a field F have a greatest
common divisor that is unique up to multiplication by nonzero scalars. We will write

gcdpf, gq “ the unique monic greatest common divisor.

(Monic means the leading coefficient is 1.) For example, the polynomials x2 ´ 1 and
x3 ´ 1 have greatest common divisors αpx´ 1q for any nonzero α P F, so we take

gcdpx2 ´ 1, x3 ´ 1q “ 1x´ 1.

Proof of the Theorem. Let R be a Euclidean domain with size function N : Rzt0u Ñ N.
Let a, b P R be any two elements and consider the set of R-linear combinations:

I :“ aR` bR “ tax` by : x, y P Ru.

Note that I always contains 0 because 0 “ a0` b0. If I “ t0u then we have I “ 0R so we can
take c “ 0. Otherwise, let c be any element of I with minimal size.29 I claim that I “ cR.

Since c P I we have by definition that c “ ax ` by for some x, y P R. To show that cR Ď I,
we observe that any multiple cz with z P R satisfies

cz “ pax` byqz “ apxzq ` bpyzq P I.

Conversely, we will show that I Ď cR, which is the hard direction. Consider any element
d P I, which by definition has the form d “ ax1 ` by1 for some x1, y1 P R. Since pR,Nq is a
Euclidean domain, we may divide d by c to obtain

"

d “ qc` r,
r “ 0 or Nprq ă Npcq.

29This means that c P I, c ‰ 0 and for all d P I with d ‰ 0 we have Npcq ď Npdq.
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Our goal is to show that r ‰ 0, so that d “ cq P cR. So assume for contradiction that r ‰ 0.
On the one hand, this implies that Nprq ă Npcq. On the other hand, we observe that r is an
element of I:

r “ d´ qc “ pax1 ` by1q ´ qpax` byq “ apx1 ´ qxq ` bpy1 ´ qyq.

Thus r is a nonzero element of I with size strictly smaller than c. Contradiction. ˝

In order to make this proof as slick as possible we defined the concept of “greatest common
divisor” using the language of principal ideals. Now we’ll translate this abstract definition
back into the language of divisibility. Suppose that we have

aR` bR “ cR

tax` by : x, y P Ru “ tcz : z P Ru

for some elements a, b, c of a ring R. In this case, you will prove on the homework that

• c|a and c|b, so that c is a “common divisor” of a and b,

• if d is any common divisor of a and b, then we must also have d|c. This is the sense in
which c is a “greatest common divisor” of a and b.

This notion of “greatest” is a bit surprising. In the case that pR,Nq is a Euclidean domain we
might be interested in common divisors that are “greatest” in the sense of the size function;
that is, elements with c|a and c|b such that for any other element satisfying d|a and d|b we
must have Npdq ď Npcq.For our two favorite Euclidean domains Z and Frxs it turns out that
these two notions of “greatest” are equivalent. However, I have gotten into trouble in previous
semesters trying to make this precise.

It turns out that size functions are rather awkward. For our purposes, we only use N :
Rzt0u Ñ N to prove the existence of gcd and then we never refer to N again, except in the
special cases of Z and Frxs.

Before moving on, I will show two examples of rings that are not Euclidean.

Two Rings that are not Euclidean.

• As we have seen, long division of polynomials sometimes requires fractional coefficients.
This suggests that the ring Zrxs of polynomials with integer coefficients is not a Euclidean
domain. We can prove this rigorously by considering the following set:

2Zrxs ` xZrxs “ t2fpxq ` xgpxq : fpxq, gpxq P Zrxsu
“ tpolynomials in Zrxs whose constant coefficient is evenu.

I claim that this set cannot be expressed in the form cpxqZrxs “ tcpxqhpxq : hpxq P Zrxsu,
hence the elements 2 and x do not have a greatest common divisor in Zrxs. Proof:
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Let I “ 2Zrxs ` xZrxs and note that 2, x P I. Now suppose for contradiction that
I “ cpxqZrxs for some cpxq P Zrxs. We cannot have cpxq “ ˘1 because polynomials
with odd constant term are not in I. And if cpxq has degree ě 1 then every element of
cpxqZrxs (except zero) has degree ě 1, so cpxqZrxs does not contain 2. At this point we
have shown that cpxq “ c P Z is a constant satisfying |c| ě 2. Since every element of
cZrxs has coefficients divisible by c and since every element of I has even constant term,
we must have c “ ˘2. But then then cZrxs does not contain x. Contradiction. ˝

• Given a field F, we may consider the ring of polynomials Frx, ys in two (commuting)
variables x and y. Formally, we may define the ring Frx, ys as pFrysqrxs, i.e., as polyno-
mials in x whose coefficients are polynomials in y. In this case I claim that x and y do
not have a greatest common denominator in Frx, ys. That is, I claim that the set

xFrx, ys ` yFrx, ys “ txfpx, yq ` ygpx, yq : fpx, yq, gpx, yq P Frx, ysu
“ tpolynomials in Frx, ys whose constant coefficient is zerou,

can not be expressed in the form cpx, yqFrx, ys “ tcpx, yqhpx, yq : hpx, yq P Frx, ysu. I
omit the proof because it is similar to the previous item.

We will prove soon that Euclidean domains have unique prime factorization. The rings Zrxs
and Frx, ys also have unique prime factorization but our proof will not apply to them. One
further step is needed, which goes under the name Gauss’ Lemma. We may or may not discuss
this.

4.6 The Euclidean Algorithm

In the previous section we proved that greatest common divisors exist in Euclidean domains,
but we gave no hint how to compute them. For example, suppose we want to compute the
greatest common divisor of 2513 and 3094 in the ring Z. The obvious way to do this is to test
every integer in the range 1 ď c ď 2513 to see if c|2513 and c|3094. Then gcdp2513, 3094q is
the largest such c. But there is a much faster way.

The following result applies to general Euclidean domains; hence the name.

The Euclidean Algorithm

Let pR,Nq be a Euclidean domain and consider elements a, b P R.

• If b “ 0 then gcdpa, bq “ a. Indeed, in this case we have aR` bR “ aR` 0R “ aR.

• So suppose that b ‰ 0 and divide a by b to obtain

"

a “ qb` r,
r “ 0 or Nprq ă Npbq.
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• If r “ 0 then we have gcdpa, bq “ b. Indeed, in this case we have b|a so that aZ Ď bZ
and hence aZ` bZ “ bZ.

• If r ‰ 0 then we can divide b by r to obtain

"

b “ q1r ` r1,
r1 “ 0 or Npr1q ă Nprq.

• If r1 “ 0 then we stop. Otherwise, we continue to divide each new remainder by
the previous, to obtain a sequence of remainders r, r1, r2, r3, . . . , rpkq P R with

Nprq ą Npr1q ą Npr2q ą ¨ ¨ ¨ .

Since the size function is a non-negative integer this implies that there exists some
k such that rpkq ‰ 0 and rpk`1q “ 0. In this case I claim that

gcdpa, bq “ rpkq “ the last nonzero remainder.

Before proving that the algorithm works, we give an example.

Example: To compute gcdp2513, 3094q we first divide 3094 by 2513. Then we continue to
divide each successive remainder by the previous:

3094 “ 1 ¨ 2513 ` 581
2513 “ 4 ¨ 581 ` 189
581 “ 3 ¨ 189 ` 14
189 “ 13 ¨ 14 ` 7
14 “ 2 ¨ 7 ` 0.

Since 7 is the last nonzero remainder we conclude that gcdp2513, 3094q “ 7. Note that this
algorithm took 5 steps, instead of 2513 ˆ 2 steps for the slow algorithm. That’s a huge
improvement.30

Proof that the Algorithm Works. Let R any ring and consider any elements a, b, c, x P R
satisfying a “ bx` c. On the homework you will prove that this implies

aR` bR “ bR` cR.

In particular, the pairs pa, bq and pb, cq have the same common divisors. Since R is a Euclidean
domain, the greatest common divisors exist and we must have

gcdpa, bq “ gcdpb, cq.

30If d is the number of decimal digits in b then one can show that the Euclidean Algorithm uses less than
(sometimes much less than) 5d` 2 steps. This is called Lamé’s Theorem.
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We will apply this observation to the Euclidean algorithm. Suppose the sequence of remainders
stops with rpkq ‰ 0 and rpk`1q “ 0. Then we have

a “ qb` r gcdpa, bq “ gcdpb, rq

b “ q1r ` r1 gcdpb, rq “ gcdpr, r1q

r “ q2r1 ` r2 gcdpr, r1q “ gcdpr1, r2q

...
...

rpk´2q “ qpkqrpk´1q ` rpkq gcdprpk´2q, rpk´1qq “ gcdprpk´1q, rpkqq

rpk´1q “ qpk`1qrpkq ` 0, gcdprpk´1q, rpkqq “ gcdprpkq, 0q

so that gcdpa, bq “ gcdpb, rq “ ¨ ¨ ¨ “ gcdprpkq, 0q. But gcdprpkq, 0q “ rpkq. ˝

Thus we have an efficient algorithm for computing greatest common divisors. But this algo-
rithm throws out useful information. Surely the sequence of quotients q, q1, q2, . . . must tell
us something useful. In this course I gave the fancy definition of greatest common divisors.
Namely, the gcd of two elements a, b in a domain R, if it exists, is the unique (up to units)
element gcdpa, bq P R satisfying

aR` bR “ gcdpa, bqR.

Since gcdpa, bq is an element of the set gcdpa, bqR it is also an element of the set aR ` bR,
hence there exist x, y P R such that

ax` by “ gcdpa, bq.

Note that these elements are not unique. Indeed suppose that ax` by “ gcdpa, bq and let k be
any integer. Then the elements x1, y1 P R defined by x1 “ x´ bk and y1 “ y ` ak also satisfy
ax1 ` by1 “ gcdpa, bq.31

The Extended Euclidean Algorithm will allow us to find one such pair x, y. Before giving
the formal statement, we illustrate the ideas using the previous example pa, bq “ p2513, 3094q.
We used the Euclidean Algorithm to show that gcdp2513, 3094q “ 7. Now we will use the
Extended Euclidean Algorithm to find some x, y P Z satisfying 2513x ` 3094y “ 7. The key
is to consider the set of triples of integers px, y, zq P Z3 satisfying 2513x` 3094y “ z:

V “ tpx, y, zq P Z3 : 2513x` 3094y “ zu.

Why did I choose the letter V ? This set behaves like a vector space because it is closed under
addition and scalar multiplication by integers.32 Indeed, let x “ px, y, zq and x1 “ px1, y1, z1q

31Given one solution ax ` by “ gcdpa, bq, the complete solution is given by x1 “ x ´ b1k and y1 “ y ` a1k
where a1 “ a{ gcdpa, bq and b1 “ b{ gcdpa, bq. We won’t bother to prove this.

32Technically, a vector space is only defined over a field. A vector space over a more general ring such as Z
is called a module. But the name doesn’t matter.
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be elements of V and let k be any integer. Then the triple x2 “ px2, y2, z2q “ px ` kx1, y `
ky1, z ` kz1q “ x` kx1 is also in V because

2513x2 ` 3094y2 “ 2513px` kx1q ` 3094py ` ky1q

“ p2513x` 3094yq ` kp2513x1 ` 3094y1q

“ z ` kz1

“ z2.

The idea is to start with the two obvious triples x “ p0, 1, 3094q P V and x1 “ p1, 0, 2513q P V ,
then to combine these via linear combinations until we obtain a triple of the form px, y, 7q P V .
The steps from the Euclidean Algorithm tells us exactly how to do this. It is convenient to
organize all of the data in a table:

x y z operation

0 1 3094 x
1 0 2513 x1

´1 1 538 x2 “ x1 ´ 1 ¨ x

5 ´4 189 xp3q “ x2 ´ 4 ¨ x1

´16 13 14 xp4q “ xp3q ´ 3 ¨ x2

213 ´173 7 xp5q “ xp4q ´ 13 ¨ xp3q

´442 359 0 xp6q “ xp5q ´ 2 ¨ xp4q

Note that the sequence of row operations correspond to the sequence of quotients from our
original example: 1, 4, 3, 13, 2. By the above remarks, each row operation produces a new
solution to the equation 2513x ` 3094y “ z. Thus the second-to-last row is the desired
solution:33

2513p213q ` 3094p´173q “ 7.

It would be very difficult to find this solution by trial and error.

Now here is the formal statement.

The Extended Euclidean Algorithm

Consider two elements a, b of a Euclidean domain R and consider the set of triples x “
px, y, zq satisfying ax` by “ z:

V “ tpx, y, zq P R3 : ax` by “ zu.

This set is closed under addition and multiplication by scalars from R. That is, for any

33Remark: The complete solution is given by combining the last two rows:

px, yq “ p213´ 442k,´173` 359kq for any integer k P Z.
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x,x1 P V and r P R we have x` rx1 P V . Note that there are two obvious triples in V :

x “ p1, 0, aq P V and x1 “ p0, 1, bq P V.

Our goal is to combine these using linear combinations until we obtain a triple of the
form px, y, zq where z “ gcdpa, bq. The Euclidean Algorithm tells us which steps to use.

To be precise, let q, q1, q2, . . . and r, r1, r2, . . . be the quotients and remainders produced by
the Euclidean Algorithm (as defined previously). Then we recursively define the sequence
of triples x,x1,x2, . . . by

xpiq “ xpi´1q ´ qpiqxpiq.

By construction, the third entry of the triple xpiq is the remainder rpi´2q.34 But recall
that rpkq “ gcdpa, bq for some k. Hence the vector xpk`2q has the form px, y, gcdpa, bqq for
some x, y P R, which gives us the desired solution:

ax` by “ gcdpa, bq.

It is convenient to organize these computations in a table, as follows:

x y z operation

1 0 a x
0 1 b x1

1 ´q r x2 “ x´ qx1

´q1 1` qq1 r1 xp3q “ x2 ´ q1x1

...
...

...
...

something something gcdpa, bq xpk`2q “ xpk`1q ´ qpkqxpkq

Remarks.

• It is not strictly necessary to use the sequence of row operations determined by the
quotients. As long as you perform row operations that shrink the z-coordinate (with
respect to the given size function), you will eventually arrive at a solution. However,
the solution is not unique; different sequences of row operations may lead to different
solutions.

• It is not clear right now why we want to solve the equation ax` by “ gcdpa, bq. Later
we will see that this computation underlies all of modern cryptography.

We gave an example from the ring Z, but the Euclidean Algorithm applies to any Euclidean
domain. Here is an example involving polynomials. Consider the polynomials x2 ` 1 and

34I apologize for the discrepancy in the indices. There isn’t really a clean way to do this.
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x` 1.35 By applying the algorithm we will see that

gcdpx2 ` 1, x` 1q “ 1,

and we will find specific polynomials Apxq, Bpxq such that

px2 ` 1qApxq ` px` 1qBpxq “ 1.

We could jump right to the Extended algorithm but for teaching purposes it makes sense to
begin with the basic Euclidean Algorithm. First we divide x2 ` 1 by x` 1:

x´ 1

x` 1
˘

x2 ` 1
´ x2 ´ x

´ x` 1
x` 1

2

Then we divide x` 1 by 2:

1
2x`

1
2

2
˘

x ` 1
´ x

1
´ 1

0

Note that we are already done after two steps. Since the last nonzero remainder was 2, we
conclude that

gcdpx2 ` 1, x` 1q “ 2.

Wait a minute! Didn’t I tell you that gcdpx2 ` 1, x` 1q “ 1? Recall that the greatest divisor
is only unique up to multiplication by units. But the units of the polynomial ring Frxs are
the nonzero constants. Hence 1 and 2 are associate polynomials. By convention, when we
talk about “the” greatest common divisor of polynomials we always multiply by a nonzero
constant so that the leading coefficient becomes 1. That is, we assume that “the” gcd of two
polynomials is a monic polynomial.

Now we will apply the Extended algorithm to find polynomials Apxq and Bpxq satisfying
px2 ` 1qApxq ` px` 1qBpxq “ 1. The idea is to consider the set V of triples36 of polynomials
pApxq, Bpxq, Cpxqq satisfying

px2 ` 1qApxq ` px` 1qBpxq “ Cpxq.

35The field of coefficients can be Q or R or C, or any field that contains Z.
36Here it does not make sense to use the letters px, y, zq because x is already used for the variable.
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Note that there are two obvious triples:

p1, 0, x2 ` 1q and p0, 1, x` 1q.

We combine the obvious triples using the “same steps” as the basic Euclidean Algorithm:

x y z operation

1 0 x2 ` 1 (row 1)
0 1 x` 1 (row 2)
1 ´x` 1 2 (row 3) “ (row 1)´ px´ 1q(row 2)

´x{2´ 1{2 x2{2` 1{2 0 (row 4) “ (row 2)´ px{2` 1{2q(row 3)

The second-to-last row tells us that

px2 ` 1qp1q ` px` 1qp´x` 1q “ 2.

And we scale this by 1{2 to obtain

px2 ` 1q

ˆ

1

2

˙

` px` 1q

ˆ

´
1

2
x`

1

2

˙

“ 1.

I used this method to illustrate the general theory. However, I believe that you already know
a faster method to solve the equation px2 ` 1qApxq ` px` 1qBpxq “ 1. To jog your memory,
we divide both sides of the previous equation by the polynomial px2 ` 1qpx` 1q to obtain

1

px` 1qpx2 ` 1q
“
px2 ` 1q

`

1
2

˘

` px` 1q
`

´1
2x`

1
2

˘

px` 1qpx2 ` 1q

1

px` 1qpx2 ` 1q
“

1{2

x` 1
`
´x{2´ 1{2

x2 ` 1
.

This is called a partial fraction expansion, which you probably learned in calculus class. Partial
fractions are used to compute integrals of rational expressions. In our case we have

ż

1

px` 1qpx2 ` 1q
dx “

1

2

ˆ
ż

1

x` 1
dx´

ż

x

x2 ` 1
dx´

ż

1

x2 ` 1
dx

˙

“
1

2

ˆ

lnpx` 1q ´
1

2
lnpx2 ` 1q ´ arctanpxq

˙

.

4.7 Unique Prime Factorization

In this section we will finish our discussion of Euclidean domains by proving that every Eu-
clidean domain satisfies “unique prime factorization”. As is the case for this whole chapter,
the basic ideas of this section go back to Euclid’s Elements, Book VII („ 300 BC). Gauss
revived these ideas in his Disquisitiones Arithmeticae (1801), where he proved that integers
has unique prime factorization, and he called this the “fundamental theorem of arithmetic”.
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You are certainly familiar with unique factorization of integers. For example, we can factor
the integer 12 P Z in various ways:

12 “ 2 ¨ 2 ¨ 3

“ 2 ¨ 3 ¨ 2

“ 3 ¨ 2 ¨ 2

“ p´3q ¨ 2 ¨ p´2q

“ p´3q ¨ p´2q ¨ 2 ¨ 1

“ 3 ¨ 2 ¨ p´2q ¨ p´1q ¨ 1 ¨ 1 ¨ 1.

But these factorizations are essentially the same. The only important information is that 12
contains “two copies of the prime 2” and “one copy of the prime 3”. The following details are
not important:

• We can reorder the factors.

• We can multiply an even number of factors by ´1.

• We can include the factor 1 an arbitrary number of times.

For general Euclidean domains we must replace “multiplication by ˘1” with “multiplication
by units”. For example, consider the polynomial x3 ´ x2 ´ 2x` 2 in the ring Qrxs. Here are
several factorizations:

x3 ´ x2 ´ 2x` 2 “ px´ 1qpx2 ´ 2q

“ p2x´ 2q

ˆ

1

2
x2 ´ 1

˙

“ p´3x2 ` 6q

ˆ

´
1

3
x`

1

3

˙

“ p´3x2 ` 6q

ˆ

1

3
x´

1

3

˙

p´4q ¨
1

2
¨

1

2
.

This time we observe that multiplication by constants is not interesting. Indeed, the
nonzero constants are the units of the ring Qrxs. The only important information is that
x3´x2´ 2x` 2 contains “one copy of the prime x´ 1” and “one copy of the prime x2´ 1”.37

But how do we know that the polynomial x2 ´ 2 is prime? This depends on the fact that?
2 is not a rational number, which we will prove at the end of this section.38 Over the real

numbers, the polynomial x2 ´ 2 does factor, and we obtain

x3 ´ x2 ´ 2x` 2 “ px´ 1qpx´
?

2qpx`
?

2q.

Thus the unique prime factors of a polynomial depend on the field of coefficients.

37Since we can always scale the leading coefficient, we will only discuss monic factors (i.e., factors with leading
coefficient 1).

38More generally, we will use the Fundamental Theorem of Arithmetic to prove that the polynomial x2 ´ d
is prime over Q whenever d P Z is not a perfect square.
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In order to discuss prime factorization, we must first define the word “prime”. This is trickier
than you might think! In a general ring there are several different kinds of elements that
we might want to call “prime”. So as not to confuse you with extra terminology I will use
the word “prime” for all of these elements. For example, the next definition is usually called
“irreducibility”, but I will just call it “primality”.

The school definition a “prime number” is “an integer greater than 1 that is only divisible by
1 and itself”. Here is the translation of this concept into the language of domains.39

Prime Element of a Domain

Let R be a domain. An element p P R is called prime when:

• p ‰ 0,

• p is not a unit,

• a|p implies that a „ p or a „ 1.

Thus we have made the transition from equality to associatedness:

“if a|p then a “ p or a “ 1”  “if a|p then a „ p or a „ 1”.

Here we are officially stating that units do not matter in the theory of factorization. It is more
elegant to express this in the language of ideals.

Prime Elements in Terms of Ideals

Let a, b be elements of a domain R. We we recall that

aR Ď bR ðñ b|a,

aR “ bR ðñ a „ b,

aR “ 1R ðñ a „ 1

aR “ 0R ðñ a “ 0.

Thus an element p P R is prime when

• pR ‰ 0R,

• pR ‰ 1R,

39In practice, we will only discuss prime elements of domains. Factorization is non-domains is more exotic.
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• pR Ď aR implies that aR “ pR or aR “ 1R.

Now we are ready to state and prove the Fundamental Theorem of Arithmetic. Note that this
theorem applies to Euclidean domains.

The Fundamental Theorem of Arithmetic

Let R be a Euclidean domain. Suppose that we have

p1p2 ¨ ¨ ¨ pk „ q1q2 ¨ ¨ ¨ q`

for some prime elements p1, . . . , pk, q1, . . . , q` P R. Then we must have k “ ` and we can
relabel the factors so that pi „ qi for all i.

The key step of the proof is a famous lemma, which appears as proposition 30 in Book VII of
Euclid’s Elements. This lemma is so important that it has its own name.

Euclid’s Lemma

Let R be a Euclidean domain and let p P R be prime. Then for all a, b P R we have

p|ab ùñ p|a or p|b.

Assuming this lemma, we will prove the theorem. Then we will prove the lemma.

Proof of the Fundamental Theorem. Let R be a Euclidean domain and consider any
prime elements p1, . . . , pk, q1, . . . , q` P R satisfying

(˚) p1p2 ¨ ¨ ¨ pk „ q1q2 ¨ ¨ ¨ q`.

Since p1 divides the left hand side it must also divide the right hand side, so

p1|q1q2 ¨ ¨ ¨ q`.

Since p1 is prime, it follows from Euclid’s Lemma that p1|qi for some i. After relabeling if
necessary, we can assume that p1|q1. Since q1 is prime this implies that p1 „ 1 or p1 „ q1.
But p1 „ 1 is impossible because units are not prime, so we must have p1 „ q1. Canceling
this factor from both sides of (˚) gives

p2 ¨ ¨ ¨ pk „ q2 ¨ ¨ ¨ q`.
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And now we are done by induction. ˝

You might worry that I skipped some details in this proof. In particular, I didn’t tell you it
was going to be a proof by induction until the very end. I could certainly make the proof more
explicit but I believe you would understand it less if I did that. The proof is a bit subtle so
I prefered to emphasize the important steps and de-emphasize the routine steps. You might
also worry that I used the symbol “„” instead of ““”. This is because units don’t matter;
including them would just waste letters of the alphabet.

Proof of Euclid’s Lemma. Let R be a Euclidean domain and let p P R be prime. For any
elements a, b P R we will prove that

p|ab and p - a ùñ p|b,

which is equivalent to the desired result.

So suppose that p|ab (say pk “ ab) and p - a. Since p is prime and p - a, I claim that
aR ` pR “ R. Indeed, since R is Euclidean we know that aR ` pR “ dR for some d P R,
which implies that pR Ď dR because pR Ď aR` pR. Since p is prime, the inclusion pR Ď dR
implies that pR “ dR or dR “ R. But if pR “ dR then aR ` pR “ pR implies aR Ď pR,
which contradicts our assumption that p - a.

Thus we have shown that aR ` pR “ R. Since 1 P R this implies that 1 P aR ` pR, hence
there exist some elements x, y P R satisfying ax` py “ 1.40 Finally, we multiply both sides of
this equation by b to obtain

ax` py “ 1

bpax` pyq “ b

abx` pby “ b

pkx` pby “ b

ppkx` byq “ b.

It follows that p|b as desired. ˝

To end this chapter I will apply the theory of unique factorization to give a slick proof of the
following theorem.

Irrationality of Square Roots

Let n be a positive integer and let
?
n be the unique positive real square root. Then

?
n P Q ùñ

?
n P Z.

40We could find some specific x, y by using the Extended Euclidean Algorithm.
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In other words, if n is not a perfect square then
?
n is irrational.

In order to make the proof as clean as possible, we use the concept of “prime multipliciticy”.

Prime Multiplicity

Let R be a Euclidean domain and let p P R be prime. According to the Fundamental
Theorem of Arithmetic, there exists a function41

µp : RÑ N,

where µppaq is the “multiplicity of the prime p” in the prime factorization of a. It is easy
to check that this function behaves like a logarithm:

µppabq “ µppaq ` µppbq for all a, b P R.

For example, the prime factorizations

15 “ 20 ¨ 31 ¨ 51 ¨ 70,

42 “ 21 ¨ 31 ¨ 50 ¨ 71,

630 “ 15 ¨ 42 “ 21 ¨ 32 ¨ 51 ¨ 71,

correspond to the information

µ2p15q ` µ2p42q “ 0` 1 “ 1 “ µ2p630q,
µ3p15q ` µ3p42q “ 1` 1 “ 2 “ µ3p630q,
µ5p15q ` µ5p42q “ 1` 0 “ 1 “ µ5p630q,
µ7p15q ` µ7p42q “ 0` 1 “ 1 “ µ7p630q.

Now we can prove the theorem.

Proof. Suppose that
?
n is not an integer. I claim that there exists a prime p P Z such

that µppnq is odd. Indeed, if this were not the case then for every prime p we would have
µppnq “ 2kp for some integer kp ě 0, and hence

˜

ź

p

pkp

¸2

“
ź

p

p2kp “
ź

p

pµppnq “ n.

41I use the letter µ for “multiplicity”. The most common notation is νp, and I’m not sure why. There is a
more general concept called a discrete valuation ν : RÑ N. Maybe the notation ν is based on the coincidence
that the Greek letter ν looks like the English letter v. I hope that’s not the case.
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But this contradicts the fact that n is not the square of an integer.

Now assume for contradiction that
?
n “ a{b for some integers a, b P Z, i.e., that

a2 “ nb2 for some integers a, b P Z.

Now let p be any prime such that µppnq is odd, and apply µp to both sides of the previous
equation to obtain a contradiction:

µppa
2q “ µppnb

2q

µppaq ` µppaq “ µppnq ` µppbq ` µppbq

2µppaq “ µppnq ` 2µppbq

pevenq “ poddq ` pevenq.

˝

4.8 Epilogue: Gauss’ Lemma

After the basic ideas appeared in Euclid’s Elements, it is interesting that the uniqueness of
prime factorization was not studied again until Gauss’ Disquisitiones Arithmeticae in 1800.
This book launched the modern era of number theory and established a lot of notation that
we still use today.42

Actually, Gauss’ main interest was not factorization of integers, but factorization of polyno-
mials with integer coefficients. To be specific, in his study of regular polygons (such as the
17-gon) he needed to know that for any prime p P Z the polynomial

1` x` x2 ` ¨ ¨ ¨ ` xp´1

cannot be factored as a product of two polynomials with integer coefficients. This is true
but not at all easy to prove. The important step is to show that this polynomial cannot be
factored in the ring Qrxs and then use this to show that it cannot be factored in Zrxs.

We know that the ring Qrxs has unique prime factorization because Q is a field, hence Qrxs
is a Euclidean domain. However, we remarked above that the ring Zrxs is not Euclidean.
Indeed, we showed that the set

2Zrxs ` xZrxs “ t2fpxq ` xgpxq : fpxq, gpxq P Zrxsu
“ tinteger polynomials whose constant term is evenu

cannot be expressed as fpxqZrxs for any polynomial fpxq P Zrxs. This means that our proof
of unique prime factorization does not apply to Zrxs.

Nevertheless, it is still true that the ring Zrxs has unique prime factorization. More generally,
we have the following abstract theorem, which is based on Article 42 of the Disquisitiones.

42For example, Gauss introduced the notation a ” b pmod nq, which we will discuss in our chapter on
modular arithmetic.
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Gauss’ Lemma

Let R be a domain and consider the ring of polyonomials Rrxs. We say that R is a unique
factorization domain (UFD) if it satisfies the conclusion of the Fundamental Theorem of
Arithmetic. Then

R is a UFD ùñ Rrxs is a UFD.

The proof requires a few new ideas, so we omit it for lack of time.

In particular, since Z is Euclidean it is a UFD, and it follows from Gauss’ Lemma that Zrxs is
a UFD. Furthermore, if F is a field then since Frxs is Euclidean it is a UFD, and we conclude
from Gauss’ Lemma that Frxsrys “ Frx, ys is a UFD. By induction, the ring of polynomials
in any number of variables over Z or a field F has unique prime factorization.

In general, it is difficult to prove that a given polynomial is prime. We will return to this topic
when we discuss field extensions.

5 Cubic Equations

5.1 Intermediate Value Theorem

In the previous chapter we discussed the relationship between the roots of a polynomial func-
tion f : FÑ F and the divisibility properties of the formal polynomial expression fpxq P Frxs.
This gives us a convenient language to discuss hypothetical solutions of polynomial equations,
but it does not yet help us to find solutions.

In applications we are usually interested in real solutions of a real polynomial equation fpxq “
0. There are three kinds of questions that we might ask:

• Prove that a solution exists.

• Find an approximate solution.

• Find an exact formula for a solution.

The first two questions can be answered with calculus.

Every Odd Polynomial Has a Real Root

Let fpxq P Rrxs be a polynomial of odd degree with real coefficients. I claim that the
equation fpxq “ 0 has at least one real solution.
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Proof. Let n ě 1 be odd and consider a real polynomial fpxq “ a0` a1x` ¨ ¨ ¨` anx
n P Rrxs.

It the leading coefficient satisfies an ą 0 then the graph of the function fpxq looks like this:

And if the leading coefficient satisfies an ă 0 then the graph looks like this:

In either case, we conclude that the graph must cross the x-axis somewhere.

This kind of reasoning goes back to Descartes (1637) and his “rule of signs”. The standard
notations of Cartesian geometry developed over the next 50 years. Isaac Newton was probably
the first person to consistently draw his graphs using negative coordinates. At this point in
history it was completely obvious that the graph of a function is like an unbroken string;
if it appears at one point above the x-axis and at another point below the x-axis then it must
cross the x-axis at some point in between. The first mathematicians to try to prove this
obvious fact were Bernard Bolzano (1817) and Augustin-Louis Cauchy (1821). This style of
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thinking gave birth to the modern subject of “analysis”,43 which is the opposite of “algebra”.
Nevertheless, I will give you a quick taste.

The Intermediate Value Theorem

Consider a polynomial fpxq P Rrxs with real coefficients and suppose that we have real
numbers a ă b with fpaq ă 0 ă fpbq. Then there exists some real number a ă c ă b with
the property that fpcq “ 0.

Proof. Set a0 :“ a and b0 :“ b and denote the midpoint by m0 :“ pa0 ` b0q{2. If fpm0q “ 0
then we are done. Otherwise, there are two cases:

• If fpm0q ą 0 then we define a1 :“ a0 and b1 :“ m0.

• If fpm0q ă 0 then we define a1 :“ m0 and b1 :“ b0.

Now we define the midpoint m1 :“ pa1 ` b1q{2 and repeat the process. If we never hit on an
exact root then we will obtain two infinite sequences

a0 ď a1 ď a2 ď ¨ ¨ ¨ ď b2 ď b1 ď b0

with the following properties:

• The distance bn ´ an gets cut in half each time.

• We have fpanq ă 0 and fpbnq ą 0 for all n.

Bolzano and Cauchy both claimed that the sequences an and bn must approach a common
limit c P R,44 and then they argued by contradiction that the number c must satisfy fpcq “ 0.
There are two cases:

• On the homework you proved that fpcq ´ fpanq “ pc´ anqgpc, anq for some polynomial
expression gpc, anq. Since c´ an goes to zero this this proves that fpcq ´ fpanq goes to
zero. Then since fpanq ă 0 for all n this implies that fpcq is not greater than zero.

• But we also have the factorization fpbnq ´ fpcq “ pbn ´ cqgpbn, cq. Since bn ´ c goes to
zero this proves that fpbnq ´ fpcq goes to zero. Finally, since fpbnq ą 0 for all n we
conclude that fpcq is not less than zero.

The only remaining possibility is that fpcq “ 0.

43You will learn more about this in MTH 433 or 533.
44Today we would take this as part of the definition of the real numbers.
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5.2 Newton’s Method

We have proved that every real polynomial of odd degree has a real root. For example, let us
consider the following cubic polynomial:

fpxq “ x3 ´ 3x2 ´ 3x´ 1 P Rrxs.

By plotting the graph, we observe that there is a root somewhere between 3.5 and 4:

In this section I will describe a method for approximating this root with any desired degree
of accuracy. This method is typically called Newton’s method, but the history is a bit com-
plicated.45 Specific examples of this method go back to the ancient Babylonians and the
modern version in terms of derivatives was described in 1740 by Thomas Simpson, 13 years
after Newton’s death.

Newton’s Method

Let fpxq be a differentiable function of a real variable (not necessarily a polynomial
function). In order to find a real solution of the equation fpxq “ 0 we first make a guess
x0 P R. Then we successively improve this guess by defining

xn`1 “ xn ´
fpxnq

f 1pxnq
,

where f 1pxq is the derivative function. Geometrically, we may view xn`1 as the x-intercept
of the tangent line to the graph of f at the point pxn, fpxnqq, as in the following picture:

45See A short history of Newton’s method, by Peter Deuflhard.
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From the picture it seems clear that the sequence x0, x1, x2, . . . will converge to a root of
the function. (In fact, one can prove that after a certain point the number of accurate
decimal places will double with each iteration.) To obtain the recurrence, we recall that
the tangent line to the graph at pxn, fpxnqq has the equation

f 1pxnq “ py ´ fpxnqq{px´ xnq.

Then since the point pxn`1, 0q is supposed to be on this line, we must have

f 1pxnq “ p0´ fpxnqq{pxn´1 ´ xnq

xn`1 ´ xn “ ´fpxnq{f
1pxnq

xn`1 “ xn ´ fpxnq{f
1pxnq.

For example, consider the function f : R Ñ R defined by the polynomial fpxq “ x3 ´ 3x2 ´
3x´1. Since the derivative is f 1pxq “ 3x2´6x´3, we obtain the following recurrence formula:

xn`1 “ xn ´
fpxnq

f 1pxnq
“ xn ´

x3n ´ 3x2n ´ 3xn ´ 1

3x2n ´ 6xn ´ 3
.

Let x0 be any guess that you want; say x0 “ 3.5. Then my computer tells me that

x0 “ 3.5

x1 “ 3.921568628

x2 “ 3.849765479

x3 “ 3.847324880

x4 “ 3.847322101

x5 “ 3.847322102
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Note that we have obtained nine decimal places of accuracy after just five iterations. This
amount of accuracy is sufficient for any practical purpose. But we might be curious whether
there is a “closed formula” for this root. The answer for general polynomials is “no”, but for
cubic polynomials such as x3´ 6x´ 6 the answer is “yes”. In the next section I will show you
the famous Cardano’s formula, which will give us the following exact expression:

3
?

2`
3
?

4` 1 « 3.8473221018630726396.

5.3 Cardano’s Formula

The first great achievement of European mathematics was the solution of cubic equations.
This occurred in Italy in the early 1500s. We know some details of the discovery because of
the spread of printed books, including first-hand accounts from two of the main participants
(Cardano and Tartaglia). Here is the short version:

• Scipione del Ferro (died 1526) discovered a solution to the cubic equation x3 ` px “ q.
On his deathbed he passed the secret to his student Antonio Fiore.

• Fiore boasted that he was able to solve cubics. He issued a challenge to the well-known
Niccolo Tartaglia in 1535, sending him 30 cubic equations of type x3 ` px “ q.

• Tartaglia struggled with Fiore’s problems until he discovered the solution on the night
before the contest. Fiore suffered a humiliating defeat.

• Tartaglia divulged the method to Gerolamo Cardano under oath in 1539.

• Cardano generalized the method to other types of cubics and, together with his student
Ludovico Ferrari, discovered a method for solving quartic equations.

• Cardano published these results in the Ars Magna, or The Rules of Algebra (1545).

• Tartaglia was furious. Tartaglia and Ferrari traded insults in a series of 12 printed
pamphlets. This ended with a public contest in 1548, which Ferrari won.

• The solution to the general cubic became known as “Cardano’s formula”.

Recall that al-Khwarizmi interpreted quadratic equations in terms of areas of squares and
rectangles. Similarly, Cardano presented the solution to cubic equations in terms of the
volumes of cubes and rectangular boxes. However, it is unlikely that the method could have
been discovered using geometry because the constructions are too complicated. Instead I
believe that the method must have been found using algebraic manipulation, and this is why
it was not discovered before the 1500s.

Before showing you Cardano’s formula I will illustrate the method using our sample cubic:

x3 ´ 3x2 ´ 3x´ 1 “ 0.

For quadratic equations we needed the trick of “completing the square”. For cubic equations
we also need some tricks.
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Trick 1. First we make the substitution x “ y ` α for some constant α. This gives

py ` αq3 ´ 3py ` αq2 ´ 3py ` αq ´ 1 “ 0

py3 ` 3αy2 ` 3α2y ` α3q ´ 3py2 ` 2αy ` α2q ´ 3py ` αq ´ 1 “ 0

y3 ` p3α´ 3qy2 ` p3α2 ´ 6α´ 3qy ` pα3 ´ 3α2 ´ 3α´ 1q “ 0.

Then we set α “ 1 in order to eliminate the quadratic term:

y3 ` 0y2 ´ 6y ´ 6 “ 0.

Trick 2. Next we set y “ u` v to obtain

pu` vq3 ´ 6pu` vq ´ 6 “ 0

pu3 ` 3u2v ` 3uv2 ` v3q ´ 6pu` vq ´ 6 “ 0.

Trick 3. We can simplify this by also assuming that uv “ 2. Then we must have

pu3 ` 3u2v ` 3uv2 ` v3q ´ 6pu` vq ´ 6 “ 0

pu3 ` 6u` 6v ` v3q ´ 6pu` vq ´ 6 “ 0

u3 ` v3 “ 6.

Trick 4. At this point we want to solve the following system of two equations:
"

uv “ 2,

u3 ` v3 “ 6.

This is easier if we cube both sides of the first equation:
"

u3v3 “ 8,

u3 ` v3 “ 6.

Then we observe that u3 and v3 are the two roots of the following quadratic equation:

pz ´ u3qpz ´ v3q “ 0

z2 ´ pu3 ` v3qz ` u3v3 “ 0

z2 ´ 6z ` 8 “ 0.

It follows from the quadratic formula that

u3 and v3 “
6˘

?
36´ 4 ¨ 8

2
“

6˘
?

4

2
“

6˘ 2

2
“ 2 and 4.

It doesn’t matter which is which; we might as well say that u3 “ 2 and v3 “ 4, so that u “ 3
?

2
and v “ 3

?
4. Finally, we put everything back together to obtain

x “ y ` α
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“ y ` 1

“ u` v ` 1

“
3
?

2`
3
?

4` 1.

There was no guarantee that this sequence of seemingly random tricks would lead to a solution.
However, once the final expression x “ 3

?
2 ` 3

?
4 ` 1 is found, it is straightforward to check

that this is indeed a solution to the equation x3 ´ 3x2 ´ 3x´ 1 “ 0. [Exercise: Check this.]

We can apply these same tricks to the general case.

Cardano’s Formula

Let a, b, c, d be any numbers with a ‰ 0 and consider the equation

ax3 ` bx2 ` cx` d “ 0.

By substituting x “ y ´ b
3a we obtain the depressed cubic equation

y3 ` py ` q “ 0,

where the coefficients p, q can be expressed in terms of a, b, c, d as follows:

p “
3ac´ b2

3a
and q “

27a2d´ 9abc` 2b3

27a2
.

Next we substitute y “ u` v and uv “ ´p{3 to obtain

u3 ` v3 “ ´q.

We observe that u3 and v3 are the roots of the quadratic polynomial

pz ´ u3qpz ´ v3q “ z2 ´ pu3 ` v3qz ` u3v3 “ z2 ` qz ´ pp{3q3,

hence from the quadratic formula we have

u3 and v3 “
´q ˘

a

q2 ` 4pp{3q3

2
“ ´pq{2q ˘

a

pq{2q2 ` pp{3q3.
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Finally, we obtain

y “ u` v “
3

d

´
q

2
`

c

´q

2

¯2
`

´p

3

¯3
`

3

d

´
q

2
´

c

´q

2

¯2
`

´p

3

¯3
.

We won’t bother to express x “ y´ b
3a in terms of the original coefficients a, b, c, d because

the formula will certainly not fit on the page.

That’s a reasonably nice formula, but—as with the quadratic formula—the main difficulty is
to interpret the different cases. For example, how can we tell if this formula represents one,
two or three real solutions? How can we tell if there is a repeated solution? Is there some
cubic version of a “discriminant”? Luckily, when it comes to real numbers, cube roots are less
problematic than square roots.

The Real Cube Root of a Real Number

For each real number a P R there exists exactly one real number α P R satisfying α3 “ a.
Thus it makes sense to talk about the cube root of a real number:

3
?
a “ α.

Proof. This will follow later from our discussion of the cube roots of complex numbers.

However, the square root in the formula is still ambiguous. Let’s test our understanding on
the simple equation x3´1 “ 0. On the one hand we know that x “ 1 is the only real solution.
On the other hand, we can apply Cardano’s formula with p “ 0 and q “ ´1 to obtain

x “
3

b

´pq{2q `
a

pq{2q2 ` pp{3q3 `
3

b

´pq{2q ´
a

pq{2q2 ` pp{3q3

“
3

b

1{2`
a

1{4`
3

b

1{2´
a

1{4.

Note that we must interpret the symbol
a

1{4 in the same way for each summand. For
example, if we fix

a

1{4 “ 1{2 throughout then we obtain the correct answer

x “ 3
a

1{2` 1{2` 3
a

1{2´ 1{2 “
3
?

1`
3
?

0 “ 1` 0 “ 1.

However, if we choose
a

1{4 “ 1{2 in the first summand and
a

1{4 “ ´1{2 in the second
summand then we obtain the wrong answer:

x “ 3
a

1{2` 1{2` 3
a

1{2` 1{2 “
3
?

1`
3
?

1 “ 1` 1 “ 2.
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So be careful.

The following more difficult example comes from Cardano’s Ars Magna (1545):

x3 ` 6x´ 20 “ 0.

On the one hand, we observe that x “ 2 is a solution. Then we can apply Descartes’ Factor
Theorem to obtain

x3 ` 6x´ 20 “ px´ 2qpx2 ` 2x` 10q.

Since the quadratic equation x2`2x`10 “ 0 has no real solution we conclude that the original
cubic has only one real solution. On the other hand, we can apply Cardano’s formula with
p “ 6 and q “ ´20 to obtain

x “
3

b

´10`
a

102 ` 23 `
3

b

´10´
a

102 ` 23

“
3

b

10`
?

108`
3

b

10´
?

108.

We observe that this expression defines a real number. But we also know that x “ 2 is the
only real solution, so it must be the case that

3

b

10`
?

108`
3

b

10´
?

108 “ 2.

I will ask you to verify this identity on the homework. The trick is to express the cube roots
of 10`

?
108 and 10´

?
108 in the form a` b

?
3 for some integers a, b P Z.

5.4 Bombelli and “Imaginary Numbers”

For any real numbers p, q P R satisfying pq{2q2 ` pp{3q3 ą 0 there exists a unique positive
real number s satisfying s2 “ pq{2q2 ` pp{3q3. Then, according to Cardano, the equation
x3 ` px` q “ 0 has at least one real solution:

x “ 3
a

´q{2` s` 3
a

´q{2´ s.

This was an important achievement, but it was not a complete solution to the cubic equation
because it left the following issues unresolved:

• Every real cubic has at least one real root. However, if pq{2q2`pp{3q3 ă 0 then Cardano’s
formula seems to produce no solutions.

• Some cubic equations have more than one real solution, but Cardano’s formula seems
to produce only one solution.

The first issue was resolved by Rafael Bombelli in his Algebra (1572). His main innovation
was to treat the abstract symbol “

?
´1” as though it were a number, satisfying all the usual

rules of arithmetic, together with the fact that p
?
´1q2 “ ´1. It is easy to make mistakes

with this notation; for example, consider the following paradox:46

1 “
?

1 “
a

p´1qp´1q “
?
´1
?
´1 “ ´1.

46Today we recognize that the identity n
?
a n
?
b “ n

?
ab is not generally valid because it depends on the

particular choices of nth roots.
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Bombelli carefully avoided these mistakes, however. He realized that the number ´1 should
have two distinct square roots, which he called più di meno [plus from minus] and meno di
meno [minus from minus]. Today we refer to the two square roots of ´1 by the symbols i and
´i.47 There is no way to distinguish between these symbols, so let us say that i is Bombelli’s
più di meno. He then set down the following table:

i ¨ i “ ´1 più di meno via più di meno fa meno

ip´iq “ 1 più di meno via meno di meno fa più

p´iqi “ 1 meno di meno via più di meno fa più

p´iqp´iq “ ´1. meno di meno via meno di meno fa meno

These ideas were slow to catch on, and were regarded as useless speculation well into the 18th
century. Nevertheless, Bombelli showed that the the symbols i and ´i can be used to resolve
some problems with Cardano’s formula. For example, he considered the equation

x3 ´ 15x´ 4 “ 0.

On the one hand, we observe that x “ 4 is a solution. On the other hand, we can apply
Cardano’s formula with p “ ´15 and q “ ´4 to obtain

x “
3

b

2`
a

22 ` p´5q3 `
3

b

2´
a

22 ` p´5q3

“
3

b

2`
?

4´ 125`
3

b

2´
?

4´ 125

“
3

b

2`
?
´121`

3

b

2´
?
´121

“
3

b

2`
a

121p´1q `
3

b

2´
a

121p´1q

“
3

b

2`
?

121
?
´1`

3

b

2´
?

121
?
´1

“
3
?

2` 11i` 3
?

2´ 11i.

Clearly there is no real number α P R with the property α3 “ 2` 11i, but perhaps there is an
abstract symbol α “ a` bi with this property. Bombelli computed48

pa` biq3 “ a3 ` 3a3bi` 3ab2i2 ` b3i3

“ a3 ` 3a3bi´ 3ab2 ´ b3i

“ pa3 ´ 3ab2q ` p3a2b´ b3qi.

Then he observed that the values pa, bq “ p2, 1q and pa, bq “ p2,´1q give the following formulas:

p2` iq3 “ 2` 11i

47This notation was introduced by Euler in his book Institvtionvm calcvli integralis, 2nd. ed., IV, 1794, p.
184. It was later standardized by Gauss when it appeared in his Disquisitiones Arithmeticae, 1801.

48He did not use this language, nor did he show the details, but we assume that he performed a similar
computation.
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p2´ iq3 “ 2´ 11i.

Finally, he substituted these “imaginary numbers” into Cardano’s formula to obtain

x “ 3
?

2` 11i` 3
?

2´ 11i “ p2` iq ` p2´ iq “ 4.

5.5 Cardano’s Formula (Modern Version)

Unfortunately, Bombelli still could not answer the question of multiple real roots. Since x “ 4
is a root of x3 ´ 15x´ 4, we can use long division to factor out x´ 4:

x3 ´ 15x´ 4 “ px´ 4qpx2 ` 4x` 1q.

Then from the quadratic formula we obtain two more real roots:

x “
´4˘

?
16´ 4

2
“
´4˘ 2

?
3

2
“ ´2˘

?
3.

Here is a picture:

The key idea that Bombelli missed is the fact that every nonzero complex number a` bi has
not one but three distinct cube roots. Using this fact, we can cook up all three solutions
from Cardano’s formula. First I will state and prove a completely modern version of the
theorem, then we will apply it to Bombelli’s example.

Cardano’s Formula (Modern Version)

Let p, q P F be any two elements of a field and consider the depressed cubic equation

x3 ` px` q “ 0.
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We define the discriminant of the cubic as follows:

∆ :“
´q

2

¯2
`

´p

3

¯3
P F.

Let δ P F be any number satisfying δ2 “ ∆ (which may or may not exist). Let ω P F be
any number with the properties ω3 “ 1 and ω ‰ 1 (which may or may not exist). And
let u, v P F be any numbers with the properties

u3 “
´q

2
` δ, v3 “

´q

2
´ δ and uv “

´p

3

(which may or may not exist). Then I claim that we have

x3 ` px` q “ px´ αqpx´ βqpx´ γq,

where the numbers α, β, γ P F are defined as follows:

α “ u` v,

β “ ωu` ω2v,

γ “ ω2u` ωv.

If ∆ ‰ 0 then the three roots α, β, γ are distinct; otherwise, if ∆ “ 0 then two of the
roots (and possibly all three) are equal.

The proof is short but not very enlightening. It will make more sense later.

Proof. First we observe that ω3 “ 1 and ω ‰ 1 imply ω2 ` ω ` 1 “ 0. Indeed, we can factor
the polynomial x3 ´ 1 P Frxs as follows:

x3 ´ 1 “ px´ 1qpx2 ` x` 1q.

Then since ω3 “ 1 we have pω´ 1qpω2`ω` 1q “ ω3´ 1 “ 0 and since ω´ 1 ‰ 0 we conclude
that ω2 ` ω ` 1 “ 0. By applying this and the properties of u and v, one can check that

α` β ` γ “ 0,

αβ ` αγ ` βγ “ p,

αβγ “ ´q.

Therefore we obtain

px´ αqpx´ βqpx´ γq “ x3 ´ pα` β ` γqx2 ` pαβ ` αγ ` βγqx´ αβγ

“ x3 ` 0x2 ` px` q,
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as desired. It follows from this that the numbers α, β, γ P F are the roots of x3`px` q. Next,
one can check (just believe me) that

pα´ βq2pα´ γq2pβ ´ γq2 “ ´
´q

2

¯2
´

´p

3

¯3
“ ´∆.

It follows from this that the three roots α, β, γ are distinct if and only if ∆ ‰ 0.

I call this the “modern version” because it is stated for a general field F. In applications we
are probably interested in the rational numbers Q or the real numbers R. However, if the
discriminant ∆ P R is negative49 then we need to pass to the complex numbers:

C “ ta` bi : a, b P Ru.

We will show in the next chapter that C is a field. We will also prove that every nonzero
complex number has n distinct complex nth roots. This implies that for all p, q P C, we can
always find numbers s, u, v, ω P C satisfying the requirements of Cardano’s formula, and it
follows that every cubic polynomial splits over C (which is a special case of the Fundamental
Theorem of Algebra).

To end the chapter we will apply the modern version Cardano’s formula to Bombelli’s example:

x3 ´ 15x´ 4 “ 0.

Since p “ ´15 and q “ ´4, the discriminant is ∆ “ p´2q2 ` p´5q3 “ ´121 ‰ 0. Thus we can
expect three distinct solutions. Take s “ 11i, which is one of the two complex square roots
of ∆, so that ´q{2 ˘ s “ 2 ˘ 11i. As in the previous section we observe that the numbers
u “ 2` i and v “ 2´ i satisfy u3 “ 2` 11i and v3 “ 2´ 11i. We also observe that

uv “ p2` iqp2´ iq “ 22 ´ i2 “ 4` 1 “ 5 “
´p

3

as desired. The first root is the one that Bombelli found:

α “ u` v “ p2` iq ` p2´ iq “ 4.

To find the other two roots we need to choose some complex number ω P C satisfying ω3 “ 1
and ω ‰ 1. In the proof above we observed that these two conditions are equivalent to the
single condition ω2 ` ω ` 1 “ 0. Thus we can solve for ω using the quadratic formula:

ω “
´1˘

?
1´ 4

2
“
´1˘

?
´3

2
“
´1˘ i

?
3

2
.

It doesn’t matter which we choose, so let’s say ω “ p´1`
?

3q{2. Then since pω2q2`pω2q`1 “
ω4 ` ω2 ` 1 “ ω ` ω2 ` 1 “ 0 we observe that ω2 “ p´1´ i

?
3q{2 is the other root. Finally,

after a few computations we obtain

β “ ωu` ω2v “

ˆ

´1` i
?

3

2

˙

p2` iq `

ˆ

´1´ i
?

3

2

˙

p2´ iq “ ´2´
?

3,

49From the formula pα´βq2pα´γq2pβ´γq2 “ ´∆, one can show that ∆ is negative and real precisely when
there are three distinct real roots.
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γ “ ω2u` ωv “

ˆ

´1´ i
?

3

2

˙

p2` iq `

ˆ

´1` i
?

3

2

˙

p2´ iq “ ´2`
?

3.

Note that all three roots are real numbers.

To summarize: The cubic equation x3 ´ 15x ´ 4 “ 0 has three real solutions, but these can
only be found by temporarily passing through the domain of imaginary numbers.50 This
phenomenon was observed by Jacques Hadamard his Essay on the Psychology of Invention in
the Mathematical Field (1945, page 123):

It has been written that the shortest and best way between two truths of the real
domain often passes through the imaginary one.

6 Complex Numbers

6.1 Formal Symbols

When Bombelli introduced the “imaginary units” i and ´i, he had to address many subtle
issues. It is one thing to declare that i ¨ i “ p´iqp´iq “ ´1, but how should we interpret
more complicated expressions such as p2 ` iq3p5 ` 7i ` 12i5q? Bombelli’s solution was to
define a “complex number” as an abstract expression of the form “a` bi” where a and b are
real numbers. Then he carefully spelled out the rules that these expressions must satisfy. Of
course, he did this in the language of 16th century Italian mathematics. In this section I will
present the modern version of his construction. The modern “formal” point of view was first
suggested by William Rowan Hamilton around 1830. Basically, we refuse to say what the
symbol “i” is; we will only say what it does.

To be specific, we define a complex number as an abstract expression “a ` bi”, with a, b P R.
We denote the set of such expressions with the blackboard bold letter C:

C “ ta` bi : a, b P Ru.

Now we wish to interpret these abstract symbols as “numbers”. To be specific, we want to
define a “ring structure” on the set C. The definitions of “addition” and “multiplication” are
basically forced on us by the intuition that i is a “number” satisfying i2 “ ´1:

pa` biq ` pc` diq :“ pa` cq ` pb` dqi,

pa` biqpc` diq :“ pac´ bdq ` pad` bcqi.

After a lot of boring work (omitted), one can show that these operations indeed define a ring
structure on C with “zero element” 0` 0i and “one element” 1` 0i.51 Furthermore, there is
a natural way to regard the real numbers as a subring R Ď C; that is, we simply identify each
real number a P R with the formal symbol a ` 0i P C. In other words, every real number
is complex, but not every complex number is real.

50Well, you could just guess the solution, but the only systematic way passes through the imaginary numbers.
51It might seem miraculous that all of the details work out. Later we will see some good reasons for this.
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So far, so good. Now we can proceed to develop the basic properties of this number system.
Our first theorem could perhaps be taken as a definition, but I prefer to prove it.

Equality of Complex Numbers

I claim that the complex number i “ 0` 1i P C is not real. It follows from this that for
all real numbers a, b, c, d P R we have

a` bi “ c` di in C ô a “ c and b “ d in R.

In the jargon of linear algebra, we say that C is a vector space over R with basis t1, iu.

Proof. Suppose for contradiction that i P R Ď C is real. Then from the law of trichotomy we
must have i ă 0 or i “ 0 or i ą 0. But each of these possibilities leads to a contradiction:

• If i ă 0 then 02 ă i2, hence 0 ă ´1.

• If i “ 0 then 02 “ i2, hence 0 “ ´1.

• If i ą 0 then 02 ă i2, hence 0 ă ´1.

Now consider any real numbers a, b, c, d P R with a ` bi “ c ` di in C. If b ‰ d then we
conclude that

i “
a´ c

d´ b
P R,

which is a contradiction. Therefore we must have b “ d and it follows that

a` bi “ c` bi

pa` biq ´ p0` biq “ pc` biq ´ p0` biq

a` 0i “ c` 0i

a “ c.

If that proof was too pedantic for you, then don’t worry about it. The key idea is that the
complex numbers cannot be ordered in a way that is compatible with the ordering
on R. This is one of the reasons that they were regarded with skepticism for so long. Consider
the following quote from Leonhard Euler’s Introduction to Algebra (1770):

Because all conceivable numbers are either greater than zero or less than 0 or equal
to 0, then it is clear that the square roots of negative numbers cannot be included
among the possible numbers. Consequently we must say that these are impossible
numbers. And this circumstance leads us to the concept of such number, which by
their nature are impossible, and ordinarily are called imaginary or fancied numbers,
because they exist only in imagination.
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The next important fact is that we can divide by any nonzero complex number.

Complex Numbers form a Field

For any complex number a` bi P C satisfying a` bi ‰ 0` 0i “ 0, there exists a (unique)
complex number c` di P C satisfying

pa` biqpc` diq “ 1` 0i “ 1.

The following proof is surprising if you have not seen the trick before. Luckily, you have all
seen the trick before. It is called “rationalizing the denominator”.

Proof. Consider any a` bi P C with a` bi ‰ 0` 0i. From the previous theorem this means
that a ‰ 0 or b ‰ 0 (or both). The goal is to express the hypothetical fraction “1{pa` biq” in
the form c` di for some specific c, d P R. The following hypothetical computation is not yet
justified, but it helps us to guess the correct solution:

1

a` bi
“

1

a` bi
¨
a´ bi

a´ bi
“

a´ bi

pa` biqpa´ biq
“

a´ bi

a2 ` b2
“

ˆ

a

a2 ` b2

˙

`

ˆ

´b

a2 ` b2

˙

i.

Since a and b are not both zero, we know that a2 ` b2 ‰ 0. Therefore we may define the real
numbers c :“ a{pa2 ` b2q and d :“ ´b{pa2 ` b2q. Finally, one can check that

pa` biqpc` diq “ 1` 0i.

The trick of “rationalizing the denominator” is so useful that we decide to turn it into a general
concept. I regard the following facts as absolute truths that were discovered, not created,
by humans.52 One can say that the formula |αβ| “ |α||β| was glimpsed by Diophantus of
Alexandria in the 3rd century, with his “two-square identity” for whole numbers:

pa2 ` b2qpc2 ` d2q “ pac´ bdq2 ` pad` bcq2.

However, the general theory was not understood until the 19th century.

Complex Conjugation and Absolute Value

For any complex number α “ a`bi P C we define its complex conjugate α˚ P C as follows:

pa` biq˚ :“ a´ bi.

52The same cannot be said of every kind of mathematics.
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Then we define the absolute value |α| P R as the real non-negative square root of a2`b2 P
R and we observe that

αα˚ “ pa` biqpa´ biq “ pa2 ` b2q ` 0i “ a2 ` b2 “ |α|2.

We also observe that |a` bi| is the length of the vector pa, bq P R2 in the Cartesian plane.
In particular, we have |α| “ 0 if and only if α “ 0` 0i.

Then for all complex numbers α, β P C, I claim that the following properties hold:

(1) α “ α˚ if and only if α P R,

(2) pα` βq˚ “ α˚ ` β˚,

(3) pαβq˚ “ α˚β˚,

(4) |αβ| “ |α||β|.

Proof. (1): Let α “ a` bi. If α P R then b “ 0 and hence

α˚ “ pa` 0iq˚ “ a´ 0i “ a` 0i “ α.

Conversely, suppose that α “ α˚, so that a` bi “ a´ bi. Subtracting a from each side gives
bi “ ´bi and hence 2bi “ 0. In other words: 0` 2bi “ 0` 0i. Comparing real and imaginary
parts gives 2b “ 0 and hence b “ 0.

(2) and (3) are a bit tedious.53 You will verify them on the homework.

(4): By applying (3) we have

|αβ|2 “ pαβqpαβq˚ “ αβα˚β˚ “ pαα˚qpββ˚q “ |α|2|β|2.

Then taking the square root of each side gives the result.

It is hard to overstate the significance of the identity |αβ| “ |α||β|. For example, it easily
shows that αβ “ 0 implies α “ 0 or β “ 0 for all α, β P C, which was not obvious from the
definitions. It also gives us a different route to the “field structure” of C. To see this we
observe for all α ‰ 0 that

αα˚ “ |α|2 ‰ 0 ñ α

ˆ

1

|α|2
α˚

˙

“ 1.

If α “ a` bi P C then it follows that

α´1 “
1

|α|2
α˚ “

1

a2 ` b2
pa´ biq “

ˆ

a

a2 ` b2

˙

`

ˆ

´b

a2 ` b2

˙

i.

53Actually there is a fancier way to prove these identities, called “extension of field automorphisms”, but
right now it is too abstract for us.
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You might feel that the ideas in this section were a bit magical. That is also the general
opinion of most mathematicians. In the 1840s, the Irish mathematician and physicist William
Rowan Hamilton discovered a more general system of “imaginary numbers”, which he called
the quaternions.54 He defined these as abstract symbols a` bi` cj` dk with real coefficients
a, b, c, d P R:

H “ ta` bi` cj` dk : a, b, c, d P Ru.

Then he defined a “ring structure” on these symbols by specifying that

i2 “ j2 “ k2 “ ijk “ ´1.

It turns out that this system has magical properties analogous to the complex numbers, the
main difference being that multiplication in H is not commutative. (For example, ij “ k ‰
´k “ ji.) The properties of H led to the invention of the dot product and cross product of
vector analysis, which were quickly adopted into the theory of electromagnetism.

Upon learning of the quaternions, Hamilton’s colleague John Graves was impressed, but he
also had the following to say:

There is still something in the system which gravels me. I have not yet any clear
views as to the extent to which we are at liberty arbitrarily to create imaginaries,
and to endow them with supernatural properties.

It was in response to Graves that Hamilton proposed the formal interpretation of complex
numbers.55 However, as Hamilton knew, it is also possible to give an intuitive geometric
interpretation of complex numbers. We will discuss this in the following sections.

6.2 Trigonometry and Cubic Equations

It turns out that the most intuitive interpretation of complex numbers comes from trigonome-
try. You may be surprised to learn that trigonometry was not studied by the classical Greeks.
Instead, it emerged during the Hellenistic period from a synthesis of Greek geometry and
Babylonian astronomy.56 The reason that astronomy requires trigonometry is because we
cannot measure the distances between astronomical objects, only the angles between them.

The most famous astronomical text ever written is the Almagest (2nd century AD) of Claudius
Ptolemy. From a mathematical point of view, this work is famous for the following theorem.

Ptolemy’s Theorem

Consider any four points A,B,C,D on the boundary of a circle:

54You are invited to investigate this number system in the optional writing assignment.
55On conjugate functions, or algebraic couples, as tending to illustrate generally the doctrine of imaginary

quantities, and as confirming the results of Mr Graves respecting the existence of two independent Integers in
the complete expression of an imaginary logarithm, (1834).

56This is why we still use the Babylonian “base 60” numerical system to measure angles.
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Then the six distances between these points are related by the following algebraic identity:

AC ¨BD “ AB ¨ CD `AD ¨BC.

The proof of this theorem is not important. I’m sure you can come up with an elementary
geometric argument if you try hard enough. The reason I bring it up now is because of its
relationship to the “angle sum formulas” of trigonometry. To see the relationship between
chord length and modern trigonometric functions, consider the following diagram:

Here we have a right triangle inscribed in a circle of radius 1. In modern language, one can
check that the chord lengths s and c satisfy

s “ 2 sinpθ{2q and c “ 2 cospθ{2q.
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The Pythagorean Theorem applied to this triangle tells us that

s2 ` c2 “ 22

4 sin2pθ{2q ` 4 cos2pθ{2q “ 4

sin2pθ{2q ` cos2pθ{2q “ 1,

as expected. Now consider the following configuration made of two right triangles:

As in the above diagram, one can check that the chord lengths s1, c2, s2, c2, s12 satisfy

s1 “ 2 sinpθ1{2q,

c1 “ 2 cospθ1{2q,

s2 “ 2 sinpθ2{2q,

c2 “ 2 cospθ2{2q,

s12 “ 2 sinppθ1 ` θ2q{2q.

Therefore by applying Ptolemy’s Theorem we obtain the “angle sum formula”:

AC ¨BD “ AB ¨ CD `AD ¨BC

2s12 “ c1s2 ` s1c2

4 sinppθ1 ` θ2q{2q “ 4 cospθ1{2q sinpθ2{2q ` 4 sinpθ1{2q cospθ2{2q

sinppθ1 ` θ2q{2q “ cospθ1{2q sinpθ2{2q ` sinpθ1{2q cospθ2{2q.

Ptolemy gave a similar proof for the “angle difference formula”:

sinppθ1 ´ θ2q{2q “ cospθ1{2q cospθ2{2q ´ sinpθ1{2q sinpθ2{2q.
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He then proceeded to use these formulas to compile an extensive table of chord lengths (i.e.,
values of the sine function) for each half-degree angle between 0˝ and 180˝. In summary, here
are Ptolemy’s angle sum and difference formulas in modern notation.

Angle Sum/Difference Formulas

For any angles α, β P R we have

"

sinpα˘ βq “ sinα cosβ ˘ cosα sinβ,
cospα˘ βq “ cosα cosβ ¯ sinα sinβ.

There is no need to memorize these formulas because we will shortly have a much easier way
to derive them. For now, let me observe that the angle sum formula can be used to expand
cospnθq as a polynomial expression in cos θ whenever n ě 0 is a whole number.

Multiple Angle Formulas

Let θ P R and n P Z. Then applying the angle sum and difference formulas gives

cospnθq “ 2 cos θ cosppn´ 1qθq ´ cosppn´ 2qθq.

It follows by induction that for all integers n ě 0 we can expand cospnθq as a polynomial
expression in cos θ with integer coefficients.

The proof is short but tricky. You do not need to memorize it.

Proof. For all θ P R and n P Z we apply the angle sum and difference formulas to obtain

cospnθq ` cosppn´ 2qθq

“ cosppn´ 1qθ ` θq ` cosppn´ 1qθ ´ θq

“
“

cos θ cosppn´ 1qθq `((((
(((

((
sin θ sinppn´ 1qθq

‰

`
“

cos θ cosppn´ 1qθq ´((((
((((

(
sin θ sinppn´ 1qθq

‰

“ 2 cos θ cosppn´ 1qθq.

Let us use this recursive formula to obtain the first few multiple angle formulas. To begin, we
observe that cosp0θq “ 1 and cosp1θq “ cos θ. Next we obtain the “double angle formula”:

cosp2θq “ 2 cos θ cosp1θq ´ cosp0θq
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“ 2 cos θ cos θ ´ 1

“ 2 cos2 θ ´ 1.

And after that the “triple angle formula”:

cosp3θq “ 2 cos θ cosp2θq ´ cosp1θq

“ 2 cos θ
“

2 cos2 θ ´ 1
‰

´ cos θ

“ 4 cos3 θ ´ 3 cos θ.

Today these expressions are called Chebyshev polynomials, since their general theory was
developed by Pafnuty Chebyshev in 1854. However, the identities were certainly known much
earlier. The first application is probably due to Francois Viète, who in his Supplement to
Geometry (1593) used the triple angle formula to give a trigonometric solution of the cubic
equation. The main innovation of this solution is that it seems to avoid the use of imaginary
numbers. To see how this works, let us consider the depressed cubic equation

x3 ` px` q “ x3 ´ 3x´ 1 “ 0.

Since p{3 “ ´1 and q{2 “ ´1{2 we see that pq{2q2 ` pp{3q3 “ ´3{4 ă 0, which means that
Cardano’s Formula will involve taking the square root of a negative number:

x “
3

b

1{2`
a

p´1{2q2 ` p´1q3 `
3

b

1{2`
a

p´1{2q2 ` p´1q3

“
3

b

1{2`
a

´3{4`
3

b

1{2`
a

´3{4.

Instead, Viète suggested that we should look at the triple angle formula:

4 cos3 θ ´ 3 cos θ ´ cosp3θq “ 0

8 cos3 θ ´ 3 ¨ 2 cos θ ´ 2 cosp3θq “ 0

p2 cos θq3 ´ 3p2 cos θq ´ 2 cosp3θq “ 0.

Observe that this equation becomes x3 ´ 3x ´ 1 “ 0 when we substitute x “ 2 cos θ and
cosp3θq “ 1{2. The second condition has exactly three solutions:

cosp3θq “ 1{2

3θ “ π{3` 2πk for any k P Z
θ “ π{9` 2πk{3 for any k P Z
“ π{9 or 7π{9 or 13π{9.

Hence we obtain three real solutions for x:

x “ 2 cospπ{9q or 2 cosp7π{9q or 2 cosp13π{9q

“ 2 cosp20˝q or 2 cosp140˝q or 2 cosp260˝q

« 1.879 or ´ 1.532 or ´ 0.347.

Here is a picture:
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There is an important principle in this solution that I want to emphasize. When we divided
the angle π{9 by 3 we obtained not one, but three distinct angles.

Angle Division

Consider some angle θ P R and a positive integer n ě 1. Since angles are only defined up
to integer multiples of 2π, we observe that dividing θ by n gives n distinct answers:

θ “ θ ` 2πk for any k P Z
θ

n
“
θ

n
`

2πk

n
for any k P Z

“
θ

n
,
θ ` 2π

n
, . . . ,

θ ` 2πpn´ 1q

n
.

This will be important below when we discuss the nth roots of complex numbers.

Actually, Viète expressed his solution in geometric terms by showing that solving a cubic
equation with three real roots is equivalent to “trisecting an angle”. Instead of regarding his
construction as a solution to the cubic, it seems that he viewed it as a solution to the angle
trisection problem, which was a difficult problem from Greek antiquity.57

Here is the general statement of Viète’s solution in modern terms.

57It was proved in the early 1800s that angle trisection is actually impossible within the rules of Euclidean
geometry. See the chapter on Impossible Constructions below.
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Viète’s Trigonometric Solution of the Cubic

Let p, q P R be any real numbers satisfying pq{2q2 ` pp{3q3 ă 0. In this case we know
that Cardano’s formula inevitably leads to complex numbers. To get around this, we will
compare the equation x3 ` px` q “ 0 to the triple angle formula:

y3 ´ 3y ´ 2 cosp3θq “ 0.

If the value of cosp3θq is given, then there are three distinct angles θ “ θ0, θ1, θ2, which
lead to three distinct real solutions y “ 2 cos θ0, 2 cos θ1, 2 cos θ2.

In order to express p and q in the correct form, we first observe that pq{2q2 ă ´pp{3q3

implies p ă 0. Therefore it is possible to write p “ ´3r2 and q “ ´cr2 for some unique
real numbers c, r P R satisfying r ą 0. Furthermore, since

pq{2q2 ă ´pp{3q3

p´cr2{2q2 ă ´p´r2q3

c2r2{4 ă r6

c2 ă 4r2

|c| ă 2r,

we observe that it possible to write c “ 2r cosp3θq for some three angles θ “ θ0, θ1, θ2.
After making these substitutions, our original equation becomes

x3 ` px` q “ 0

x3 ´ 3r2 ´ 2r3 cosp3θq “ 0

px{rq3 ´ 3px{rq ´ 2 cosp3θq “ 0,

y3 ´ 3y ´ 2 cosp3θq “ 0,

from which we obtain three real solutions: x{r “ y “ 2 cos θ0, 2 cos θ1, 2 cos θ2.

If you insist, we can express these solutions in terms of p and q by first noting that
p “ ´3r2 implies r “

a

´p{3 (positive real square root). Then q “ ´cr2 “ ´2r3 cosp3θq
implies that

cosp3θq “
q

´2r3
“

q

´2p
a

´p{3q3
“

3q

2p

c

´3

p
.

If we let ψ “ arccosp3q
a

´3{p{p2pqq denote any specific value of the inverse cosine (you
can choose your favorite), then the three corresponding angles are

θk “
ψ

3
`

2πk

3
for k “ 0, 1, 2.
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Finally, we obtain the three real solutions in terms of p and q:

x “ 2

c

´p

3
¨ cos

ˆ

ψ

3
`

2πk

3

˙

for k “ 0, 1, 2.

For example, let us apply the general formula to Bombelli’s equation x3 ´ 15x´ 4 “ 0. Here
we have p “ ´15 and q “ ´4, so that

3q

2p

c

´3

p
“

2
?

5

25
« 0.1789.

Since this number is between ´1 and 1, there exists a unique pair of angles ˘ψ with cosp˘ψq “
2
?

5{25. Let’s choose the “principal value” ψ “ 79.695˝ between 0˝ and 180˝. Then the three
real solutions of Bombelli’s equation are

x “ 2
?

5 cosp26.565˝q or 2
?

5 cosp26.565˝ ` 120˝q or 2
?

5 cosp26.565˝ ` 240˝q.

But we have already seen that this equation has the solutions 4, ´2´
?

3 and ´2`
?

3, thus
we obtain a very strange trigonometric identity:

cos

ˆ

1

3
arccos

ˆ

2
?

5

25

˙

`
2πk

3

˙

“
4

2
?

5
or

´2´
?

3

2
?

5
or

´2`
?

3

2
?

5
.

Well, that was really horrible. Let me reassure you that you do not need to memorize
complicated trigonometric identities. In the next section I will present a major breakthrough
that simplified the whole subject.

6.3 Euler’s Formula

Francois’ Viète’s posthumous work On Angular Sections (1615) is devoted to trigonometric
identities. For example, in this work he presented that the “quadruple angle identities”

cosp4θq “ cos4 θ ´ 6 cos2 θ sin2 θ ` sin4 θ,

sinp4θq “ 4 cos3 θ sin θ ´ 4 cos θ sin2 θ,

and he observed that these identities are related to the following binomial expansion:

pcos θ ` sin θq4 “ cos4 θ ` 4 cos3 θ sin θ ` 6 cos2 θ sin2 θ ` 4 cos θ sin3 θ ` sin4 θ.

Indeed, the only difference between pcos θ ` sin θq4 and cosp4θq ` sinp4θq is the presence of
certain negative signs. By looking at many examples, Viète was able to guess the correct rule
for these negative signs. However, it turns out that the rule is vastly simplified by working
over the complex numbers. The following result was first stated (in a slightly different form)
by Abraham de Moivre in 1707. However, the version stated here is due to Euler.
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De Moivre’s Formula

For all angles α, β P R we have

pcosα` i sinαqpcosβ ` i sinβq “ cospα` βq ` i sinpα` βq.

It follows that for all angles θ P R and integers n ě 0 we have

pcos θ ` i sin θqn “ cospnθq ` i sinpnθq.

The difficult part is to guess the formula. Then the proof is trivial.

Proof. The first identity follows from Ptolemy’s angle sum identities:

pcosα` i sinαqpcosβ ` i sinβq

“ pcosα cosβ ´ sinα sinβq ` pcosα sinβ ` sinα cosβqi

“ cospα` βq ` i sinpα` βq.

Then the second identity follows by induction:

pcos θ ` i sin θqn`1 “ pcos θ ` i sin θqnpcos θ ` i sin θq

“ pcospnθq ` i sinpnθqqpcos θ ` i sin θq

“ cospnθ ` θq ` i sinpnθ ` θq α “ nθ and β “ θ

“ cosppn` 1qθq ` i sinppn` 1qθq.

De Moivre’s formula is an extremely useful mnemonic. For example, we can use it to quickly
derive the double angle formulas. Observe that for any angle θ we have

cosp2θq ` i sinp2θq “ pcos θ ` i sin θq2

“ pcos θ ` i sin θqpcos θ ` i sin θq

“ pcos θ cos θ ´ sin θ sin θq ` pcos θ sin θ ´ sin θ cos θqi

“ pcos2 θ ´ sin2 θq ` p2 cos θ sin θqi.

Then comparing real and imaginary parts gives

"

cosp2θq “ cos2 θ ´ sin2 θ,
sinp2θq “ 2 cos θ sin θ.

This is the reason that I never memorize trig identities.
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As I mentioned before the proof, this statement of de Moivre’s Formula is really due to
Leonhard Euler. In fact, Euler stated these identities more elegantly in terms of “exponential
functions” in his Introduction to the Analysis of the Infinite (1748), which is one of the most
influential textbooks of all time.58 This work is well-known for standardizing the so-called
“transcendental functions”, including the older trigonometric functions “sin, cos, tan”, and
the more recently defined exponential and logarithmic functions “exp, log”. Let me present
Euler’s definition of the exponential function in modern terms.

The Exponential Function

For any complex number α P C, Euler consider the following power series:

exppαq :“ 1` α`
α2

2
`
α3

6
` ¨ ¨ ¨ “

8
ÿ

k“0

αk

k!
.

I claim that this series always converges to a complex number. Furthermore, I claim that
for all complex numbers α, β P C we have

exppαq exppβq “ exppα` βq.

In particular, it follows that for any integer n ě 1 we have

exppnq “ expp1` 1` ¨ ¨ ¨ ` 1q “ expp1qn “ en,

where e :“ expp1q « 2.17828 is the so-called Euler constant. For this reason we will use
the suggestive notation

“eα” :“ exppαq

for any complex number α P C. Keep in mind that this is merely a notation. It is not
really possible, for example, to multiply the number e with itself π times. However, the
number eπ :“ exppπq « 23.14 is perfectly well-defined.

Proof. This is not an analysis class, so I will just give a sketch. First let me observe that
complex numbers satisfy the triangle inequality:59

|α` β| ď |α| ` |β| for all α, β P C.

For all α P C and integers n ě 0 we apply the triangle inequality and the multiplicative

58According to Carl Boyer: The Introductio of Euler is referred to frequently by historians, but its significance
is generally underestimated. This book is probably the most influential textbook of modern times.

59We will see that this has to do with triangles in the next section.
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property of absolute value to obtain
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“0

αk

k!

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

αk

k!

ˇ

ˇ

ˇ

ˇ

“

n
ÿ

k“0

|α|k

k!
.

If the sequence on the right converges to a real number as n Ñ 8 (which is does), then the
sequence on the left also converges. To prove the identity exppα ` βq “ exppαq exppβq, we
first recall the binomial theorem:

pα` βqk “
k
ÿ

i“1

k!

i!pk ´ iq!
αiβk´i.

Then we apply this to the multiplication of power series:

exppαq exppβq “

˜

ÿ

kě0

αk

k!

¸˜

ÿ

kě0

βk

k!

¸

“
ÿ

kě0

˜

k
ÿ

i“0

αi

i!

βk´i

pk ´ iq!

¸

“
ÿ

kě0

1

k!

˜

k
ÿ

i“0

k!

i!pk ´ iq!
αiβk´i

¸

“
ÿ

kě0

1

k!
pα` βqk

“ exppα` βq.

Euler was not careful about the convergence of power series, but it worked out fine for him.
And it will work out fine for us too. We are now ready to state Euler’s exponential version of
de Moivre’s Formula.

Euler’s Formula

For all angles θ P R we have
eiθ “ cos θ ` i sin θ.

Let me observe that de Moivre’s formula follows immediately from Euler’s formula and the
multiplicative property of the exponential function:

cospα` βq ` i sinpα` βq “ eipα`βq “ eiαeiβ “ pcosα` i sinαqpcosβ ` i sinβq.
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This reasoning is a bit circular, however, because Euler used de Moivre’s formula as the main
ingredient in his proof. (I won’t present Euler’s proof because it’s not very enlightening.) This
means that Euler’s formula still depends on the mysterious angle sum trigonometric identities.

I will explain the deeper reason for the angle sum identities in the next two sections. The
key idea, as we will see, is that one can view the complex number eiθ P C as a function that
rotates each point of the Cartesian plane R2 counterclockwise60 by angle θ around the origin.

6.4 Polar Form and Roots of Unity

Since C is a field, we know that the ring of polynomials Crxs has certain nice properties. And
this may help us to better understand polynomials with real coefficients. In this section we
will study the specific family of polynomials xn ´ 1 P Rrxs. To begin, we observe that the
polynomials x2 ´ 1 and x4 ´ 1 split over C:

x2 ´ 1 “ px´ 1qpx` 1q

x4 ´ 1 “ px2 ´ 1qpx2 ` 1q “ px´ 1qpx` 1qpx´ iqpx` iq.

We also know that the polynomial x3 ´ 1 splits over C. To see this, we first factor out x´ 1:

x3 ´ 1 “ px´ 1qpx2 ` x` 1q.

And then we use the quadratic formula to find the other two roots p1˘ i
?

3q{2. It follows that

x3 ´ 1 “ px´ 1q

ˆ

x´
1` i

?
3

2

˙ˆ

x´
1´ i

?
3

2

˙

.

Now what about x5´1? Does this polynomial also split over C? In order to solve this problem
it is helpful to view complex numbers as points in the Cartesian plane.

Definition of the Complex Plane

We have seen that every complex number α P C has the form α “ a ` bi for some
unique real numbers a, b P R. This suggests that we should identify a ` ib with the
point pa, bq P R2 in the Cartesian plane:

60Or clockwise. The choice is arbitrary.
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In this language, we observe that conjugate pairs of complex numbers correspond to
“mirror images” across the real axis:

And we also observe that the distance between any complex numbers α, β P C is equal
to the absolute value of their difference:

Finally, we observe that the “numerical average” of any collection of complex numbes is
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the “center of mass” (or “centroid”) of the corresponding points:

As with the complex numbers themselves, the concept of the “complex plane” was slow to
be accepted. John Wallis made an early attempt at a geometric representation in his Algebra
(1673). One could also say that the geometric picture is implicit in the work of de Moivre
(1707) and Roger Cotes (1722). However, the true geometric meaning of complex numbers
only emerges when we combine the complex plane with Euler’s formula, to obtain the polar
form of complex numbers.

The Polar Form of Complex Numbers

For any complex number α “ a` bi P C, the following diagram shows that we can write
a “ r cos θ and b sin θ for some real numbers r ě 0 and 0 ď θ ă 2π:
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Then it follows from Euler’s formula that

α “ r cos θ ` ri sin θ “ rpcos θ ` i sin θq “ reiθ.

We call this the polar form of α. Since r ě 0 and since the absolute value preserves
multiplication, we observe that

|α| “ |reiθ|

“ |r||eiθ|

“ r| cos θ ` i sin θ|

“ rpcos2 θ ` sin2 θq

“ r.

Thus the “radius coordinate” r is uniquely determined by α. However, the “angle coor-
dinate” is only unique up to integer multiples of 2π. In other words, for all real numbers
θ1, θ2 P R we have

eiθ1 “ eiθ2 ô θ1 ´ θ2 “ 2πk for some k P Z.

Finally, we observe that the multiplication of complex numbers becomes particularly
meaningful when expressed in polar form:

pr1e
iθ1qpr2e

iθ2q “ pr1r2qe
ipθ1`θ2q.

In other words, to multiply complex numbers in polar form we simply multiply the
radii and add the angles.
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The polar form of complex numbers is an extremely powerful tool. In order to illustrate this
we will now compute the complex roots of the polynomial x5 ´ 1. If x “ reiθ is a root then
we must have

x5 “ 1

preiθq5 “ 1

r5ei5θ “ 1.

By taking the absolute value of each side we observe that

1 “ |1| “ |r5ei5θ| “ |r|5|ei5θ| “ |r|5 ¨ 1 “ |r|5.

Then since r ě 0 we must have r “ 1. It follows that ei5θ “ 1, and hence

5θ “ 2πk

θ “ 2πk{5

for some integer k P Z. Note that the formula θ “ 2πk{5 represents five distinct angles
0 ď θ ă 2π, corresponding to five distinct complex roots:

x “ e0πi{5, e2πi{5, e4πi{5, e6πi{5, e8πi{5.

And we can view these in the complex plane as the vertices of a regular pentagon:
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Of course, there are infinitely many different ways to name these roots, since the angles are
only defined up to integer multiples of 2π. For example, we could write

x “ e0πi{5, e2πi{5, e4πi{5, e´4πi{5, e´2πi{5,

or even
x “ e10πi{5, e´8πi{5, e14πi{5, e´4πi{5, e8πi{5.

In order to keep things as simple as possible, it is often convenient to define the number
ω “ e2πi{5 P C, so that ωk “ e2πik{5. Then the complex roots of x5´ 1 are 1, ω, ω2, ω3, ω4, and
we have the following factorization:

x5 ´ 1 “ px´ 1qpx´ ωqpx´ ω2qpx´ ω2qpx´ ω3qpx´ ω4q.

Once we have understood the polynomial xn´1 for n “ 5, the general case is no more difficult.
The general theorem is really just a disguised version of the Division Theorem for integers.

Roots of Unity

Consider a positive integer n ě 1 and define the complex number

ω “ e2πi{n “ cosp2π{nq ` i sinp2π{nq.

For any integer k P Z we observe that pωkqn “ pωnqk “ 1k “ 1. Therefore every integral
power of ω is a root of the polynomial xn´1. But this polynomial has at most n distinct
complex roots, so there must be some repetition among the powers of ω. To be precise,
I claim that for all integers k, ` P Z we have

ωk “ ω` in C ô n|pk ´ `q in the ring Z.

It follows that the polynomial xn´1 has n distinct complex roots, which can be expressed
in the standard form ωr with 0 ď r ă n:

xn ´ 1 “ px´ 1qpx´ ωqpx´ ω2q ¨ ¨ ¨ px´ ωn´1q.

Geometrically, these roots are the vertices of a regular n-gon in the complex plane.

Proof. Recall that eiθ1 “ eiθ2 if and only if θ1 ´ θ2 “ 2πq for some q P Z, i.e., if and only if
the real numbers θ1, θ2 P R represent the same angle. It follows that

ωn “ pe2πi{nqn “ e2πi “ e0i “ e0 “ 1.
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More generally, for any integers k, ` P Z we see that

ωk “ ω` ô e2πik{n “ e2πi`{n

ô 2πk{n´ 2π`{n “ 2πq for some q P Z
ô k ´ ` “ nq for some q P Z
ô n|pk ´ `q.

Next, I claim that for each k P Z there exists some integer 0 ď r ă n satisfying ωk “ ωr.
Indeed, since n ě 1 we can divide k by n to obtain some q, r P Z satisfying

"

k “ nq ` r,
0 ď r ă n.

And it follows that
ωk “ ωnq`r “ pωnqqωr “ 1qωr “ ωr.

Finally, I claim that for all 0 ď r1 ă n and 0 ď r2 ă n we have

ωr1 “ ωr2 in C ô r1 “ r2 in Z.

Indeed, one direction is trivial. For the other direction, suppose that ωr1 “ ωr2 . Then from
the above remarks we have n|pr1´r2q and hence r1´r2 “ nq for some q P Z. If q ‰ 0 then this
implies that |r1´ r2| “ |n||q| “ n|q| ě n. On the other hand, since 0 ď r1 ă n and 0 ď r2 ă n
we must have |r1 ´ r2| ă n. This contradiction shows that q “ 0 and hence r1 “ r2.

Remark: Actually, the theorem still holds as stated if we replace ω “ e2πi{n by ω “ e2πim{n

for any integer m satisfying gcdpm,nq “ 1. I will say more about this at the end of the
chapter.

To end this section we will discuss several interesting corollaries of the previous theorem. First,
by expanding the right hand side of the equation

xn ` 0xn´2 ` ¨ ¨ ¨ ` 0x´ 1 “ px´ ω0qpx´ ω2q ¨ ¨ ¨ px´ ωn´1qpx´ ωn´1q

and then comparing coefficients, we obtain the following identities:

0 “ ω0 ` ω2 ` ¨ ¨ ¨ ` ωn´1,

0 “ ω0ω1 ` ω0ω2 ` ¨ ¨ ¨ ` ωn´2ωn´1,

...

0 “ ω0ω1 ¨ ¨ ¨ωn´2 ` ω0ω1 ¨ ¨ ¨ωn´3ωn´1 ` ¨ ¨ ¨ ` ω1ω2 ¨ ¨ ¨ωn´1.

In other words, the sum of the products of the nth roots of unity, taken k at a time, equals
zero whenever 1 ď k ď n ´ 1. The first of these identities is the least surprising. In fact,
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we could prove this first identity more simply by substituting x “ ω into the factorization of
xn ´ 1 as a difference of powers:

xn ´ 1 “ px´ 1qpxn´1 ` xn´2 ` ¨ ¨ ¨ ` x` 1q

ωn ´ 1 “ pω ´ 1qpωn´1 ` ωn´2 ` ¨ ¨ ¨ ` ω ` 1q

0 “ pω ´ 1qpωn´1 ` ωn´2 ` ¨ ¨ ¨ ` ω ` 1q.

Then since ω ´ 1 ‰ 0 we conclude that ωn´1 ` ωn´2 ` ¨ ¨ ¨ ` ω ` 1 “ 0. Alternatively, we can
view this identity as saying that the center of mass of the nth roots of unity is at the origin
of the complex plane.

To prepare for the next corollary, let us observe how complex conjugation interacts with the
polar form.

Complex Conjugation and Polar Form

For any real number θ P R we recall that cosp´θq “ cos θ and sinp´θq “ ´ sin θ. It
follows from this that e´iθ is the complex conjugate of eiθ:

e´iθ “ cosp´θq ` i sinp´θq “ cos θ ´ i sin θ “ pcos θ ` i sin θq˚ “ peiθq˚.

More generally, for any real numbers r, θ P R we have

preiθq˚ “ r˚peiθq˚ “ re´iθ.

This makes geometric sense since positive angles are measured counterclockwise from
the positive real axis, while negative angles are measured clockwise:
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We will combine this observation with the theorem on roots of unity to obtain the prime
factorization of the polynomial xn´1 over the real numbers. This result was first obtained
by Roger Cotes in 1716, and published posthumously in the Harmonia Mensurarum (1722).
Cotes was the editor of the second edition of Isaac Newton’s Principia. Sadly, he died at the
age of 34, without having published any of his own work. His mathematical ability prompted
Newton to remark that “if he had lived, we might have known something”.

Factorization of xn ´ 1 in the ring Rrxs

If ω “ e2πi{n then we observe that ωn´k “ ωnω´k “ 1ω´k “ ω´k for all integers k P Z.
This allows us to rewrite the factorization of xn ´ 1 in the ring Crxs as follows:

xn ´ 1 “ px´ 1q

pn´1q{2
ź

k“1

px´ ωkqpx´ ω´kq if n is odd,

xn ´ 1 “ px´ 1qpx` 1q

pn´2q{2
ź

k“1

px´ ωkqpx´ ω´kq if n is even.

Furthermore, for any integer k P Z we observe that ω´k “ cosp´2πk{nq`i sinp´2πk{nq “
cosp2πk{nq ´ i sinp2πk{nq is the complex conjugate of ωk “ cosp2πi{nq ` i sinp2πk{nq,
and it follows that the polynomial px´ ωkqpx´ ω´kq has real coefficients:

px´ ωkqpx´ ω´kq “ x2 ´ pωk ` ω´kqx` ωkω´k

“ x2 ´ 2 cosp2πk{nqx` 1.

Furthermore, if 1 ă k ă n{2 then this quadratic polynomial is prime in Rrxs because
it has no real roots. (In this case,the complex roots ωk, ω´k are both non-real, and a
quadratic polynomial can have at most two roots in the field C.) Thus we obtain the
prime factorization of xn ´ 1 in the ring Rrxs:

xn ´ 1 “ px´ 1q

pn´1q{2
ź

k“1

ˆ

x2 ´ 2 cos

ˆ

2πk

n

˙

x` 1

˙

if n is odd,

xn ´ 1 “ px´ 1qpx` 1q

pn´2q{2
ź

k“1

ˆ

x2 ´ 2 cos

ˆ

2πk

n

˙

x` 1

˙

if n is even.

Proof. There is not much more to say. I guess we only need to verify that

ωk ` ω´k “ pcosp2πk{nq `((((
((i sinp2πk{nqq ` pcosp2πk{nq ´((((

((i sinp2πk{nqq “ 2 cosp2πk{nq.
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More generally, for any complex number α “ a` bi P C we always have

px´ αqpx´ α˚q “ x2 ´ pα` α˚qx` αα˚ “ x2 ´ 2ax` pa2 ` b2q P Rrxs.

For example, if ω “ e2πi{5 then we obtain the prime factorization for x5 ´ 1 over R:

x5 ´ 1 “ px´ 1qpx´ ωqpx´ ω2qpx´ ω3qpx´ ω4q

“ px´ 1qpx´ ωqpx´ ω2qpx´ ω´2qpx´ ω´1q

“ px´ 1qpx´ ωqpx´ ω´1qpx´ ω2qpx´ ω´2q

“ px´ 1q
`

x2 ´ pω ` ω´1qx` ωω´1
˘ `

x2 ´ pω ` ω´2qx` ωω´2
˘

“ px´ 1q
`

x2 ´ 2 cosp2π{5qx` 1
˘ `

x2 ´ 2 cosp4π{5qx` 1
˘

.

We will see later that the real numbers cosp2π{5q and cosp4π{5q have explicit formulas in
terms of rational numbers and square roots. However, the formulas are ugly enough that we
do not force high school students to memorize them.

Next, if ω “ e2πi{6 then we obtain the prime factorization of x6 ´ 1 over R:

x6 ´ 1 “ px´ 1qpx´ ωqpx´ ω2qpx´ ω3qpx´ ω4qpx´ ω5q

“ px´ 1qpx´ ωqpx´ ω2qpx` 1qpx´ ω´2qpx´ ω´1q

“ px´ 1qpx´ 1qpx´ ωqpx´ ω´1qpx´ ω2qpx´ ω´2q

“ px´ 1qpx` 1q
`

x2 ´ 2 cosp2π{6qx` 1
˘ `

x2 ´ 2 cosp4π{6qx` 1
˘

.

This time we have the easy simplifications cosp2π{6q “ 1{2 and cosp4π{6q “ ´1{2, so that

x6 ´ 1 “ px´ 1qpx` 1qpx2 ´ x` 1qpx2 ` x` 1q.

That was lucky. Because of this simplification we have accidentally obtained the prime fac-
torization of x6 ´ 1 in the ring Qrxs (hence also in the ring Rrxs). This solves a puzzle that I
posed to you at the end of Chapter 3.

In general, we will not be so lucky. For now let me state without proof the prime factorizations
of the polynomial xn ´ 1 over Q for 2 ď n ď 7:

x2 ´ 1 “ px´ 1qpx` 1q,

x3 ´ 1 “ px´ 1qpx2 ` x` 1q,

x4 ´ 1 “ px´ 1qpx` 1qpx2 ` 1q,

x5 ´ 1 “ px´ 1qpx4 ` x3 ` x2 ` x` 1q,

x6 ´ 1 “ px´ 1qpx` 1qpx2 ` x` 1qpx2 ´ x` 1q,

x7 ´ 1 “ px´ 1qpx6 ` x5 ` x4 ` x3 ` x2 ` x` 1q.

Do you see any pattern? It seems that the polynomial factors of xn´ 1 have something to do
with the integer factors of n. Here is the general statement.
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Cyclotomic Polynomials

Let ω “ e2πi{n for some integer n ě 2. We say that ωk is a primitive nth root of unity
when gcdpk, nq “ 1, and we define the nth cyclotomic polynomial as follows:

Φnpxq :“
ź

1ďkďn
gcdpk,nq“1

px´ ωkq.

In other words, the roots of Φnpxq are the primitive nth roots of unity. For convenience
we will also define Φ1pxq :“ x´ 1. Then for all n ě 1 one can show that

xn ´ 1 “
ź

1ďdďn
d|n

Φdpxq,

where the product is taken over all positive integer divisors d|n. One can use this factor-
ization to prove by induction that for all n ě 1 the polynomial Φnpxq has integer coef-
ficients. Furthermore, one can show for all n ě 1 that the polynomial Φnpxq is prime
in the ring Qrxs.61 Thus we have obtained the prime factorization of xn ´ 1 P Qrxs.

We postpone the proof for now. Instead we will look at an example. If ω “ e2πi{6, then the
6th roots of unity are ω0, ω1, ω2, ω4, ω5. Among these exponents, only 1 and 5 are coprime to
6. Therefore we have

Φ6pxq :“ px´ ω1qpx´ ω5q.

But note that this polynomial can be simplified. Indeed, since ω6 “ 1 and ω ‰ 0 we know
that ω5 “ ω´1, and it follows that

Φ6pxq “ px´ ω
1qpx´ ω´1q

“ x2 ´ 2 cosp2π{6qx` 1

“ x2 ´ x` 1.

As promised, this polynomial has integer coefficients. Furthermore, it is prime over Q because
it has no roots in Q. And what about the factorization of x6 ´ 1? I claim that this follows
from reducing each fraction k{6 into lowest terms. To be specific, let us define the notation
ωd “ e2πi{d for each integer d ě 1. Then for any equivalent fractions a{b “ c{d we have

ωab “ e2πia{b “ e2πic{d “ ωcd.

Next we observe that Φ2pxq “ px´ ω
1
2q “ x` 1 and Φ3pxq “ px´ ω

1
3qpx´ ω

2
3q “ x2 ` x` 1.

Finally, by expressing each 6th root of unity ωk6 in “lowest terms”, we observe that

x6 ´ 1 “ px´ 1qpx´ ω1
6qpx´ ω

2
6qpx´ ω

3
6qpx´ ω

4
6qpx´ ω

5
6q

61According to Gauss’ Lemma, a polynomial fpxq P Zrxs is prime in Zrxs if and only if it is prime in Qrxs.
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“ px´ 1qpx´ ω1
6qpx´ ω

1
3qpx´ ω

1
2qpx´ ω

2
3qpx´ ω

5
6q

“ px´ 1qpx´ ω1
2q
“

px´ ω1
3qpx´ ω

2
3q
‰ “

px´ ω1
6qpx´ ω

5
6q
‰

“ Φ1pxqΦ2pxqΦ3pxqΦ6pxq.

You will perform a similar computation for n “ 8 on the next homework, and on a future
homework you will verify that this factorization process works in general.

The cyclotomic polynomials were studied by Carl Friedrich Gauss in the Disquisitiones Arith-
meticae (1801). This work is one of the most significant in the history of mathematics. For
example, by using the fact that the polynomial Φ17pxq “ x16 ` x15 ` ¨ ¨ ¨ ` x ` 1 is prime
over Q, Gauss was able to prove that a regular 17-gon is constructible with straightedge and
compass alone. This was a surprising result that seemed to beat the ancient Greeks at their
own game. More generally, Gauss explained how to express the real number cosp2π{nq in the
simplest possible terms using only integers, field operations and radicals.

We will continue this discussion below in the chapter on Impossible Constructions. However,
you will not see a proof in this course that the polynomial Φnpxq is prime over Q. Gauss did
not include a full proof of this result in the Disquisitiones,62 and it is doubtful whether he
even knew a proof. The easiest proof that I know, due to Richard Dedekind in the 1850s, is
still too difficult for us.

7 Fundamental Theorem of Algebra

7.1 Introduction

The Fundamental Theorem of Algebra (FTA) can be stated in many equivalent ways. In its
most basic form, it says that every non-constant polynomial fpxq P Crxs with coefficients in
C has a root in C.63 Suppose that degpfq “ n ě 1 and call this root α1 P C. Then from
Descartes’ Theorem we can write

fpxq “ px´ α1qgpxq for some polynomial gpxq P Crxs with degpgq “ n´ 1.

If n ´ 1 ě 1 then by applying the FTA again we conclude that gpxq has some complex root
α2 P C, and hence

fpxq “ px´ α1qpx´ α2qhpxq for some polynomial hpxq P Crxs with degphq “ n´ 2.

By continuing in this way we conclude that that

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnqc for some α1, . . . , αn, c P C.

62He only proved this when n is prime.
63The FTA is similar in spirit to the Intermediate Value Theorem, which guarantees the existence of a real

root, but does not give any formula for this root. For this reason one might say that the Fundamental Theorem
of Algebra is not very “algebraic”. In fact, it is more common to see a proof of the FTA in courses on complex
analysis or topology. In this course I will present the most algebraic proof that I know, due to Pierre-Simon
Laplace (1795). This proof will lead us through several important topics of algebra, and the only non-algebraic
ingredient will be the Intermediate Value Theorem, which we already discussed.
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In other words, every non-constant polynomial in Crxs splits over C, which is an equivalent
way to state the FTA. Furthermore, if fpxq P Rrxs has real coefficients, then we will see below
that the non-real roots come in complex conjugate pairs. Thus we conclude that

fpxq “ cpx´ a1q ¨ ¨ ¨ px´ akqpx´ α1qpx´ α
˚
1q ¨ ¨ ¨ px´ α`qpx´ α

˚
` q

for some real numbers a1, . . . , ak, c P R and non-real complex numbers α1, . . . , α`. But for
all α P C we know that α ` α˚ and αα˚ are real numbers, hence we conclude that any
non-constant real polynomial can be factored as a product of real polynomials of degrees 1
and 2:

fpxq “ c
k
ź

i“1

px´ aiq
ź̀

j“1

px2 ´ pαj ` α
˚
j qx` αjα

˚
j q.

We will see below that that this statement is also equivalent to the FTA; in fact it was the
original form of the theorem.

Before going into more detail, here is a brief historical sketch:

• Since the introduction of the complex numbers, it was generally believed that any real
polynomial of degree n should possess n roots (possibly repeated); if not in the complex
domain, then in some larger numerical domain. This thesis was first stated by Albert
Girard in L’invention en algèbre (1629).

• Gottried Wilhelm Leibniz raised some doubts in 1702 when he claimed that the real
polynomial x4`a4 (a P R) cannot be factored into two real quadratic polynomials. We
will see below that he was mistaken.

• Euler (1749) cleared up the matter by proving rigorously that every real polynomial of
degree 4 is a product of two real polynomials of degree 2. He confidently stated that
the FTA should hold in general and he sketched out some ideas for a proof, but the
algebraic computations became too difficult to manage.

• Lagrange cleaned up Euler’s argument, but it was still too complicated to be convincing.
Laplace used a clever trick to simplify the Euler-Lagrange proof. This is the proof that
we will see below.

• But this was not the last word. Gauss objected that Laplace’s proof assumes without
justification that the roots exist in some field containing C, before proving that the roots
actually lie in C. This gap was finally filled by Leopold Kronecker in 1887.

• Meanwhile, another method of attack used “topological reasoning” similar to the Inter-
mediate Value Theorem.64 Gauss gave a proof along these lines, which was generally
accepted as the first correct proof of the FTA.

64By this I mean that two curves in the plane that seem to cross based on their pictures, do indeed cross at
some point.
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• However, from the modern point of view, Gauss’ topological proof is also not completely
rigorous. One could say that the details were filled in by Karl Weierstrass, a colleague
of Leopold Kronecker at the University of Berlin.

• Thus, despite the existence of many diverse purported proofs of the FTA, the matter was
not completely settled until the late 19th century. This is a testament to the subtlety of
the theorem.

In this chapter we will follow one thread of this story, starting with Leibniz’ mistake and ending
with Laplace’s proof. The context for Leibniz’ work is the integration of rational functions by
partial fractions.

7.2 Partial Fractions

The Fundamental Theorem of Calculus was discovered in the 1660s, independently by Isaac
Newton and Gottfried Wilhelm Leibniz. For the next 100 years mathematicians were engaged
with working out all of the details, until the final form of the theory was written down in
Euler’s Introductio (1770). Students of calculus will know that differentiation is much easier
than integration/anti-differentiation. Thus, the most difficult problem in these early years was
to compute integrals for all of the basic functions.

The foundational result was actually discovered in the 1630s by Pierre de Fermat, and was
one of main inspirations for the Fundamental Theorem of Calculus. I will present the result
in modern form.65

Fermat’s Power Rule

For all integers n P Z we have

ż

xn dx “

#

1
n`1x

n`1 if n ‰ ´1,

ln |x| if n “ ´1.

Note that this result allows us to integrate any polynomial function:

ż

˜

ÿ

kě0

akx
k

¸

dx “
ÿ

kě0

ak

ż

xk dx “
ÿ

kě0

ak
k ` 1

xk`1.

The next most basic kind of functions are the so-called “rational functions”. In modern terms
these defined as “formal fractions of polynomials”.

65Actually, this result was independently discovered by several mathematicians in the 1630s and 1640s, but
Fermat’s proof was the most convincing. See Boyer’s History of Calculus and its Conceptual Development.
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The Field of Rational Functions

Consider the ring of polynomials Rrxs with real coefficients and let Rpxq denote the set
of formal fractions of polynomials, where the denominator is not the zero polynomial:

Rpxq :“

"

fpxq

gpxq
: fpxq, gpxq P Rrxs and gpxq ‰ 0pxq

*

.

By convention, we define equality of formal fractions as follows:

f1pxq

g1pxq
“
f2pxq

g2pxq
ô f1pxqg2pxq “ f2pxqg1pxq.

With this identification, one can check that the usual addition and multiplication of
fractions makes the set Rpxq into a field. We can think of the polynomials as a subring
Rrxs Ď Rpxq by making the following identification:

fpxq “
fpxq

1
for all fpxq P Rrxs.

This is completely analogous to the construction of the field Q from the ring Z.

I’m sure you have seen the method of partial fractions in your Calculus course.

It is possible to integrate certain rational functions by substitution. Thus, for any real number
a P R and for any integer n ě 2 we have

ż

1

px` aqn
dx “

´1

pn´ 1qpx` aqn´1
.

And for any nonzero polynomial fpxq P Rrxs with derivative f 1pxq we have

ż

f 1pxq

fpxq
dx “ ln |fpxq|.

For example, if fpxq “ x2 ` c for some c P R then this becomes

ż

2x

x2 ` c
dx “ ln |x2 ` c|.

These results were known to Leibniz. However, he described the natural logarithm as the
“quadrature of the hyperbola”, i.e., the area under the graph of the function 1{x.66 Leibniz

66The modern notation of exponential and logarithmic functions was developed by Euler.
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also discovered that the integral of 1{px2 ` 1q is related to the “quadrature of the circle”. In
modern language, this means that

ż

1

x2 ` 1
dx “ arctanpxq.

It might seem that these few examples represent meager progress toward the integration of all
rational functions. Amazingly, however, it follows from the FTA that any rational function
whatsoever can be reduced to the previous two forms. The following result was proved by
Leibniz in 1702 paper, using the method of “partial fractions”.

Integration of Rational Functions

Consider any rational function fpxq{gpxq P Rpxq with degpgq ě 1, and suppose that the
polynomial gpxq can be factored as a product of real polynomials of degrees 1 and 2.
Then the integral of fpxq{gpxq can be expressed explicitly in terms the “quadrature of
the hyperbola” (i.e., the natural logarithm) and the “quadrature of the circle” (i.e., the
inverse tangent function).

The theorem on partial fractions can be stated for any Euclidean domain, including the integers
Z and and the ring of polynomials Frxs over any field F. Before stating the general theorem
I will show you a few illustrative examples. First we will use the method to compute the
following integral:

ż

x2 ` 2x` 1

px´ 1qpx2 ` 1q
dx.

The theorem below tells us that there exist some constants a, b, c P R such that we have the
following identity of formal fractions of polynomials:

x2 ` 2x` 1

px´ 1qpx2 ` 1q
“

a

x´ 1
`
bx` c

x2 ` 1

“
apx2 ` 1q ` pbx` cqpx´ 1q

px´ 1qpx2 ` 1q

“
pa` bqx2 ` pc´ bqx` pa´ cq

px´ 1qpx2 ` 1q
.

Since the denominators are the same, the numerators must also be the same:

x2 ` 2x` 1 “ pa` bqx2 ` pc´ bqx` pa´ cq.

And since this is an identity of formal polynomials, the coefficients must be the same:
$

&

%

a ` b ` 0 “ 1,
0 ´ b ` c “ 2,
a ` 0 ´ c “ 1.
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By solving this linear system we obtain pa, b, cq “ p2,´1, 1q, and hence

ż

x2 ` 2x` 1

px´ 1qpx2 ` 1q
dx “

ż
ˆ

2

x´ 1
`
´x` 1

x2 ` 1

˙

dx

“

ż

2

x´ 1
dx`

ż

´x

x2 ` 1
dx`

ż

1

x2 ` 1
dx

“ 2 ln |x´ 1| ´
1

2
ln |x2 ` 1| ` arctanpxq.

Next I will show you how the theory of partial fractions applies to integers. This is not
strictly relevant to the Fundamental Theorem of Algebra, but it fits well with other topics in
this course. For example, we will try to expand 7{15 into “partial fractions”, based on the
factorization of the denominator:

7

15
“

7

3 ¨ 5
“

?

3
`

?

5
.

The key here is that the factors 3 and 5 have no common prime divisor; in other words, that
gcdp3, 5q “ 1. It follows from Bézout’s Identity that there exist some (non-unique) integers
x, y P Z satisfying 1 “ 5x` 3y. We can use the Extended Euclidean Algorithm (or just trial
and error) to see that 1 “ 5p2q ` 3p´3q. Then we divide both sides by 15 to obtain

1

15
“

5p2q ` 3p´3q

15
“

5p2q

15
`

3p´3q

15
“

2

3
`
´3

5
.

To get an expression for 7{15 we multiply both sides by 7:

7

15
“

14

3
`
´21

5
.

You might be satisfied with this, but I don’t like it because the solution is not unique. Indeed,
we also have

7

15
“

11

3
`
´16

5
.

In order to get a unique result, we should express each of the partial fractions 14{3 and ´21{5
in proper form. To do this we compute the quotient and remainder of each numerator, modulo
its denominator:

14 “ 4 ¨ 3` 2,

´21 “ p´5q ¨ 5` 4.

(Note that the quotient is allowed to be negative, while the remainder is always positive.) It
follows from this that

14

3
“

4 ¨ 3` 2

3
“ 4`

2

3

and
´21

5
“
p´5q ¨ 5` 4

5
“ ´5`

4

5
.

100



Finally, adding these two expressions gives

7

15
“

14

3
`
´21

5
“

ˆ

4`
2

3

˙

`

ˆ

´5`
4

5

˙

7

15
“ ´1`

2

3
`

4

5
.

This is the unique partial fraction expansion of 7{15. Finally, I will show you an example
that illustrates a possible complication:

The denominator might have a repeated prime factor.

Consider the fraction 5{12 and note that 2 is repeated in the prime factorization of 12:

12 “ 2 ¨ 2 ¨ 3 “ 22 ¨ 3 “ 4 ¨ 3.

First we use the fact that gcdp4, 3q “ 1 to find some (non-unique) x, y P Z satisfying 1 “
4x` 3y. In this case it is easy: 1 “ 4p1q ` 3p´1q. Then we divide by 12 to obtain

1

12
“

4p1q ` 3p´1q

12
“

4p1q

12
`

3p´1q

12
“

1

3
`
´1

4

and multiply by 5 to obtain
5

12
“

5

3
`
´5

4
.

As before, we put 5{3 in proper form by computing the quotient and remainder of 5 mod 3:

5

3
“

1 ¨ 3` 2

3
“ 1`

2

3
.

But the procedure for ´5{4 is slightly different because 4 is not prime. Instead, it is a power
of the prime 2, so we compute the quotient and remainder of the numerator ´5 modulo 2:

´5

4
“
p´3q ¨ 2` 1

4
“
´3

2
`

1

4
.

Then we repeat the process for the fraction ´3{2:

´3

2
“
p´2q ¨ 2` 1

2
“ ´2`

1

2
.

(More generally, for any fraction a{pe with p prime, we will repeatedly divide the numerator
by p to obtain an expansion of the form

a

pe
“ c`

r1
p
`
r2
p2
` ¨ ¨ ¨ `

re
pe
,

where each remainder ri satisfies 0 ď ri ă p.) Finally, we put everything together to obtain
the unique partial fraction expansion of 5{12:

5

12
“

5

3
`
´5

4
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“

ˆ

1`
2

3

˙

`
´5

4

“ 1`
2

3
`

ˆ

´3

2
`

1

4

˙

“ 1`
2

3
´ 2`

1

2
`

1

4

“ ´1`
1

2
`

1

4
`

2

3
.

It is important to observe that the numerator of 1{4 must be less than 2 because 4 is a power
of the prime 2.

Now that you have seen all of the possible complications, I will state and prove the general
theorem.

Partial Fraction Expansion

Let pR,Nq be a Euclidean domain. Recall, this means that R is an integral domain and
N : Rzt0u Ñ N is a “norm function” sending nonzero elements to positive integers and
satisfying “division with remainder”:

For all a, b P R with b ‰ 0 there exist some q, r P R such that

"

a “ qb` r,
r “ 0 or Nprq ă Npbq.

Recall from Chapter 4 that any nonzero element of a Euclidean domain has a unique
prime factorization. Now consider any elements a, b P R with b ‰ 0 and suppose that b
has the following prime factorization:

b “ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k .

Then I claim that there exist67 some elements c, rij P R satisfying

a

b
“ c`

k
ÿ

i“1

ei
ÿ

j“1

rij
pj
,

where for all indices i, j we have either rij “ 0 or Nprijq ă Nppiq.

67In the case of R “ Frxs, the polynomials c, rij P Frxs are unique. In the case of R “ Z the integers c, rij P Z
are not unique, but they become unique if we also require 0 ď rij ă pj , as in the examples above. We won’t
prove either of these statements.
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Proof. Since pe11 is coprime to pe22 p
e3
3 ¨ ¨ ¨ p

ek
k we know from Bèzout’s Identity that there exist

some elements c1, c P R such that

1 “ c1p
e2
2 p

e3
3 ¨ ¨ ¨ p

ek
k ` cp

e1
1 .

Now multiply both sides by the fraction a{b to obtain

a

b
“
ac1p

e2
2 p

e3
3 ¨ ¨ ¨ p

ek
k

b
`
acpe11
b

.

Then we can factor the denominator and cancel common factors to obtain

a

b
“
ac1���

���
�

pe22 p
e3
3 ¨ ¨ ¨ p

ek
k

pe11 ���
��pe22 ¨ ¨ ¨ p
ek
k

`
ac
�
�pe11

�
�pe11 p

e2
2 ¨ ¨ ¨ p

ek
k

“
ac1
pe11

`
ac

pe22 p
e3
3 ¨ ¨ ¨ p

ek
k

.

It follows by induction on k that there exist elements a1, a2, . . . , ak P R satisfying

a

b
“

a1
pe11

`
a2
pe22

` ¨ ¨ ¨ `
ak
pekk

.

Finally, we will expand each fraction a{pe in the standard form c` r1{p` r2{p
2 ` ¨ ¨ ¨ ` re{p

e

for some elements r1, . . . , re P R satisfying rj or Nprjq ă Nppq. We do this by dividing the
numerator by the prime p to obtain

a

pe
“
qep` re
pe

“
qe
pe´1

`
re
pe

with re “ 0 or Npreq ă Nppq.

Then we apply the same process to qe{p
e´1, and the result follows by induction.

This proof really just describes an algorithm. To end this chapter, let me show you how the
algorithm works in the case of polynomials. This is not the fastest way to compute partial
fraction expansions of rational functions, but it illustrates the general theory. To be specific,
we will compute the following integral:

ż

1

px` 1q2px2 ` 1q
dx.

Bézout’s Identity tells us that there exist some polynomials fpxq, gpxq P Rrxs satisfying

1 “ fpxqpx` 1q2 ` gpxqpx2 ` 1q,

We can find such polynomials using the Euclidean algorithm. Since the two factors have the
same degree 2, it doesn’t matter which is the divisor. First we divide px` 1q2 “ x2 ` 2x` 1
by x2 ` 1 to obtain

px` 1q2 “ 1px2 ` 1q ` 2x.

Then we divide x2 ` 1 by 2x to obtain

x2 ` 1 “ px{2qp2xq ` 1.

103



Finally, we divide 2x by 1 to obtain

2x “ 1p2xq ` 0.

Since the last nonzero remainder is 1, this confirms that gcdppx` 1q2, x2 ` 1q “ 1 in the ring
Rrxs. We could now find fpxq and gpxq by back-substitution, but I prefer the following method.
Consider the set of triples fpxq, gpxq, hpxq P Rrxs satisfying fpxqpx`1q2`gpxqpx2`1q “ hpxq.
We begin with the obvious triples 1, 0, px`1q2 and 0, 1, x2`1. Then we perform row operations
corresponding to the computations above, to obtain the following table:

fpxq gpxq hpxq row operation

1 0 px` 1q2 R1

0 1 x2 ` 1 R2

1 ´1 2x R3 “ R1 ´ 1 ¨R2

´x{2 1` x{2 1 R4 “ R2 ´ px{2qR3

The final row tells us that

p´x{2qpx` 1q2 ` p1` x{2qpx2 ` 1q “ 1.

Then we divide both sides by px` 1q2px2 ` 1q to obtain

1

px` 1q2px2 ` 1q
“
p´x{2q���

��
px` 1q2

���
��

px` 1q2px2 ` 1q
`
p1` x{2q���

��
px2 ` 1q

px` 1q2���
��

px2 ` 1q

“
´x{2

x2 ` 1
`

1` x{2

px` 1q2
.

To complete the algorithm, we put the fraction p1`x{2q{px`1q2 in standard form by dividing
the numerator by the prime factor x` 1:

1` x{2

px` 1q2
“

1
2px` 1q ` 1

2

px` 1q2
“

1{2

x` 1
`

1{2

px` 1q2
.

Finally, we conclude that

1

px` 1q2px2 ` 1q
“
´x{2

x2 ` 1
`

1{2

x` 1
`

1{2

px` 1q2
ż

1

px` 1q2px2 ` 1q
dx “

ż

´x{2

x2 ` 1
dx`

ż

1{2

x` 1
dx`

ż

1{2

px` 1q2
dx

“ ´
1

2
¨

1

2
¨ lnpx2 ` 1q `

1

2
ln |x` 1| `

1

2
¨
´1

x` 1
.

The question remains, whether every non-constant real polynomial can be factored into real
polynomials of degree 1 and 2. Today we know that the FTA is true, and hence the answer is
yes. In 1702, however, the situation was not so clear.
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7.3 Leibniz’ Mistake

As mentioned in the previous section, Pierre Fermat developed the method of partial fractions
in 1702 in order to integrate rational functions. He realized that this method works whenever
the denominator can be factored into real polynomials of degrees 1 and 2. Thus he posed the
following problem:68

Now, this leads us to a question of utmost importance: whether all the rational
quadratures may be reduced to the quadrature of the hyperbola and of the circle,
which by our analysis above amounts to the following: whether every algebraic
equation or real integral formula in which the indeterminate is rational can be
decomposed into simpIe or plane real factors [= real factors of degree 1or 2].

But he seems to have believed that this is not always possible. In fact, he proposed that for
any real number a ą 0, the polynomial x4 ` a4 P Rrxs can not be factored as a product of
real polynomials (in our language, that this polynomial is a prime element of the ring Rrxs).
To see this, he first treated x4 ` a4 as a difference of squares:

x4 ` a4 “
`

x2 ´ a2
?
´1

˘ `

x2 ` a2
?
´1

˘

.

And then he treated each factor as a difference of squares:

x4 ` a4 “

ˆ

x´ a

b

?
´1

˙ˆ

x` a

b

?
´1

˙ˆ

x´ a

b

´
?
´1

˙ˆ

x` a

b

´
?
´1

˙

.

Finally, he claimed that no combination of these linear factors yields a polynomial with real
coefficients, hence the antiderivative of 1{px4 ` a4q must be some new kind of function:

Therefore,
ş

dx
x4`a4

cannot be reduced to the squaring of the circle or the hyperbola
by our analysis above, but founds a new kind of its own.

Of course, we know that this conclusion is false because it contradicts the Fundamental The-
orem of Algebra. In this section I will explain where Leibniz went wrong, and why he might
have gotten confused.

But first, let me present some generalities about prime polynomials. Our first result is an
algorithm that allows us to compute the rational roots of an integer polynomial in a finite
amount of time.

The Rational Root Test

Let fpxq “ cnx
n`¨ ¨ ¨`c1x`c0 P Zrxs be a polynomial of degree n with integer coefficients,

and suppose that fpxq has a rational root a{b P Q in lowest terms, i.e., with gcdpa, bq “ 1.

68See Galois’ Theory of Algebraic Equations (2001), by Jean-Pierre Tignol, pages 74–75.
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In this case, I claim that
a|c0 and b|cn.

This leads to a finite list of potential rational roots, which we can test one by one.

Proof. Let fpa{bq “ 0 for some a, b P Z with b ‰ 0 and gcdpa, bq “ 1. After multiplying both
sides of this equation by bn we obtain an equation of integers:

fpa{bq “ 0

cnpa{bq
n ` ¨ ¨ ¨ ` c1pa{bq ` c0 “ 0

bn rcnpa{bq
n ` ¨ ¨ ¨ ` c1pa{bq ` c0s “ 0

cna
n ` cn´1a

n´1b` ¨ ¨ ¨ ` c1ab
n´1 ` c0b

n “ 0.

Now by taking the term c0b
n to one side, we have

c0b
n “ ´cna

n ´ cn´1a
n´1b´ ¨ ¨ ¨ ´ c1ab

n´1

“ a
“

´cna
n´1 ´ cn´1a

n´2b´ ¨ ¨ ¨ ´ c1b
n´1

‰

.

which implies that a|c0b
n. Then since gcdpa, bq “ 1, Euclid’s Lemma implies that a|c0. Simi-

larly, by taking the term cna
n to one side, we have

cna
n “ ´cn´1a

n´1b´ ¨ ¨ ¨ ´ c1ab
n´1 ´ c0b

n

“ b
“

´cn´1a
n´1 ´ ¨ ¨ ¨ ´ c1ab

n´2 ´ c0b
n´1

‰

,

hence b|cna
n. Then since gcdpa, bq “ 1, Euclid’s Lemma implies that b|cn.

For example, consider the polynomial fpxq “ 3x3 ´ 6x ` 2 P Zrxs. If fpa{bq “ 0 for some
rational number a{b P Q in lowest terms, then the theorem tells us that a|2 and b|3, which
leads to the following set of 8 potential rational roots:

a

b
P

"

˘1,˘2,˘
1

3
,˘

2

3

*

.

But one can check that none of these is a root of fpxq, and hence fpxq has no rational root.
Incidentally, this also implies that the polynomial fpxq “ 3x2 ´ 6x` 2 is a prime element of
Qrxs, because of the following theorem.

Testing Primality of Low Degree Polynomials

Let F be a field and let fpxq P Frxs be a polynomial of degree 2 or 3. Then

fpxq is prime in Frxs ô fpxq has no root in F.
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Proof. First suppose that fpxq has a root a P F. Then from Descartes’ Theorem we have
fpxq “ px´ aqgpxq for some polynomial gpxq P Frxs of strictly positive degree, and it follows
that fpxq is not prime. Conversely, suppose that fpxq is not prime, so that fpxq “ gpxqhpxq
for some polynomials gpxq, hpxq P Frxs of strictly positive degree. But then since

degpgq ` degphq “ degpfq P t2, 3u

we must have either degpgq “ 1 or degphq “ 1 (or both). Without loss of generality, let us
assume that degpgq “ 1, so that gpxq “ ax ` b for some a, b P F with a ‰ 0. It follows that
gp´b{aq “ 0 and hence fp´b{aq “ 0. In other words, fpxq has a root in F.

You may remember that we used this method at the end of Chapter 4 to prove that the
polynomial x2 ´ d P Qrxs is prime whenever d is a non-square integer. Unfortunately, the
same method is completely useless when it comes to polynomials of degree 4 and above. For
example, consider the polynomial

fpxq “ x4 ` x3 ` 2x2 ` x` 1 P Zrxs.

If fpa{bq “ 0 for some fraction a{b P Q in lowest terms, then the Rational Root Test tells
us that a|1 and b|1, hence a{b “ ˘1. But we can directly check that fp1q “ 6 ‰ 0 and
fp´1q “ 2 ‰ 0, hence this polynomial has no rational roots. But this does not imply that
fpxq is a prime element of Qrxs. Indeed, we have the following non-trivial factorization:

fpxq “ px2 ` 1qpx2 ` x` 1q.

But it might have been difficult for you to find this factorization unless I gave it to you. This
is also a difficulty with integers. If I give you a large integer n P Z we believe that there is no
fast algorithm to factor n as a product of primes.69 In short:

Primality Testing is Hard

Nevertheless, it is rather easy to show that Leibniz’ polynomial x4`a4 is not prime. The reason
that Leibniz did not see this is because his understanding of complex numbers was limited. In
particular, he did not understand that a nonzero complex number has four distinct 4th roots.
The following theorem generalizes our theorem on the roots of unity.

69In fact, this difficulty is the foundation of the RSA Cryptosystem, which allows us to safely transmit our
credit card information to Amazon.
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Roots of a General Complex Number

Consider a positive integer n ě 1 and a nonzero complex number 0 ‰ α P C. Recall
that we can express α “ reiθ in polar form for some real numbers r, θ P R with r ą 0.
Since the polynomial xn´r P Rrxs takes a negative value when x “ 0 and positive values
when x ą r we conclude from the Intermediate Value Theorem that there exists some
real number 0 ă r1 ď r satisfying pr1qn “ r. Thus we observe that the complex number
α1 :“ r1eiθ{n P C is an nth root of α:

pα1qn “ pr1eiθ{nqn “ pr1qneiθ “ reiθ “ α.

Furthermore, if we let ω “ e2πi{n then I claim that α has the following n distinct complex
nth roots:

α1, α1ω, α1ω2, ¨ ¨ ¨ α1ωn´1.

Geometrically, these roots are the vertices of a regular n-gon in the complex plane, which
is centered at the origin, but need not have any vertices on the real axis.

Proof. Since ωn “ 1, we observe that any number of the form α1ωk is an nth root of α:

pα1ωkqn “ pα1qnpωnqk “ αp1qk “ α.

To show that the complex numbers α1ωr for r “ 0, 1, . . . , n ´ 1 are distinct, recall from the
theorem on roots of unity that for any integers k, ` P Z we have

ωk “ ω` in the field C ô n|pk ´ `q in the ring Z.

Now suppose for contradiction that we have α1ωr1 “ α1ωr2 for some 0 ď r1 ă r2 ă n.
Then dividing both sides by α1 gives ωr1 “ ωr2 which implies that n|pr2 ´ r1q and hence
n ě r2 ´ r1 ă n. Contradiction. Finally, we observe that α can have at most n distinct nth
roots in the field C because the polynomial xn ´ α P Crxs has degree n.

The first person to clearly understand this theorem was probably Euler. Had Leibniz known
the theorem then he certainly would have had no trouble factoring the polynomial x4 ` a4.
Indeed, note that a is a real 4th root of a4. By writing ´a4 “ a4p´1q “ a4eiπ in polar form,
we find that aeiπ{4 is one particular 4th root of a4, and the other roots are aei3π{4, aei5π{4,
aei7π{4. Actually, it is more convenient to define ω “ e2π{8, so we can express the four roots
as follows:

aeiπ{4 “ aω

aei3π{4 “ aω3

aei5π{4 “ aω5 “ aω´3
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aei7π{4 “ aω7 “ aω´1.

Here is a picture. (Omitted.) Then by grouping the roots into conjugate pairs we have

x4 ` a4 “ px´ aωqpx´ aω´1qpx´ aω3qpx´ aω´3q

“ px2 ´ apω ` ω´1qx` a2ωω´1qpx2 ´ apω3 ` ω´3qx` a2ω3ω´3q

“
`

x2 ´ 2a cosp2π{8q ` a2
˘ `

x2 ´ 2a cosp6π{8q ` a2
˘

.

This is already enough to show that Leibniz was wrong, because each of these quadratic factors
has real coefficients. But we can do even better if we recall that

2 cosp2π{8q “
?

2 and 2 cosp6π{8q “
?

2,

so that
x4 ` a4 “

´

x2 ´ a
?

2x` a2
¯´

x2 ` a
?

2x` a2
¯

.

Finally, by applying the method of partial fractions, one can show that70

ż

1

x4 ` a4
dx

“

ż

1
`

x2 ´ a
?

2x` a2
˘ `

x2 ` a
?

2x` a2
˘ dx

“ some work

“

?
2

4a3

„

arctan

ˆ

?
2

a
x` 1

˙

` arctan

ˆ

?
2

a
x´ 1

˙

`
1

2
ln

ˇ

ˇ

ˇ

ˇ

x2 ` a
?

2x` a2

x2 ´ a
?

2x` a2

ˇ

ˇ

ˇ

ˇ



.

7.4 Equivalent Statements of the FTA

Before moving on, we should clarify the statement of the FTA.

Equivalent Statements of the FTA

I claim that the following four statements are equivalent:

(1C) Every non-constant polynomial fpxqCrxs has a root in C.

(2C) For any fpxq P Crxs of degree n ě 1 there exist c, α1, . . . , αn P C such that

fpxq “ cpx´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq.

(1R) Every non-constant polynomial fpxq P Rrxs has a root in C.

(2R) For any fpxq P Rrxs of degree ě 1 there exist polynomials p1pxq, . . . , pkpxq P Rrxs
70Actually, I let my computer do it. There is no need for humans to perform these kinds of computations.
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of degrees 1 and 2 such that

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq.

This last statement was the original statement of the theorem, which together with the
method of partial fractions guarantees that the antiderivative of any rational function
can be expressed in terms of log and arctan.

In this section we will prove that the four statements are equivalent. The easy implications
are (2C)ñ(1C) and (2R)ñ(1R). Indeed, if

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq

then we have fpαiq “ 0 for all i, hence fpxq has a complex root. Next, suppose that

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq

for some polynomials p1pxq, . . . , pkpxq P Rrxs of degrees 1 and 2. If some pipxq has degree 1
then we have pipxq “ ax` b with a ‰ 0, and hence fpxq has a real root ´b{a P R. Otherwise,
all of the factors pipxq have degree 2. But this is still okay because any degree 2 polynomial
with real coefficients has a complex root by the quadratic formula.

The implication (1C)ñ(2C) is not much more difficult.

Proof that (1C)ñ(2C). Assume that (1C) is true and consider any polynomial fpxq P Crxs
of degree n ě 1. By (1C) there exists some α1 P C such that fpα1q “ 0. Then Descartes’
Theorem gives

fpxq “ px´ α1qf1pxq

for some f1pxq P Crxs of degree n ´ 1. If n ´ 1 ě 1 then from (1C) there exists some α2 P C
such that f1pα2q “ 0. Then Descartes’ Theorem gives f1pxq “ px´ α2qf2pxq and hence

fpxq “ px´ α1qpx´ α2qf2pxq

for some f2pxq P Crxs of degree n ´ 2. Continuing in this way we obtain complex numbers
α1, . . . , αn P C such that

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnqfnpxq,

where fnpxq P Crxs has degree 0, i.e., fnpxq is constant. ˝

The implication (1R)ñ(2R) requires two pieces of technology.
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Complex Roots of Real Polynomials

For any real polynomial fpxq P Rrxs and complex number α P C we have

fpαq˚ “ fpα˚q.

It follows from this that
fpαq “ 0 ðñ fpα˚q “ 0,

which says that the non-real complex roots of real polynomials come in conjugate pairs.

Proof. We recall some properties of complex conjugation. For all α, β P C we have

(i) pα` βq˚ “ α˚ ` β˚,

(ii) pαβq˚ “ α˚β˚,

(iii) α “ α˚ if and only if α P R.

Thus for any real polynomial fpxq “
ř

akx
k P Rrxs and any complex number α P C we have

rfpαqs˚ “
´

ÿ

akα
k
¯˚

“
ÿ

pakα
kq˚ (i)

“
ÿ

a˚kpα
˚qk (ii)

“
ÿ

akpα
˚qk (iii)

“ fpα˚q.

It follows that
fpαq “ 0 ðñ rfpαqs˚ “ 0 ðñ fpα˚q “ 0.

˝

Real vs Complex Quotient and Remainder

Consider real polynomials fpxq, gpxq P Rrxs with gpxq ‰ 0 and suppose we have complex
polynomials qpxq, rpxq P Crxs satisfying

"

fpxq “ gpxqqpxq ` rpxq,
rpxq “ 0 or degprq ă degpgq.

Then actually qpxq and rpxq have real coefficients.
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Proof. Homework.

Proof that (1R)ñ(2R). Assume that (1R) is true and consider any non-constant polynomial
fpxq P Rrxs with real coefficients. We will use induction on the degree of fpxq to show that
fpxq can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where p1pxq, . . . , pkpxq are real polynomials of degrees 1 and 2. By (1R) there exists a complex
number α P C such that fpαq “ 0. There are two cases:

• Suppose α is real and consider the real polynomial p1pxq “ x´α P Rrxs of degree 1. By
Descartes’ Theorem we have

fpxq “ p1pxqgpxq

for some real polynomial gpxq P Rrxs with degpgq “ degpfq ´ 1. Then by induction the
polynomial gpxq can be factored as a product of real polynomials of degrees 1 and 2.

• Suppose that α is not real, so that α ‰ α˚. Since fpαq “ 0 and since fpxq has real
coefficients, the lemma on complex roots of real polynomials tells us that fpα˚q “ 0.
Applying Descartes once gives

fpxq “ px´ αqgpxq

for some complex polynomial gpxq with degpgq “ degpfq ´ 1. Since α ‰ α˚ we may
substitute x “ α˚ to obtain

pα˚ ´ αqgpα˚q “ fpα˚q

pα˚ ´ αqgpα˚q “ 0

gpα˚q “ 0.

Then applying Descartes’ Theorem again gives

gpxq “ fpxq “ px´ αqpx´ α˚qhpxq

for some complex polynomial hpxq P Crxs with degphq “ degpgq ´ 1 “ degpfq ´ 2.
Observe that the polynomial

p1pxq “ px´ αqpx´ α
˚q “ x2 ´ pα` α˚qx` αα˚

actually has real coefficients. Then since fpxq “ p1pxqhpxq with fpxq P Rrxs and
p1pxq P Rrxs, it follows from the lemma on real vs complex quotients that hpxq actually
has real coefficients. Finally, since degphq ă degpfq it follows by induction that hpxq
can factored as a product of real polynomials of degrees 1 and 2.
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˝

For example, suppose that a real polynomial fpxq P Rrxs satisfies fpiq “ 0. Then we must
also have fp´iq “ 0 and hence

fpxq “ px´ iqgpxq “ px´ iqpx` iqhpxq “ px2 ` 1qhpxq

for some polynomial hpxq P Crxs. But since fpxq and x2` 1 are real and fpxq “ px2` 1qhpxq,
then hpxq must also have real coefficients.

So far we have proved that (1C)ô(2C) and (1R)ô(2R). Our final goal is to prove that
(1C)ô(1R). The direction (1C)ñ(1R) is easy. The proof is really just the observation that
R Ď C, but I’ll add a few extra words.

Proof that (1C)ñ(1R). Assume that (1C) is true and consider any non-constant polynomial
fpxq P Rrxs. Since Rrxs Ď Crxs we also have fpxq P Crxs, so it follows from (1C) that fpxq
has a root in C. ˝

Finally, we must prove that (1R)ñ(1C). In other words, if every non-constant real polynomial
has a root in C then every non-constant complex polynomial has a root in C. This sounds
like it might not even be true, but there is a clever trick that makes it work.

Conjugation of Complex Polynomials

For any polynomial fpxq “
ř

αkx
k P Crxs we define the conjugate polynomial f˚pxq P

Crxs by conjugating each of the coefficients:

f˚pxq “
ÿ

α˚kx
k.

Then the following properties hold:

• For all fpxq P Crxs and α P C we have rfpαqs˚ “ f˚pα˚q.

• For all fpxq P Crxs we have fpxq P Rrxs if and only if f˚pxq “ fpxq.

• For all fpxq, gpxq P Crxs we have

pf ` gq˚pxq “ f˚pxq ` g˚pxq and pfgq˚pxq “ f˚pxqg˚pxq.

• For all fpxq P Crxs we have

fpxq ` f˚pxq P Rrxs and fpxqf˚pxq P Rrxs.
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Proof. Homework.

Proof that (1R)ñ(1C). Homework.

7.5 Euler’s Attempt

In the previous section we saw four equivalent statements of the FTA, but we have still not
proved that any of these statements is true. In 1702, Leibniz doubted that the polynomial
x4 ` a4 could be factored over the real numbers. However, with the aid of complex numbers,
we have seen that

x4 ` a4 “

ˆ

x2 ´ a2
1` i
?

2

˙ˆ

x2 ´ a2
1´ i
?

2

˙ˆ

x2 ´ a2
´1` i
?

2

˙ˆ

x2 ´ a2
´1´ i
?

2

˙

.

Then grouping the four factors into complex conjugate pairs gives

x4 ` a4 “ px2 ´ a
?

2x` a2qpx2 ` a
?

2x` a2q.

Euler was the first to confidently state that the FTA must be true. He came to this belief
through his correspondence with Nicholas Bernoulli in the 1740s. Bernoulli asserted that the
following polynomial cannot be factored over the real numbers:

fpxq “ x4 ´ 4x3 ` 2x2 ` 4x` 4.

Euler responded with a general method to factor any real quartic as a product of two real
quadratics. In this special case, we first replace x with x` 1 to remove the x3 term:71

gpxq “ fpx` 1q “ x4 ´ 4x2 ` 7.

We are looking for real numbers p, q, r, s P R such that

x4 ` 0x3 ´ 4x2 ` 0x` 7 “ px2 ` px` qqpx2 ` rx` sq

“ x4 ` pp` rqx3 ` ppr ` q ` sqx2 ` ppr ` sqx` qs.

Comparing coefficients gives
$

’

’

&

’

’

%

p` r “ 0,
pr ` q ` s “ ´4,
ps` qr “ 0,

qs “ 7.

If p “ 0 then we obtain the equations q` s “ ´4 and qs “ 7, which have no real solution. So
let us assume that p ‰ 0. Then the first equation gives r “ ´p and the third equation gives
ps “ ´qr “ pq, hence s “ q. The remaining equations are

"

´p2 ` 2q “ ´4,

q2 “ 7.

71In fact, the polynomial gpxq has no x3 term and no x1 term, so it is called biquadratic. You will prove on
the homework that every biquadratic real polynomial has real quadratic factors. Euler’s method in this section
is more explicit because it actually finds the factors.
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This has the solution q “
?

7 and p “
a

4` 2
?

7, hence we obtain

gpxq “ x4 ´ 4x2 ` 7 “

ˆ

x2 `

b

4` 2
?

7 ¨ x`
?

7

˙ˆ

x2 ´

b

4` 2
?

7 ¨ x`
?

7

˙

.

Replacing x with x´ 1 gives the desired factorization of fpxq “ gpx´ 1q.

Since the polynomial gpxq was biquadratic, the coefficients of the factors can be expressed
in terms of square roots. In general this will not be the case, but Euler showed that the
coefficients still exist.

FTA for Quartic Polynomials

Every real quartic polynomial factors as a product of two real quadratic polynomials.

I will copy Euler’s proof directly from Recherches sur les racines imaginaires des équations
(1751), § 27, with just a few small notational changes.

Euler’s Proof. For any real a, b, c, d P R we consider the quartic polynomial

fpxq “ x4 ` ax3 ` bx2 ` cx` d.

Replace x with x´ a{4 to obtain

gpxq “ fpx´ a{4q “ x4 `Bx2 ` Cx`D

for some real numbers B,C,D P R. We are looking for real numbers u, α, βR such that

x4 `Bx2 ` Cx`D “ px2 ` ux` αqpx2 ´ ux` βq.

Expand the right hand side and compare coefficients to obtain

$

&

%

B “ α` β ´ u2,
C “ pβ ´ αqu,
D “ αβ.

We can rewrite the first two equations as α` β “ B`u2 and α´ β “ C{u. Then we can add
and subtract these equations to obtain

2α “ B ` u2 ` C{u and 2β “ B ` u2 ´ C{u.

Then the third equation gives

4D “ 4αβ
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“ 2α2β

“ pB ` u2 ` C{uqpB ` u2 ´ C{uq

“ u4 ` 2Bu2 `B2 ´ C2{u2,

and multiplying both sides of this equation by u2 gives

hpuq :“ u6 ` 2Bu4 ` pB2 ´ 4Dqu2 ´ C2 “ 0.

We are looking for a real solution u P R to the equation hpuq “ 0. The polynomial hpuq has
even degree so we normally cannot conclude that it has a real root. However, since hpuq Ñ `8

as u Ñ ˘8, and since the value hp0q “ ´C2 is negative, we conclude72 that hpuq “ 0 has
at least two real solutions, one negative and one positive. Choosing either of these solutions
gives real values for α “ rB ` u2 ` C{us{2 and β “ rB ` u2 ´ C{us{2, hence we obtain the
desired factorization of gpxq. Finally, we obtain a factorization of fpxq:

fpxq “ gpx` a{4q “
`

px` a{4q2 ` upx` a{4q ` α
˘ `

px` a{4q2 ´ upx` a{4q ` β
˘

.

˝

Euler’s proof for degree 8 (article 34). Corollary: Degree 6 (article 38).

7.6 Symmetric Functions

There was a missing step in Euler’s proof.

Fundamental Theorem of Symmetric Functions. Discriminant of a cubic.

7.7 Laplace’s Proof

See Numbers (pg. 121) by Ebbinghaus et al.

Laplace’s proof of the fundamental theorem. Gauss’ objection.

7.8 Epilogue: Algebraic Geometry

Algebra is smarter than geometry. Curves of degree m and n intersect in ď mn points in any
picture. But the algebra tells us that they always intersect in exactly mn points.

Geometric notion of degree defined by Newton (curve intersect with line). General intersection
theorem stated by Maclaurin. First proof by Bézout, still flawed. It is tricky to precisely define
the multiplicity of intersection.

The modern version is fancy.

72The Intermediate Value Theorem was not proved rigorously until much later. In Euler’s time it was not
regarded as needing a proof.
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8 Other Rings and Fields

8.1 Modular Arithmetic

8.2 Quotient Rings in General

Maybe not.

8.3 Cauchy’s Construction of Complex Numbers

8.4 Kronecker’s Construction of Splitting Fields

8.5 Galois’ Finite Fields

Freshman’s Dream.

9 Groups

9.1 The Concept of a Group

Let Ωn Ď C be the set of nth roots of unity. This set has the important property that it is
“closed under multiplication”.

The Concept of a Group

blah

Remark: The definition of groups allows us to shorten the definitions of rings and vector
spaces.

Some other examples of groups. Up1q is infinite, containing Ωn as a “subgroup”.

The Concept of a Subgroup

sd

In fact, we observe that Ωa is a subgroup of Ωb if and only if a|b.

Other examples: pR,`, 0q, pRˆ,ˆ, 1q, square invertible matrices show that groups are not
necessarily commutative.
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9.2 Congruence Modulo a Subgroup

Subgroups of pZ,`, 0q. The set of congruence classes. The quotient group.

9.3 Isomorphism of Groups

Examples Ωn – Z{nZ, Up1q – SOp2q.

9.4 Order of an Element

9.5 The Fermat-Euler-Lagrange-Cauchy Theorem

Order of an element. Order of a power.

9.6 Existence of Primitive Roots

If we want to prove Gauss-Wantzel then some hard Gaussian stuff is unavoidable.

10 Impossible Constructions

10.1 Angle Trisection and the Delian Problem

10.2 Descartes changed the rules

10.3 Quadratic Field Extensions

Proof of impossibility for angle trisection and cube doubling.

10.4 Permuting the Roots

This section is for my own benefit. Do not read.

Let ppxq P Frxs be irreducible and consider the field E “ Frxsp of polynomials modulo ppxq.
Note that x P E is a root of ppxq. Suppose that rpxq P E is another root of p. Note that any
element of E has the form fpxq P E for some fpxq P Frxs. I claim that the rule fpxq ÞÑ fprpxqq
is a well-defined field automorphism of E. Since evaluation is a homomorphism we only need
to check that it is well-defined and bijective.

Proof: We assume that pprpxqq „ 0 so that ppxq|pprpxqq in Frxs. Well-Defined: fpxq „ gpxq
implies ppxq|rfpxq ´ gpxqs implies pprpxqq|rfprpxqq ´ gprpxqqs implies ppxq|rfprpxqq ´ gprpxqqs
implies fprpxqq „ gprpxqq. Injective: Suppose fprpxqq „ gprpxqq for some degpfq, degpgq ă
degppq.

For the proofs of Injective and Surjective we will first show that there exists spxq P Frxs with
rpspxqq „ 0 and sprpxqq „ 0. Since pprpxqq „ 0 we have ppxq|pprpxqq. Then evaluating at rpxq
gives ppxq|pprpxqq|pprprpxqq, and hence pprpkqpxqq „ 0 for any compositional power of rpxq.
Since ppxq has finitely many roots in the field E this implies that rpkqpxq „ rp`qpxq for some
k ă `. But then I claim that rp`´kqpxq „ rp0qpxq “ x. Indeed, if k ‰ 0 then we observe that
prpk´1q ´ rp`´1qqpxq P Frxs has the root rpxq P E. Since ppxq P Frxs is the minimal polynomial
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of rpxq P E this implies that p|prpk´1q´rp`´1qq and hence rpk´1qpxq „ rp`´1qpxq. Repeating the
argument give the result. Then by defining spxq :“ rp`´k´1qpxq P Frxs we have rpspxqq „ x
and sprpxqq „ x.

Injective: fprpxqq „ gprpxqq implies fprpxqq´gprpxqq “ ppxqqpxq implies fprpspxqqq´gprpspxqqq “
ppspxqqqpspxqq. Then since ppxq|ppspxqq we have

fpxq „ fprpspxqq „ gprpspxqqq „ gpxq.

Surjective: For any fpxq P E we have

fpxq „ fpsprpxqq “ pf ˝ sqprpxqq.

10.5 The Gauss-Wantzel Theorem

Maybe this section is also for my own benefit.

The 5-gon and 17-gon are constructible. Why? Because cyclotomic polynomials are irre-
ducible. We won’t prove in general but maybe we should prove that Φppxq is irreducible.

Lemma: Let p be prime, ω “ e2πi{p, and fix a primitive element r P pZ{pZqˆ. Then there exists
a field automorphism ϕ : Qrωs Ñ Qrωs defined by ω ÞÑ ωr. Furthermore, the automorphism
commutes with complex conjugation.

Proof: Note that ω and ωr have the same minimal polynomial Φppxq over Q, and note that
Qrωrs “ Qrωs. Compose the isomorphisms Qrωs – Qrxs{xΦppxqy and Qrωrs – Qrxs{xΦppxqy.
This map commutes with complex conjugation because pωrq˚ “ ω´r “ pω´1qr “ pω˚qr.

Remark: An alternate—more elementary—proof appears in the previous section.

Theorem: Let ϕ : Qrωs Ñ Qrωs be the automorphism from the lemma. Then for every
divisor d|pp ´ 1q we consider the fixed field Kd “ Fixpϕdq. Since ϕp´1 “ id we observe that
Kp´1 “ Qrωs and for all d|e|pp´ 1q we observe that Kd Ď Ke. I claim that every element of
Ke satisfies an equation of degree e{d with coefficients in Kd. Moreover, if the element is real
then the coefficients of the polynomial are real. Finally, I claim that K1 “ Q.

Proof: For any a P Ke, we consider the polynomial px ´ aqpx ´ ϕdpaqq ¨ ¨ ¨ px ´ ϕdpd
1´1qpaqq

of degree d1. Note that ϕdpϕdpd
1´1qpaqq “ ϕepaq “ a because a P Ke. Thus ϕd permutes the

roots of this polynomial, hence it fixes the coefficients. Moreover, if a P R then a˚ “ a implies
pϕdkpaqq˚ “ ϕdkpa˚q “ ϕdkpaq. This means that the roots, hence the coefficients are real.

For the final statement, recall that every element of Qrωs has the form rpωq for some (unique)
polynomial rpxq P Qrxs of degree ă n. If ϕprpωqq “ rpωq then we also have ϕkprpωqq “ rpωq,
and hence rpϕkpωqq “ rpωq for all k P Z. But then the polynomial rpxq ´ rpωq P Qrωsrxs of
degree ă n has n distinct roots, hence rpxq ´ rpωq “ 0pxq. This implies that rpxq “ rpωq is
constant, which implies rpωq P Q because rpxq P Qrxs.
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Corollary (Gauss): If p is prime and p´1 is a power of 2 then the regular p-gon is constructible
with straightedge and compass. In particular, the regular 17-gon is constructible.

Remark: This actually leads to an algorithm. First take a “ 2 cosp2π{17q “ ω1 ` ω´1 and
choose the primitive root 3 P pZ{17Zqˆ, so that ϕpωq “ ω3. Since ϕ8pωq “ ω38 “ ω16 “ ω´1,
we observe that a is already in K8. Then since ϕ4pωq “ ω34 “ ω13 “ ω´4 we observe that a
is a root of the polynomial

px´ aqpx´ ϕ4paqq “ px´ pω1 ` ω´1qqpx´ pω4 ` ω´4qq “ x2 ` αx` β,

with α “ ´ω1 ´ ω´1 ´ ω4 ´ ω´4 P K4 and β “ pω1 ` ω´1qpω4 ` ω´4q P K4. Next, since
ϕ2pωq “ ω32 “ ω9 “ ω´8, we observe that α is a root of

px´ αqpx´ ϕ2pαqq “ px` ω1 ` ω´1 ` ω4 ` ω´4qpx` ω8 ` ω´8 ` ω2 ` ω´2q

“ x2 `Ax`B,

with A,B P K2, and β is a root of

px´ βqpx´ ϕ2pβqq “ px´ pω ` ω´1qpω4 ` ω´4qqpx´ pω8 ` ω´8qpω2 ` ω´2qq

“ x2 ` Cx`D,

with C,D P K2. Finally, we observe that each of A,B,C,D P K2 satisfies a quadratic equation
over K1 “ Q. It is possible to find these equations by hand (as Gauss did), but I used my
computer to save time:

px´Aqpx´ ϕpAqq “ x2 ` x´ 4,

px´Bqpx´ ϕpBqq “ x2 ` 2x` 1,

px´ Cqpx´ ϕpCqq “ x2 ´ x´ 4,

px´Dqpx´ ϕpDqq “ x2 ` 2x` 1.

From this we observe that A “ p´1`
?

17q{2, C “ p1`
?

17q{2 and B “ D “ 1. Finally, we
can rewind all of the steps to obtain a closed formula for a.

Wantzel: The other direction.

Philosophy: If Gauss couldn’t do it then it doesn’t belong in this book.

11 Unsolvability of the Quintic

What happens when we don’t have a primitive root?
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