1. The Minimal Polynomial. This problem is a generalization of Descartes' Theorem. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and an element $\gamma \in \mathbb{E}$. Let $p(x) \in \mathbb{F}[x]$ be a prime polynomial satisfying $p(\gamma)=0$.
(a) For all $f(x) \in \mathbb{F}[x]$, prove that

$$
f(\gamma)=0 \quad \Longleftrightarrow \quad f(x)=p(x) g(x) \text { for some } g(x) \in \mathbb{F}[x]
$$

[Hint: Let $f(\gamma)=0$. If $p(x) \nmid f(x)$ then $p(x)$ and $f(x)$ are coprime in $\mathbb{F}[x]$, hence there exist $p^{\prime}(x), f^{\prime}(x) \in \mathbb{F}[x]$ satisfying $p(x) p^{\prime}(x)+f(x) f^{\prime}(x)=1$. Now what?]
(b) If $q(x) \in \mathbb{F}[x]$ is another prime polynomial satisfying $q(\gamma)=0$, use part (a) to show that $q(x)=c p(x)$ for some constant $c \in \mathbb{F}$. It follows that there exists a unique monic, prime polynomial $p(x) \in \mathbb{F}[x]$ satisfying $p(\gamma)=0$, which we call the minimal polynomial of γ over \mathbb{F}.
(c) If $a \in \mathbb{F}$, what is the minimal polynomial of a over \mathbb{F} ?
(d) What is the minimal polynomial of $\sqrt{-1}$ over \mathbb{R} ?
(e) What is the minimal polynomial of $\omega=\exp (2 \pi i / 3)$ over \mathbb{R} ?
2. Adjoining an Element to a Field. Let $p(x) \in \mathbb{F}[x]$ be the minimal polynomial for some element $\gamma \in \mathbb{E} \supseteq \mathbb{F}$ and suppose that $\operatorname{deg}(p)=d$. Consider the set of evaluations of all polynomials $f(x) \in \mathbb{F}[x]$ at $x=\gamma$, which is a subset of \mathbb{E} :

$$
\mathbb{F}[\gamma]=\{f(\gamma): f(x) \in \mathbb{F}[x]\} \subseteq \mathbb{E}
$$

It is easy to check that $\mathbb{F}[\gamma]$ is a subring of \mathbb{E}.
(a) Prove that

$$
\mathbb{F}[\gamma]=\left\{a_{0}+a_{1} \gamma+\cdots+a_{d-1} \gamma^{d-1}: a_{0}, a_{1} \ldots, a_{d-1} \in \mathbb{F}\right\}
$$

[Hint: Every element $\alpha \in \mathbb{F}[\gamma]$ has the form $\alpha=f(\gamma)$ for some $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by $p(x)$ to get $f(x)=p(x) q(x)+r(x)$ for $q(x), r(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(r)<d$.]
(b) Let $a_{0}, a_{1}, \ldots, a_{d-1}, b_{0}, b_{1}, \ldots, b_{d-1} \in \mathbb{F}[x]$ and define elements $\alpha, \beta \in \mathbb{F}[\gamma]$ by

$$
\alpha=a_{0}+a_{1} \gamma+\cdots+a_{d-1} \gamma^{d-1} \quad \text { and } \quad \beta=b_{0}+b_{1} \gamma+\cdots+b_{d-1} \gamma^{d-1} .
$$

Prove that $\alpha=\beta$ if and only if $a_{i}=b_{i}$ for all i. [Hint: Consider the polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{d-1} x^{d-1}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{d-1} x^{d-1}$ and let $h(x)=f(x)-g(x)$. Since $h(\gamma)=0$, Problem 1(a) implies that $p(x) \mid h(x)$. Use this to show that $h(x)=0$ and hence $f(x)=g(x)$, as desired.]
(c) Show that $\mathbb{F}[\gamma]$ is actually a field. [Hint: A general element $\alpha \in \mathbb{F}[\gamma]$ has the form $\alpha=f(\gamma)$ for some $f(x) \in \mathbb{F}[x]$. If $\alpha \neq 0$ then part (b) implies that $f(x) \neq 0$ and Problem 1(a) implies that $p(x) \nmid f(x)$. Since $p(x)$ is prime this means that $f(x)$ and $p(x)$ are coprime in $\mathbb{F}[x]$, hence there exist $f^{\prime}(x), p^{\prime}(x) \in \mathbb{F}[x]$ satisfying $f(x) f^{\prime}(x)+$ $p(x) p^{\prime}(x)=1$.]
3. Quadratic Field Extensions. Computing inverses in a field extension $\mathbb{F}[\gamma]$ involves the Extended Euclidean Algorithm. However, if the minimal polynomial of γ over \mathbb{F} is quadradic then there is a shortcut called "rationalizing the denominator". Let $p(x)=x^{2}+u x+v \in \mathbb{F}[x]$ be the minimal polynomial of γ and define the conjugation function $*: \mathbb{F}[\gamma] \rightarrow \mathbb{F}[\gamma]$ by

$$
(a+b \gamma)^{*}=(a-u b)-b \gamma .
$$

(a) For all $\alpha \in \mathbb{F}[\gamma]$ show that $\alpha=\alpha^{*}$ if and only if $\alpha \in \mathbb{F}$.
(b) For all $\alpha, \beta \in \mathbb{F}[\gamma]$ show that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(c) Use the fact that $p(x)=x^{2}+x u+v \in \mathbb{F}[x]$ is prime to show that $u^{2}-4 v$ has no square root in \mathbb{F}. [Hint: Quadratic formula. More precisely, if $r \in \mathbb{F}$ and $r^{2}=u^{2}-4 v$, show that $(-u+r) / 2 \in \mathbb{F}$ is a root of $p(x)$.]
(d) Given $\alpha \in \mathbb{F}[\gamma]$, it follows from (a) and (b) that $\alpha \alpha^{*} \in \mathbb{F}$. More precisely, we define the norm function $N: \mathbb{F}[\gamma] \rightarrow \mathbb{F}$ by

$$
N(a+b \gamma):=(a+b \gamma)(a+b \gamma)^{*}=a^{2}-a b u+b^{2} v \in \mathbb{F}
$$

For all $\alpha \in \mathbb{F}[\gamma]$, use part (c) to show that $\alpha \neq 0$ implies $N(\alpha) \neq 0$. [Hint: Consider a nonzero element $\alpha=a+b \gamma \neq 0$ and assume for contradiction that $N(\alpha)=0$. If $b=0$, use the fact that $N(\alpha)=0$ to show that $a=0$, contradicting the fact that $\alpha \neq 0$. If $b \neq 0$, use the fact that $N(\alpha)=0$ to show that $\left(\frac{2 a-b u}{b}\right)^{2}=u^{2}-4 v$, contradicting (c).]
(e) Given a nonzero element $\alpha=a+b \gamma \neq 0$, "rationalize the denominator" to find an explicit formula for $(a+b \gamma)^{-1}$.

4. The Rational Root Test.

(a) Consider integers $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Prove that $a \mid b c$ implies $a \mid c$. [Hint: If $\operatorname{gcd}(a, b)=1$ then $a x+b y=1$ for some $x, y \in \mathbb{Z}$. Multiply both sides by c.]
(b) Consider an integer polynomial $f(x)=c_{n} x^{n}+\cdots+c_{1} x+c_{0} \in \mathbb{Z}[x]$ and suppose that $f(x)$ has a rational root $a / b \in \mathbb{Q}$ with $\operatorname{gcd}(a, b)=1$. In this case, use part (a) to show that $a \mid c_{0}$ and $b \mid c_{n}$. [Hint: Multiply both sides of $f(a / b)=0$ by b^{n} to clear denominators.]

5. Constructible Numbers of Degree Three.

(a) Consider a quadratic field extension $\mathbb{F}[\gamma] \supseteq \mathbb{F}$ as in Problem 3, with conjugation map $*: \mathbb{F}[\gamma] \rightarrow \mathbb{F}[\gamma]$. For any polynomial $f(x) \in \mathbb{F}[x]$ of degree 3 , prove that

$$
f(x) \text { has a root in } \mathbb{F}[\gamma] \Longrightarrow f(x) \text { has a root in } \mathbb{F} \text {. }
$$

[Hint: Suppose that $f(\alpha)=0$ for some $\alpha \in \mathbb{F}[\gamma]$. If $\alpha \in \mathbb{F}$ then we are done. Otherwise, show that $f\left(\alpha^{*}\right)=0$, and use this to show that $f(x)=(x-\alpha)\left(x-\alpha^{*}\right) g(x)$ for some polynomial $g(x) \in \mathbb{F}[x]$ of degree 1 . You have done this before.]
(b) We showed in class that a real number $\alpha \in \mathbb{R}$ is constructible with ruler and compass if and only if it is contained in a chain of quadratic field extensions over \mathbb{Q} :

$$
\alpha \in \mathbb{F}_{n} \supseteq \cdots \supseteq \mathbb{F}_{2} \supseteq \mathbb{F}_{1} \supseteq \mathbb{F}_{0}:=\mathbb{Q} .
$$

Given a rational polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3 , use part (a) to prove that

$$
f(x) \text { has a constructible root } \Longrightarrow f(x) \text { has a root in } \mathbb{Q} \text {. }
$$

[Hint: Note that $f(x) \in \mathbb{F}_{k}[x]$ for all k. If $f(x)$ has a root in \mathbb{F}_{k+1} then part (a) implies that $f(x)$ has a root in \mathbb{F}_{k}.]
6. Impossible Constructions. If a real number $\alpha \in \mathbb{R}$ satisfies $f(\alpha)=0$ for some rational polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3 with no rational roots, then Problem 5 implies that α is not constructible. We will apply this result and the rational root test to prove that the following real numbers not constructible:

$$
\sqrt[3]{2}, \quad 2 \cos \left(\frac{2 \pi}{7}\right), \quad 2 \cos \left(\frac{\pi}{9}\right)
$$

(a) Show that the polynomial $x^{3}-2 \in \mathbb{Q}[x]$ has no rational root.
(b) Show that $\alpha=2 \cos (2 \pi / 7)$ is a root of the polynomial $x^{3}+x^{2}-2 x-1 \in \mathbb{Q}[x]$ and show that this polynomial has no rational root. [Hint: $\alpha=\omega+\omega^{-1}$ where $\omega=\exp (2 \pi i / 7)$.]
(c) Show that $\alpha=2 \cos (\pi / 9)$ is a root of the polynomial $x^{3}-3 x-1 \in \mathbb{Q}[x]$ and show that this polynomial has no rational root. [Hint: Use de Moivre's identity $(\cos \theta+i \sin \theta)^{3}=$ $\cos (3 \theta)+i \sin (3 \theta)$ to show that

$$
\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta
$$

then substitute $\theta=\pi / 9$.]

