Math 461 Spring 2023
Homework 5 Drew Armstrong

1. The Minimal Polynomial. This problem is a generalization of Descartes’ Theorem.
Consider a field extension E O F and an element v € E. Let p(x) € F[z] be a prime polynomial
satisfying p(y) = 0.

(a) For all f(x) € F[x], prove that

f() =0 <= f(x) =p(x)g(x) for some g(x) € Flz].
[Hint: Let f(y) =0. If p(x) 1 f(z) then p(x) and f(z) are coprime in F[x], hence there
exist p/(z), f/(x) € Flx] satisfying p(x)p/(z) + f(z)f'(z) = 1. Now what?]

(b) If g(z) € F[z] is another prime polynomial satisfying ¢(vy) = 0, use part (a) to show
that ¢(z) = ¢p(z) for some constant ¢ € F. It follows that there exists a unique
monic, prime polynomial p(x) € F[z] satisfying p(y) = 0, which we call the
minimal polynomial of v over F.

(c) If a € F, what is the minimal polynomial of a over F?

(d) What is the minimal polynomial of v/—1 over R?

(e) What is the minimal polynomial of w = exp(27i/3) over R?

2. Adjoining an Element to a Field. Let p(z) € F[z] be the minimal polynomial for
some element v € E O F and suppose that deg(p) = d. Consider the set of evaluations of all
polynomials f(x) € F[x] at © =, which is a subset of E:

Fiy] ={f(v) : f(z) € Fla]} CE.
It is easy to check that F[y] is a subring of E.
(a) Prove that
Fly] = {ao + a1y + - + ag-17*"" 1 a0, a1 ... ,aq_1 € F}.

[Hint: Every element a € F[y] has the form o = f(y) for some f(x) € F[z]. Divide
7(@) by p(z) 0 get £(z) = p(x)g(z) + r(z) for q(z), r(z) € Flz] with deg(r) < d

(b) Let ag,a,...,aq-1,b0,b1,...,bq—1 € F|x] and define elements «, 5 € F[y| by

a=a+ay+-+agy"' and  B=bo+biy+-- by

Prove that o = f if and only if a; = b; for all i. [Hint: Consider the polynomials
f(x) = ap + a1x + - + ag_12%7! and g(x) = by + bz + --- + bg_129"! and let
h(z) = f(x) — g(x). Since h(y) = 0, Problem 1(a) implies that p(z)|h(z). Use this to
show that h(z) = 0 and hence f(z) = g(x), as desired.]

(c) Show that F[v] is actually a field. [Hint: A general element o € F[y] has the form
a = f(y) for some f(x) € Flz]. If @ # 0 then part (b) implies that f(z) # 0 and
Problem 1(a) implies that p(x) 1 f(x). Since p(z) is prime this means that f(z) and
p(z) are coprime in F[z|, hence there exist f/(z),p'(x) € F[z] satisfying f(z)f'(x) +
pla)pl () = 1]

3. Quadratic Field Extensions. Computing inverses in a field extension F[y] involves the
Extended Euclidean Algorithm. However, if the minimal polynomial of v over F is quadradic
then there is a shortcut called “rationalizing the denominator”. Let p(z) = 22 +ux +v € F[z]
be the minimal polynomial of v and define the conjugation function * : F[y] — F[y] by

(a+by)" = (a—ub) —by.
(a) For all a € F[y] show that a = o* if and only if o € F.
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(b) For all «, 5 € F[y] show that (o + 5)* = a* + f* and (af)* = a*F*.

(c) Use the fact that p(z) = 22 + zu + v € F[z] is prime to show that u? — 4v has no
square root in F. [Hint: Quadratic formula. More precisely, if » € F and r? = u? — 4v,
show that (—u+17)/2 € F is a root of p(x).]

(d) Given a € F[v], it follows from (a) and (b) that aa™ € F. More precisely, we define
the norm function N : F[y] — F by

N(a+by) := (a+by)(a+by)* =a® — abu + b*v € F.

For all a € F[y], use part (c) to show that o # 0 implies N(«) # 0. [Hint: Consider a
nonzero element o = a + by # 0 and assume for contradiction that N(«a) = 0. If b = 0,
use the fact that N(a) = 0 to show that a = 0, contradicting the fact that oo # 0. If

b # 0, use the fact that N(a) = 0 to show that (@)2 = u? — 4v, contradicting (c).]
(e) Given a nonzero element @ = a + by # 0, “rationalize the denominator” to find an
explicit formula for (a + by) L.

The Rational Root Test.

(a) Consider integers a, b, c € Z with ged(a,b) = 1. Prove that a|bc implies alc. [Hint: If
ged(a, b) = 1 then ax + by = 1 for some x,y € Z. Multiply both sides by c.]

(b) Consider an integer polynomial f(x) = cpz™ + -+ + c1x + ¢o € Z[z] and suppose that
f(z) has a rational root a/b € Q with ged(a,b) = 1. In this case, use part (a) to
show that alcy and b|c,. [Hint: Multiply both sides of f(a/b) = 0 by b" to clear
denominators.|

Constructible Numbers of Degree Three.

(a) Consider a quadratic field extension F[y] D F as in Problem 3, with conjugation map
 : F[y] — F[y]. For any polynomial f(z) € F[z] of degree 3, prove that

f(z) has aroot in F[y] == f(z) has a root in F.

[Hint: Suppose that f(«) = 0 for some o € F[y]. If & € F then we are done. Otherwise,
show that f(a*) = 0, and use this to show that f(z) = (x — a)(x — o*)g(z) for some
polynomial g(x) € Flz| of degree 1. You have done this before.]

(b) We showed in class that a real number o € R is constructible with ruler and compass
if and only if it is contained in a chain of quadratic field extensions over Q:

ackF,D---DF;D2F DFy:=Q.
Given a rational polynomial f(z) € Q[z] of degree 3, use part (a) to prove that
f(z) has a constructible root == f(z) has a root in Q.

[Hint: Note that f(z) € Fi[z] for all k. If f(z) has a root in Fy; then part (a) implies
that f(x) has a root in Fy.]

Impossible Constructions. If a real number a € R satisfies f(a) = 0 for some rational

polynomial f(z) € Q[z] of degree 3 with no rational roots, then Problem 5 implies that « is
not constructible. We will apply this result and the rational root test to prove that the
following real numbers not constructible:

\?/5, 2 cos <277T) , 2cos (g) .

(a) Show that the polynomial 2® — 2 € Q[z] has no rational root.



(b) Show that a = 2cos(27/7) is a root of the polynomial 23+ 2% — 2z —1 € Q[z] and show
that this polynomial has no rational root. [Hint: a = w +w™! where w = exp(27i/7).]

(c) Show that o = 2 cos(7/9) is a root of the polynomial 3 — 3z — 1 € Q[z] and show that
this polynomial has no rational root. [Hint: Use de Moivre’s identity (cos @ +isin 6)3 =
cos(360) + isin(30) to show that

cos(36) = 4 cos® § — 3cos ¥,
then substitute 6 = 7/9.]



