
Math 461 Spring 2023
Homework 5 Drew Armstrong

1. The Minimal Polynomial. This problem is a generalization of Descartes’ Theorem.
Consider a field extension E ⊇ F and an element γ ∈ E. Let p(x) ∈ F[x] be a prime polynomial
satisfying p(γ) = 0.

(a) For all f(x) ∈ F[x], prove that

f(γ) = 0 ⇐⇒ f(x) = p(x)g(x) for some g(x) ∈ F[x].

[Hint: Let f(γ) = 0. If p(x) - f(x) then p(x) and f(x) are coprime in F[x], hence there
exist p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) = 1. Now what?]

(b) If q(x) ∈ F[x] is another prime polynomial satisfying q(γ) = 0, use part (a) to show
that q(x) = cp(x) for some constant c ∈ F. It follows that there exists a unique
monic, prime polynomial p(x) ∈ F[x] satisfying p(γ) = 0, which we call the
minimal polynomial of γ over F.

(c) If a ∈ F, what is the minimal polynomial of a over F?
(d) What is the minimal polynomial of

√
−1 over R?

(e) What is the minimal polynomial of ω = exp(2πi/3) over R?

(a): If f(x) = p(x)g(x) for some g(x) ∈ F[x] then we have

f(γ) = p(γ)g(γ) = 0g(γ) = 0.

Conversely, we will show that f(γ) = 0 implies p(x)|f(x) in the ring F[x]. To do this, assume
that f(γ) = 0 and suppose for contradiction that p(x) - f(x). Since p(x) is a prime element in
the Euclidean domain F[x] this implies that gcd(p, f) = 1, hence from the Extended Euclidean
Algorithm we can find some polynomials p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) =
1. Now substitute x = γ to get the desired contradiction:

p(x)p′(x) + f(x)f ′(x) = 1

p(γ)p′(γ) + f(γ)f ′(γ) = 1

0 = 1.

(b): Consider two polynomials p(x), q(x) ∈ F[x] satisfying the following properties:

• p(x) and q(x) are monic (i.e., have leading coefficient 1),
• p(x) and q(x) are prime elements of F[x],
• p(γ) = 0 and q(γ) = 0.

Applying part (a) with f(x) = q(x) gives p(x)|q(x). But the definitions of p(x) and q(x) are
symmetric, so we also have q(x)|p(x). For elements a, b in a domain R, recall that

a|b and b|a ⇐⇒ a = ub for some unit u ∈ R.

And recall that the units of the domain F[x] are the nonzero constants. It follows that
p(x) = cq(x) for some nonzero zero constant c ∈ F, and since p(x) and q(x) are monic we
must have c = 1.

Remark: Suppose that an “imaginary number” γ satisfies some polynomial equation f(γ) = 0
over a field of “real numbers” F.1 In this case we have shown that there exists a unique
polynomial p(x) ∈ F[x] satisfying

1A number that satisfies a polynomial equation over a field F is called algebraic over F. Some numbers do
not satisfy polynomial equations. For example, the number π ≈ 3.14 does not satisfy any polynomial equation

1



2

• p(x) is monic,
• p(x) is prime over F,
• p(γ) = 0.

We call p(x) the minimal polynomial of γ over F. This definition is relative to the base field.
For example, we will see below that the minimal polynomial over i over R is x2 + 1, while the
minimal polynomial of i over C is x− i.

(c): Given an element a ∈ F I claim that p(x) = x − a ∈ F[x] is the minimal polynomial.
Indeed, this polynomial is monic, prime and satisfies p(a) = 0.

Remark: For all f(x) ∈ F[x] it follows from (a) that f(a) = 0 if and only if f(x) = (x−a)g(x)
for some g(x) ∈ F[x]. This is just Descartes’ Theorem.

(d): I claim that p(x) = x2 + 1 ∈ R[x] is the minimal polynomial of i over R. Indeed p(x) is
monic and satisfies p(i) = (i)2 + 1 = −1 + 1 = 0. To see that x2 + 1 is prime over R, suppose
that x2 + 1 = f(x)g(x) for some nonconstant polynomials f(x), g(x) ∈ R[x]. By comparing
degrees we must have deg(f) = deg(g) = 1. But then x2 + 1 must have a real root, which is
a contradiction.

Remark: For all f(x) ∈ R[x] it follows that f(i) = 0 if and only if f(x) = (x2 + 1)g(x) for
some g(x) ∈ R[x].

(e): Note that ω = e2πi/3 is a root of the polynomial x3 − 1 ∈ R[x]. But this polynomial is
not prime because

x3 − 1 = (x− 1)(x2 + x+ 1).

Substituting x = ω into this factorization gives

0 = ω3 − 1 = (ω − 1)(ω2 + ω + 1),

which implies that ω2 + ω + 1 = 0 because ω − 1 6= 0. I claim that p(x) = x2 + x + 1 is the
minimal polynomial of ω over R. To see this, it only remains to show that p(x) is prime over
R. And since p(x) has degree 2 this follows from the fact that p(x) has no roots in R.

Remark: For all f(x) ∈ R[x] it follows that f(ω) = 0 if and only if f(x) = (x2 + x + 1)g(x)
for some g(x) ∈ R[x].

Remark: In parts (d) and (e) we used the fact that a polynomial f(x) ∈ F[x] of degree 2 is
prime if and only if it has no root in F[x]. This also holds for polynomials of degree 3. Indeed,
let deg(f) = 3 and suppose that f(x) = g(x)h(x) for some nonconstant g(x), h(x) ∈ F[x]. By
comparing degrees we have 3 = deg(f) = deg(g) + deg(h) which implies that deg(g) = 1 or
deg(h) = 1. If deg(g) = 1 then g(x) = a+ bx for some a, b ∈ F with b 6= 0 and it follows that
−a/b ∈ F is a root of f(x). Similarly, if deg(h) = 1 then f(x) has a root in F. Summary: If
f(x) ∈ F[x] has degree two or three, then

f(x) is prime over F ⇐⇒ f(x) has no roots in F.

2. Adjoining an Element to a Field. Let p(x) ∈ F[x] be the minimal polynomial for
some element γ ∈ E ⊇ F and suppose that deg(p) = d. Consider the set of evaluations of all
polynomials f(x) ∈ F[x] at x = γ, which is a subset of E:

F[γ] = {f(γ) : f(x) ∈ F[x]} ⊆ E.

over Q, so we say that π is transcendental over Q. This notion is relative to the base field. For example, π is
transcendental over Q but it is algebraic over R with minimal polynomial x− π ∈ R[x].
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It is easy to check that F[γ] is a subring of E.

(a) Prove that

F[γ] = {a0 + a1γ + · · ·+ ad−1γ
d−1 : a0, a1 . . . , ad−1 ∈ F}.

[Hint: Every element α ∈ F[γ] has the form α = f(γ) for some f(x) ∈ F[x]. Divide
f(x) by p(x) to get f(x) = p(x)q(x) + r(x) for q(x), r(x) ∈ F[x] with deg(r) < d.]

(b) Let a0, a1, . . . , ad−1, b0, b1, . . . , bd−1 ∈ F[x] and define elements α, β ∈ F[γ] by

α = a0 + a1γ + · · ·+ ad−1γ
d−1 and β = b0 + b1γ + · · ·+ bd−1γ

d−1.

Prove that α = β if and only if ai = bi for all i. [Hint: Consider the polynomials
f(x) = a0 + a1x + · · · + ad−1x

d−1 and g(x) = b0 + b1x + · · · + bd−1x
d−1 and let

h(x) = f(x)− g(x). Since h(γ) = 0, Problem 1(a) implies that p(x)|h(x). Use this to
show that h(x) = 0 and hence f(x) = g(x), as desired.]

(c) Show that F[γ] is actually a field. [Hint: A general element α ∈ F[γ] has the form
α = f(γ) for some f(x) ∈ F[x]. If α 6= 0 then part (b) implies that f(x) 6= 0 and
Problem 1(a) implies that p(x) - f(x). Since p(x) is prime this means that f(x) and
p(x) are coprime in F[x], hence there exist f ′(x), p′(x) ∈ F[x] satisfying f(x)f ′(x) +
p(x)p′(x) = 1.]

To emphasize: We assume that p(x) ∈ F[x] is the minimal polynomial of γ over F
and that deg(p) = d.

(a): By definition, every element α ∈ F[γ] has the form α = f(γ) for some polynomial
f(x) ∈ F[x]. Divide f(x) by p(x) to get f(x) = p(x)q(x) + r(x) where q(x), r(x) ∈ F[x] and
r(x) = 0 or deg(r) < deg(p) = d. In any case we can write r(x) = a0 + a1x+ · · ·+ ad−1x

d−1

for some coefficients a0, a1, . . . , ad−1 ∈ F[x]. But then

α = f(γ)

= p(γ)q(γ) + r(γ)

= 0q(γ) + r(γ)

= r(γ)

= a0 + a1γ + · · ·+ ad−1γ
d−1,

as desired.

(b): Consider any elements α, β ∈ F[x]. From part (a) we know that α = f(γ) and β = g(γ)
for some polynomials

f(x) = a0 + a1 + · · ·+ ad−1x
d−1,

g(x) = b0 + b1 + · · ·+ bd−1x
d−1,

with a0, . . . , ad−1, b0, . . . , bd−1 ∈ F. I claim that

α = β ⇐⇒ ai = bi for all i.

One direction is easy. For the other direction, consider the polynomial h(x) = f(x)− g(x) ∈
F[x]. Since h(γ) = f(γ)− g(γ) = α − β = 0, we know from 1(a) that p(x)|h(x). I claim that
this implies h(x) = 0. Indeed, if h(x) 6= 0 then the relation p(x)|h(x) gives a contradiction:

d = deg(p) ≤ deg(h) ≤ min{deg(f), deg(g)} ≤ d− 1.

It follows that f(x) = g(x) in the ring F[x] hence these polynomials have the same coefficients.
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(c): To see that F[γ] is a field, consider any nonzero element α ∈ F[γ]. By definition we
have α = f(γ) for some f(x) ∈ F[x]. Since α 6= 0, it follows from the easy direction of
1(a) that p(x) - f(x).2 Then since p(x) is a prime element of the Euclidean domain F[x] we
have gcd(p, f) = 1 and we can use the Extended Euclidean Algorithm to find polynomials
p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) = 1. Now substitute x = γ to obtain

p(x)p′(x) + f(x)f ′(x) = 1

p(γ)p′(γ) + f(γ)f ′(γ) = 1

0p′(γ) + f(γ)f ′(γ) = 1

f(γ)f ′(γ) = 1

αf ′(γ) = 1.

Since f ′(γ) ∈ F[γ], it follows that α−1 exists in F[γ].

Remark: The field F[γ] is completely analogous to the field Z/pZ for a prime integer p ∈ Z.
Indeed, if p(x) is the minimal polynomial of γ over F then for all polynomials f(x), g(x) ∈ F[x]
we can define the notation

f(x) ≡ g(x) mod p(x) ⇐⇒ p(x)|(f(x)− g(x)).

And it follows from Problem 1a that

f(x) ≡ g(x) mod p(x) ⇔ f(γ) = g(γ).

So the theory of field extensions is analogous to the theory of modular arithmetic. It gets
really fun when you combine the two theories to obtain the theory of finite fields.

3. Quadratic Field Extensions. Computing inverses in a field extension F[γ] involves the
Extended Euclidean Algorithm. However, if the minimal polynomial of γ over F is quadradic
then there is a shortcut called “rationalizing the denominator”. Let p(x) = x2 +ux+ v ∈ F[x]
be the minimal polynomial of γ and define the conjugation function ∗ : F[γ]→ F[γ] by

(a+ bγ)∗ = (a− ub)− bγ.

(a) For all α ∈ F[γ] show that α = α∗ if and only if α ∈ F.
(b) For all α, β ∈ F[γ] show that (α+ β)∗ = α∗ + β∗ and (αβ)∗ = α∗β∗.
(c) Use the fact that p(x) = x2 + xu + v ∈ F[x] is prime to show that u2 − 4v has no

square root in F. [Hint: Quadratic formula. More precisely, if r ∈ F and r2 = u2 − 4v,
show that (−u+ r)/2 ∈ F is a root of p(x).]

(d) Given α ∈ F[γ], it follows from (a) and (b) that αα∗ ∈ F. More precisely, we define
the norm function N : F[γ]→ F by

N(a+ bγ) := (a+ bγ)(a+ bγ)∗ = a2 − abu+ b2v ∈ F.

For all α ∈ F[γ], use part (c) to show that α 6= 0 implies N(α) 6= 0. [Hint: Consider a
nonzero element α = a+ bγ 6= 0 and assume for contradiction that N(α) = 0. If b = 0,
use the fact that N(α) = 0 to show that a = 0, contradicting the fact that α 6= 0. If

b 6= 0, use the fact that N(α) = 0 to show that
(
2a−bu
b

)2
= u2 − 4v, contradicting (c).]

(e) Given a nonzero element α = a + bγ 6= 0, “rationalize the denominator” to find an
explicit formula for (a+ bγ)−1.

2In the hint I suggested to use 2(b). Actually it’s much easier than this.
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To emphasize: We assume that p(x) = x2 + ux+ v ∈ F[x] is the minimal polynomial
of γ over F, so each element α ∈ F[γ] has a unique representation of the form
α = a+ bγ for some a, b ∈ F. This uniqueness implies that γ 6∈ F.

(a): Let α = a+ bγ with a, b ∈ F. Note that α ∈ F if and only if b = 0. Indeed, if α = c ∈ F
and b 6= 0 then γ = (c− a)/b ∈ F. Contradiction. Now we will show that α∗ = α if and only
if b = 0. For the first direction, let b = 0. Then

α∗ = (a− bu)− bγ = (a− 0)− 0γ = a = a+ 0γ = α.

Conversely, suppose that α∗ = α:

(a− bu)− bγ = a+ bγ.

Comparing imaginary parts gives b = −b, hence b = 0.

(b): Given α = a+ bγ and β = c+ dγ we have

α∗ = (a− bu)− bγ,
β∗ = (c− du)− dγ,

so that

(α+ β)∗ = [(a+ c) + (b+ d)γ]∗

= [(a+ c)− (b+ d)u)]− (b+ d)γ

= [(a− bu)− bγ] + [(c− du)− dγ]

= α∗ + β∗

and

α∗β∗ = [(a− bu)− bγ] · [(c− du)− dγ]

= (a− bu)(c− du) + bdγ2 − [(a− bu)d+ (c− du)b]γ

= (ac− adu− bcu+ bdu2) + bd(−uγ − v)− (ad+ bc− 2bdu)γ

= (ac− adu− bcu+ bdu2 − bdv)− (ad+ bc− bdu)γ

which is the same as

(αβ)∗ = [(a+ bγ)(c+ dγ)]∗

= [ac+ bdγ2 + (ad+ bc)γ]∗

= [ac+ bd(−uγ − v) + (ad+ bc)γ]∗

= [(ac− bdv) + (ad+ bc− bdu)γ]∗

= [(ac− bdv)− (ad+ bc− bdu)u]− (ad+ bc− bdu)γ

= (ac− adu− bcu+ bdu2 − bdv)− (ad+ bc− bdu)γ.

Remark: The hardest part of the theory is to prove that generalized conjugation maps exist.
This subject is called “Galois theory”.

(c,d): Just check that the hints work. I won’t do it because I got too tired on part (b).
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(e): Given a nonzero element α = a + bγ 6= 0 we have seen that N(α) = αα∗ 6= 0, hence we
can rationalize the denominator:

1

α
=

1

α

α∗

α∗

=
α∗

N(α)

=
(a− bu)− bγ
a2 − abu+ b2v

=

(
a− bu

a2 − abu+ b2v

)
+

(
−b

a2 − abu+ b2v

)
γ.

Actually, this is not a real proof. It’s just a heuristic method that lets us discover the correct
formula.

Remark: I apologize that this problem was so computational, but we needed the results of
parts (a) and (b) to study constructible numbers in Problem 4. Parts (c,d,e) show that the
high school trick of rationalizing the denominator is a lot deeper than it looks.

4. The Rational Root Test.

(a) Consider integers a, b, c ∈ Z with gcd(a, b) = 1. Prove that a|bc implies a|c. [Hint: If
gcd(a, b) = 1 then ax+ by = 1 for some x, y ∈ Z. Multiply both sides by c.]

(b) Consider an integer polynomial f(x) = cnx
n + · · ·+ c1x+ c0 ∈ Z[x] and suppose that

f(x) has a rational root a/b ∈ Q with gcd(a, b) = 1. In this case, use part (a) to
show that a|c0 and b|cn. [Hint: Multiply both sides of f(a/b) = 0 by bn to clear
denominators.]

(a): Consider some integers a, b, c ∈ Z with gcd(a, b) = 1. From the Extended Euclidean
Algorithm we can find some integers x, y ∈ Z satisfying ax+ by = 1. Multiply by c to get

ax+ by = 1

(ax+ by)c = c

acx+ bcy = c.

If a|bc (say ak = bc) then it follows that

acx+ (bc)y = c

acx+ (ak)y = c

a(cx+ ky) = c,

and hence a|c.

(b): Consider any polynomial f(x) = cnx
n+ · · ·+c1x+c0 ∈ Z[x] and suppose that f(a/b) = 0

for some a, b ∈ Z with b 6= 0 and gcd(a, b) = 1. Multiplying both sides of the equation
f(a/b) = 0 by bn gives

cn

(a
b

)n
+ · · ·+ c1

(a
b

)
+ c0 = 0

cn

(a
b

)n
bn + · · ·+ c1

(a
b

)
bn + c0b

n = 0

cna
n + cn−1a

n−1b+ · · ·+ c1ab
n−1 + c0b

n = 0.

Since c0b
n = a(some integer) and gcd(a, b) = 1 it follows from (a) that a|c0. Since cna

n =
b(some integer) and gcd(a, b) = 1 it follows from (a) that b|cn.
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Remark: For any integer polynomial f(x) ∈ Z[x] we can use this test to find all rational roots
of f(x), or prove that none exist. We will use this in Problem 6.

5. Constructible Numbers of Degree Three.

(a) Consider a quadratic field extension F[γ] ⊇ F as in Problem 3, with conjugation map
∗ : F[γ]→ F[γ]. For any polynomial f(x) ∈ F[x] of degree 3, prove that

f(x) has a root in F[γ] =⇒ f(x) has a root in F.

[Hint: Suppose that f(α) = 0 for some α ∈ F[γ]. If α ∈ F then we are done. Otherwise,
show that f(α∗) = 0, and use this to show that f(x) = (x − α)(x − α∗)g(x) for some
polynomial g(x) ∈ F[x] of degree 1. You have done this before.]

(b) We showed in class that a real number α ∈ R is constructible with ruler and compass
if and only if it is contained in a chain of quadratic field extensions over Q:

α ∈ Fn ⊇ · · · ⊇ F2 ⊇ F1 ⊇ F0 := Q.
Given a rational polynomial f(x) ∈ Q[x] of degree 3, use part (a) to prove that

f(x) has a constructible root =⇒ f(x) has a root in Q.

[Hint: Note that f(x) ∈ Fk[x] for all k. If f(x) has a root in Fk+1 then part (a) implies
that f(x) has a root in Fk.]

(a): Consider a quadratic field extension E ⊇ F with conjugation map ∗ : E → E satisfying
the following properties:3

• For all α ∈ E we have α = α∗ if and only if F.
• For all α, β ∈ E we have (α+ β)∗ = α∗ + β∗ and (αβ)∗α∗β∗.
• For all α ∈ E we have α+ α∗ ∈ F and αα∗ ∈ F.

For any polynomial f(x) ∈ E of degree 3 we will show that

f(x) has a root in F[γ] =⇒ f(x) has a root in F.

So suppose that f(α) = 0 for some α ∈ E. If α ∈ F then we are done. Otherwise, we have
α 6= α∗. But α∗ is also a root of f(x) because4

f(α∗) = [f(α)]∗ = 0∗ = 0.

Since f(α) = 0, Descartes’ Theorem gives f(x) = (x − α)g(x) for some g(x) ∈ E[x]. Then
substituting x = α∗ gives

f(α∗) = (α∗ − α)g(α∗)

0 = (α∗ − α)g(α∗)

0 = g(α∗),

because α∗ − α 6= 0. Applying Descartes’ Theorem again gives g(x) = (x− α∗)h(x) for some
h(x) ∈ E[x], so that

f(x) = (x− α)(x− α∗)h(x)

f(x) = (x2 − (α+ α∗)x+ αα∗)h(x).

Since α + α∗ ∈ F and αα∗ ∈ F it follows from Problem 2 on Homework 4 that h(x) ∈ F[x].
Finally, since deg(f) = 3 we must have deg(h) = 1. Since any polynomial h(x) ∈ F[x] of

3We can write E = F[γ] for some γ satisfying an irreducible quadratic equation over F. Then the conjugation
map ∗ has an explicit formula as in Problem 3. However, it is not necessary to mention γ in this problem.

4The proof that [f(α)]∗ = f(α∗) is the exactly the same as for complex conjugation. You proved this on
Exam 2.
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degree 1 has a root in F, it follows that f(x) has a root in F. (To be explicit, we must have
h(x) = a+ bx for some a, b ∈ F with b 6= 0. Then h(−a/b) = 0 and hence f(−a/b) = 0.)

(b): Consider a polynomial f(x) ∈ Q[x] of degree 3 and suppose that f(x) has a constructible
root α ∈ R. By definition this means that α is contained in a chain of quadratic field extensions:

α ∈ Fn ⊇ · · · ⊇ F2 ⊇ F1 ⊇ F0 := Q.
We will use induction to show that f(x) has a root in Q. To be specific, we observe that the
following implication holds for all 1 ≤ k ≤ n:

f(x) has a root in Fk =⇒ f(x) has a root in Fk−1.
Indeed, suppose that f(x) has a root in Fk. Since f(x) has degree 3 and has coefficients in
Fk−1 (because Fk−1 contains Q) it follows from (a) that f(x) has a root in Fk−1.

6. Impossible Constructions. If a real number α ∈ R satisfies f(α) = 0 for some rational
polynomial f(x) ∈ Q[x] of degree 3 with no rational roots, then Problem 5 implies that α is
not constructible. We will apply this result and the rational root test to prove that the
following real numbers not constructible:

3
√

2, 2 cos

(
2π

7

)
, 2 cos

(π
9

)
.

(a) Show that the polynomial x3 − 2 ∈ Q[x] has no rational root.
(b) Show that α = 2 cos(2π/7) is a root of the polynomial x3+x2−2x−1 ∈ Q[x] and show

that this polynomial has no rational root. [Hint: α = ω+ω−1 where ω = exp(2πi/7).]
(c) Show that α = 2 cos(π/9) is a root of the polynomial x3−3x−1 ∈ Q[x] and show that

this polynomial has no rational root. [Hint: Use de Moivre’s identity (cos θ+i sin θ)3 =
cos(3θ) + i sin(3θ) to show that

cos(3θ) = 4 cos3 θ − 3 cos θ,

then substitute θ = π/9.]

(a): Let f(x) = x3 − 2 ∈ Z[x]. If f(a/b) = 0 for some a, b ∈ Z with b 6= 0 and gcd(a, b) = 1
then Problem 4b says that a|2 and b|1, so that a/b = ±2 or ±1. But none of these four
numbers is a root of f(x), hence f(x) has no rational root.

Remark: It follows from Problem 5b that the polynomial f(x) has no constructible roots.
Since 3

√
2 is a root of f(x) it follows that 3

√
2 is not constructible. This shows that the classical

“Delian problem” is impossible:

https://en.wikipedia.org/wiki/Doubling_the_cube

(b): Let ω = exp(2πi/7) so that

α = ω + ω−1 = [cos(2π/7) + i sin(2π/7)] + [cos(2π/7)− i sin(2π/7)] = 2 cos(2π/7).

We showed on a previous homework that

1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 = 0

1 + ω + ω2 + ω3 + ω−3 + ω−2 + ω−1 = 0.

On the other hand, we have

α3 = (ω + ω−1)3 = ω3 + 3ω1 + 3ω−1 + ω−3,

α2 = (ω + ω−1)2 = ω2 + 2 + ω−2,

https://en.wikipedia.org/wiki/Doubling_the_cube
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α = ω1 + ω−1,

so that

α3 + α2 − 2α− 1 = 1 + ω + ω2 + ω3 + ω−3 + ω−2 + ω−1 = 0.

We have shown that the real number 2 cos(2π/7) ∈ R is a root of the integer polynomial
f(x) = x3 + x2 − 2x − 1 ∈ Z[x]. According to the rational root test, if f(a/b) = 0 for some
a, b ∈ Z with b 6= 0 and gcd(a, b) = 1 then we must have a|1 and b|1 so that a/b = ±1. But
±1 are not roots of f(x), hence f(x) has no rational root.

Remark: It follows from Problem 5b that the polynomial f(x) has no constructible roots.
Since 2 cos(2π/7) is a root of f(x) it follows that 2 cos(2π/7) is not constructible. This shows
that the regular heptagon is not constructible with ruler and compass. For more:

https://en.wikipedia.org/wiki/Heptagon

(c): To show that α = 2 cos(π/9) is a root of x3− 2x− 1 we will use de Moivre’s theorem. To
save space we will write c = cos θ and s = sin θ:

cos(3θ) + i sin(3θ) = (c+ is)3

= (c+ is)(c+ is)2

= (c+ is)[(c2 − s2) + (2cs)i]

= [c(c2 − s2)− 2cs2] + [2c2s+ s(c2 − s2)]i

Comparing real parts gives5

cos(3θ) = c(c2 − s2)− 2cs2

= c3 − cs2 − 2cs2

= c3 − 3cs2

= c3 − 3c(1− c2) because c2 + s2 = 1

= c3 − 3c+ 3c4

= 4c3 − 3c

= 4 cos3 θ − 3 cos θ.

Now substitute θ = π/9 to get

4 cos3(π/9)− 3 cos(π/9) = cos(π/3)

4 cos3(π/9)− 3 cos(π/9) = 1/2

4(α/2)3 − 3(α/2) = 1/2

4α3/8− 3α/2 = 1/2

α3 − 3α = 1

α3 − 3α− 1 = 0.

If the polynomial f(x) = x3 − 3x− 1 ∈ Z[x] satisfies f(a/b) = 0 for some a, b ∈ Z with b 6= 0
and gcd(a, b) = 1 then the rational root test says that a|1 and b|1, hence a/b = ±1. But ±1
are not roots of f(x), hence f(x) has no rational root.

5Comparing imaginary parts gives sin(3θ) = 3 sin θ − 4 sin3 θ, but we don’t need this.

https://en.wikipedia.org/wiki/Heptagon


10

Remark: It follows from Problem 5b that the polynomial f(x) has no constructible roots.
Since 2 cos(π/9) is a root of f(x) it follows that 2 cos(π/9) is not constructible. This shows
that it is impossible to trisect an arbitrary angle using ruler and compass. Indeed, the angle
π/3 is constructible. If it were possible to trisect any angle then π/9 would be constructible.
For more:

https://en.wikipedia.org/wiki/Angle_trisection

https://en.wikipedia.org/wiki/Angle_trisection

