
Math 461 Spring 2023
Homework 5 Drew Armstrong

1. The Minimal Polynomial. This problem is a generalization of Descartes’ Theorem.
Consider a field extension E ⊇ F and an element γ ∈ E. Let p(x) ∈ F[x] be a prime polynomial
satisfying p(γ) = 0.

(a) For all f(x) ∈ F[x], prove that

f(γ) = 0 ⇐⇒ f(x) = p(x)g(x) for some g(x) ∈ F[x].

[Hint: Let f(γ) = 0. If p(x) - f(x) then p(x) and f(x) are coprime in F[x], hence there
exist p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) = 1. Now what?]

(b) If q(x) ∈ F[x] is another prime polynomial satisfying q(γ) = 0, use part (a) to show
that q(x) = cp(x) for some constant c ∈ F. It follows that there exists a unique
monic, prime polynomial p(x) ∈ F[x] satisfying p(γ) = 0, which we call the
minimal polynomial of γ over F.

(c) If a ∈ F, what is the minimal polynomial of a over F?
(d) What is the minimal polynomial of

√
−1 over R?

(e) What is the minimal polynomial of ω = exp(2πi/3) over R?

2. Adjoining an Element to a Field. Let p(x) ∈ F[x] be the minimal polynomial for
some element γ ∈ E ⊇ F and suppose that deg(p) = d. Consider the set of evaluations of all
polynomials f(x) ∈ F[x] at x = γ, which is a subset of E:

F[γ] = {f(γ) : f(x) ∈ F[x]} ⊆ E.
It is easy to check that F[γ] is a subring of E.

(a) Prove that

F[γ] = {a0 + a1γ + · · ·+ ad−1γ
d−1 : a0, a1 . . . , ad−1 ∈ F}.

[Hint: Every element α ∈ F[γ] has the form α = f(γ) for some f(x) ∈ F[x]. Divide
f(x) by p(x) to get f(x) = p(x)q(x) + r(x) for q(x), r(x) ∈ F[x] with deg(r) < d.]

(b) Let a0, a1, . . . , ad−1, b0, b1, . . . , bd−1 ∈ F[x] and define elements α, β ∈ F[γ] by

α = a0 + a1γ + · · ·+ ad−1γ
d−1 and β = b0 + b1γ + · · ·+ bd−1γ

d−1.

Prove that α = β if and only if ai = bi for all i. [Hint: Consider the polynomials
f(x) = a0 + a1x + · · · + ad−1x

d−1 and g(x) = b0 + b1x + · · · + bd−1x
d−1 and let

h(x) = f(x)− g(x). Since h(γ) = 0, Problem 1(a) implies that p(x)|h(x). Use this to
show that h(x) = 0 and hence f(x) = g(x), as desired.]

(c) Show that F[γ] is actually a field. [Hint: A general element α ∈ F[γ] has the form
α = f(γ) for some f(x) ∈ F[x]. If α 6= 0 then part (b) implies that f(x) 6= 0 and
Problem 1(a) implies that p(x) - f(x). Since p(x) is prime this means that f(x) and
p(x) are coprime in F[x], hence there exist f ′(x), p′(x) ∈ F[x] satisfying f(x)f ′(x) +
p(x)p′(x) = 1.]

3. Quadratic Field Extensions. Computing inverses in a field extension F[γ] involves the
Extended Euclidean Algorithm. However, if the minimal polynomial of γ over F is quadradic
then there is a shortcut called “rationalizing the denominator”. Let p(x) = x2 +ux+ v ∈ F[x]
be the minimal polynomial of γ and define the conjugation function ∗ : F[γ]→ F[γ] by

(a+ bγ)∗ = (a− ub)− bγ.
(a) For all α ∈ F[γ] show that α = α∗ if and only if α ∈ F.



(b) For all α, β ∈ F[γ] show that (α+ β)∗ = α∗ + β∗ and (αβ)∗ = α∗β∗.
(c) Use the fact that p(x) = x2 + xu + v ∈ F[x] is prime to show that u2 − 4v has no

square root in F. [Hint: Quadratic formula. More precisely, if r ∈ F and r2 = u2 − 4v,
show that (−u+ r)/2 ∈ F is a root of p(x).]

(d) Given α ∈ F[γ], it follows from (a) and (b) that αα∗ ∈ F. More precisely, we define
the norm function N : F[γ]→ F by

N(a+ bγ) := (a+ bγ)(a+ bγ)∗ = a2 − abu+ b2v ∈ F.

For all α ∈ F[γ], use part (c) to show that α 6= 0 implies N(α) 6= 0. [Hint: Consider a
nonzero element α = a+ bγ 6= 0 and assume for contradiction that N(α) = 0. If b = 0,
use the fact that N(α) = 0 to show that a = 0, contradicting the fact that α 6= 0. If

b 6= 0, use the fact that N(α) = 0 to show that
(
2a−bu

b

)2
= u2 − 4v, contradicting (c).]

(e) Given a nonzero element α = a + bγ 6= 0, “rationalize the denominator” to find an
explicit formula for (a+ bγ)−1.

4. The Rational Root Test.

(a) Consider integers a, b, c ∈ Z with gcd(a, b) = 1. Prove that a|bc implies a|c. [Hint: If
gcd(a, b) = 1 then ax+ by = 1 for some x, y ∈ Z. Multiply both sides by c.]

(b) Consider an integer polynomial f(x) = cnx
n + · · ·+ c1x+ c0 ∈ Z[x] and suppose that

f(x) has a rational root a/b ∈ Q with gcd(a, b) = 1. In this case, use part (a) to
show that a|c0 and b|cn. [Hint: Multiply both sides of f(a/b) = 0 by bn to clear
denominators.]

5. Constructible Numbers of Degree Three.

(a) Consider a quadratic field extension F[γ] ⊇ F as in Problem 3, with conjugation map
∗ : F[γ]→ F[γ]. For any polynomial f(x) ∈ F[x] of degree 3, prove that

f(x) has a root in F[γ] =⇒ f(x) has a root in F.

[Hint: Suppose that f(α) = 0 for some α ∈ F[γ]. If α ∈ F then we are done. Otherwise,
show that f(α∗) = 0, and use this to show that f(x) = (x − α)(x − α∗)g(x) for some
polynomial g(x) ∈ F[x] of degree 1. You have done this before.]

(b) We showed in class that a real number α ∈ R is constructible with ruler and compass
if and only if it is contained in a chain of quadratic field extensions over Q:

α ∈ Fn ⊇ · · · ⊇ F2 ⊇ F1 ⊇ F0 := Q.

Given a rational polynomial f(x) ∈ Q[x] of degree 3, use part (a) to prove that

f(x) has a constructible root =⇒ f(x) has a root in Q.

[Hint: Note that f(x) ∈ Fk[x] for all k. If f(x) has a root in Fk+1 then part (a) implies
that f(x) has a root in Fk.]

6. Impossible Constructions. If a real number α ∈ R satisfies f(α) = 0 for some rational
polynomial f(x) ∈ Q[x] of degree 3 with no rational roots, then Problem 5 implies that α is
not constructible. We will apply this result and the rational root test to prove that the
following real numbers not constructible:

3
√

2, 2 cos

(
2π

7

)
, 2 cos

(π
9

)
.

(a) Show that the polynomial x3 − 2 ∈ Q[x] has no rational root.



(b) Show that α = 2 cos(2π/7) is a root of the polynomial x3+x2−2x−1 ∈ Q[x] and show
that this polynomial has no rational root. [Hint: α = ω+ω−1 where ω = exp(2πi/7).]

(c) Show that α = 2 cos(π/9) is a root of the polynomial x3−3x−1 ∈ Q[x] and show that
this polynomial has no rational root. [Hint: Use de Moivre’s identity (cos θ+i sin θ)3 =
cos(3θ) + i sin(3θ) to show that

cos(3θ) = 4 cos3 θ − 3 cos θ,

then substitute θ = π/9.]


