
Math 461 Spring 2023
Homework 4 Drew Armstrong

1. Conjugation of Complex Polynomials. For any polynomial f(x) =
∑
αkx

k ∈ C[x] we
define the conjugate polynomial by taking the complex conjugate of each coefficient:

f∗(x) :=
∑

α∗kx
k ∈ C[x].

(a) For any complex polynomial f(x) ∈ C[x] and complex number α ∈ C, show that

[f(α)]∗ = f∗(α∗).

(b) For any complex polynomial f(x) ∈ C[x] show that

f(x) = f∗(x) ⇐⇒ f(x) ∈ R[x].

(c) For any complex polynomials f(x), g(x) ∈ C[x], show that

(f + g)∗(x) = f∗(x) + g∗(x) and (fg)∗(x) = f∗(x)g∗(x).

(d) For any complex polynomial f(x) ∈ C[x], show that

f(x) + f∗(x) ∈ R[x] and f(x)f∗(x) ∈ R[x].

(a): Consider any f(x) =
∑
βkx

k ∈ C[x] and α ∈ C. Then we have

[f(α)]∗ =
[∑

βk(α)k
]∗

=
∑

β∗k(α∗)k properties of ∗
= f∗(α∗).

(b): Consider any f(x) =
∑
αkx

k. Then we have

f(x) ∈ R[x] ⇐⇒ αk ∈ R for all k

⇐⇒ αk = α∗k ∈ R for all k

⇐⇒
∑

αkx
k =

∑
α∗kx

k

⇐⇒ f(x) = f∗(x).

(c): Consider any f(x) =
∑
αkx

k ∈ C[x] and g(x) =
∑
βkx

k ∈ C[x]. Then we have

(f + g)∗(x) =
[∑

(αk + βk)xk
]∗

=
∑

(αk + βk)∗xk definition

=
∑

(α∗k + β∗k)xk property of ∗

=
∑

α∗kx
k +

∑
β∗kx

k

= f∗(x) + g∗(x)

and

(fg)∗(x) =

∑ ∑
i+j=k

αiβj

xk

∗
1
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=
∑ ∑

i+j=k

αiβj

∗ xk definition

=
∑ ∑

i+j=k

α∗i β
∗
j

xk properties of ∗

=
(∑

α∗i x
i
)(∑

β∗j x
j
)

= f∗(x)g∗(x).

(d): This can be done directly by looking at the coefficients, but it is quicker to combine (b)
and (c). Given f(x) ∈ C[x], part (c) tells us that

(f + f∗)∗ = f∗ + f∗∗ = f∗ + f = f + f∗

and

(ff∗)∗ = f∗f∗∗ = f∗f = ff∗.

(The notation is the tricky part here.) Then part (b) tells us that f+f∗ ∈ R[x] and ff∗ ∈ R[x].

Remark: Let f(x) =
∑
αkx

k ∈ C[x]. The ugly proof of f(x)f∗(x) ∈ R[x] shows that every
coefficient of f(x)f∗(x) is equal to its own conjugate: ∑

i+j=k

αiα
∗
j

∗ =
∑

i+j=k

α∗iα
∗∗
j =

∑
i+j=k

α∗iαj =
∑

i+j=k

αjα
∗
i =

∑
i+j=k

αiα
∗
j .

The last equality switches the indices i and j and uses the fact that i+ j = j + i.

2. Invariance of Quotient and Remainder. Consider two fields F ⊆ E, so we can think
of F[x] is a subring of E[x].

(a) Given f(x), g(x) ∈ F[x] such that g(x) 6= 0, suppose we have polynomials q(x), r(x)
with coefficients in E satisfying{

f(x) = q(x)g(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

In this case, prove that q(x) and r(x) actually have coefficients in F. [Hint: Divide
f(x) by g(x) in the ring F[x] to obtain a quotient and remainder q′(x), r′(x) ∈ F[x].
Now use the uniqueness of quotient and remainder in the ring E[x] (HW1.3).]

(b) Now consider the field extension C ⊇ R. Suppose that the real polynomial f(x) ∈ R[x]
has a complex root α ∈ C that is not real (i.e., α 6= α∗). In this case, prove that there
exists a real polynomial h(x) ∈ R[x] satisfying

f(x) = (x− α)(x− α∗)h(x).

(a): Recall the result of Problem 3 on Homework 1: Let E be a field and consider polynomials
f(x), g(x) ∈ E[x] with g(x) 6= 0. If there exist q(x), q′(x), r(x), r′(x) ∈ E[x] satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g),

{
f(x) = g(x)q′(x) + r′(x),
r′(x) = 0 or deg(r′) < deg(g),

then we must have r(x) = r′(x) and q(x) = q′(x).
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To apply this to the current problem, consider two fields E ⊇ F and two polynomials f(x), g(x) ∈
F[x] with g(x) 6= 0. Suppose we are given polyonomials q(x), r(x) ∈ E[x] satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g),

In this case, our goal is to show that q(x), r(x) ∈ F[x]. Since f(x), g(x) have coefficients in F
we can apply long division in the ring F[x] to obtain q′(x), r′(x) ∈ F[x] satisfying{

f(x) = g(x)q′(x) + r′(x),
r′(x) = 0 or deg(r′) < deg(g).

Since F[x] ⊆ E[x], all of the six polynomials f, g, q, q′, r, r′ are in E[x]. Hence it follows from
the above result that r(x) = r′(x) and q(x) = q′(x). Finally, since q′, r′ have coefficients in F,
it follows that q, r have coefficients in F.

Remark: This result is a bit subtle. I taught this material a few times before I appreciated it.

(b): Suppose that a real polynomial f(x) ∈ R[x] has a complex root α ∈ C. By Descartes’
Theorem there exists a polynomial g(x) ∈ C[x] with complex coefficients such that

f(x) = (x− α)g(x).

Since f(x) has real coefficients, we also have

0 = 0∗ = [f(α)]∗ = f∗(α∗) = f(α∗).

And since α is not real we have α 6= α∗. Putting these these facts together gives

(x− α)g(x) = f(x)

(α∗ − α)g(α∗) = f(α∗)

(α∗ − α)g(α∗) = 0

g(α∗) = 0.

Applying Descartes’ Theorem again, there exists a polynomial h(x) ∈ C[x] with complex
coefficients such that

g(x) = (x− α∗)h(x).

Now we have

f(x) = (x− α)g(x)

= (x− α)(x− α∗)h(x)

= (x− (α+ α∗)x+ αα∗)h(x)

= p(x)h(x),

where p(x) has real coefficients. Finally, we will apply part (a) to show that h(x) has real
coefficients. Indeed, since f(x), p(x) ∈ R[x] there exist q(x), r(x) ∈ R[x] satisfying{

f(x) = p(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(p).

On the other hand, we have {
f(x) = p(x)h(x) + 0,
0 = 0 or deg(0) < deg(p).

It follows that r(x) = 0 and q(x) = h(x). In particular, h(x) has real coefficients.
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Remark: Maybe there is an easier way to prove this? I don’t know. Anyway, the result is
basic and important. We will use it in 3(a).

3. Equivalent Forms of the FTA.

(a) Suppose that every (non-constant) real polynomial f(x) ∈ R[x] has a root in C. Use
Problem 2 to prove that every (non-constant) real polynomial factors as a product of
real polynomials of degrees 1 and 2.

(b) Suppose that every (non-constant) real polynomial f(x) ∈ R[x] has a root in C. In this
case, use Problem 1 to prove that every (non-constant) complex polynomial f(x) ∈ C[x]
has a root in C. [Hint: Let f(x) ∈ C[x] be any (non-constant) complex polynomial
and consider the polynomial g(x) = f(x)f∗(x).]

(a): Suppose that every non-constant polynomial f(x) ∈ R[x] has a complex root. Our goal is
to prove that every non-constant polynomial f(x) ∈ R[x] has the desired type of factorization.

So consider any non-constant polynomial f(x) ∈ R[x]. By assumption, there exists α ∈ C
such that f(α) = 0. There are two cases:

• If α is real then there exists a real polynomial g(x) ∈ R[x] such that

f(x) = (x− α)g(x).

Note that x − α is real of degree 1. If g(x) is constant then we are done. Otherwise,
we may assume for induction that g(x) has the desired type of factorization. Then so
does f(x).
• If α is not real then from Problem 2(b) we have

f(x) = p(x)h(x)

for some real polynomials p(x), h(x) with deg(p) = 2. If h(x) is constant then we
are done. Otherwise, we may assume for induction that h(x) has the desired type of
factorization. Then so does f(x).

�

Remark: This is the grown-up way of doing induction, i.e., we don’t say that we’re using
induction until the very end. If you insist on being explicit, we are using strong induction to
prove that the following statement is true for all n ≥ 1:

Pn := “Every real polynomial of degree n can be factored as a product of real
polynomials of degrees 1 and 2”.

The base cases n = 1, 2 are easy. Now assume that P1, P2, . . . , Pn−1 are true. In order to
prove Pn, consider any f(x) ∈ R[x] of degree n ≥ 2. The constructed polynomials g(x) and
h(x) have degrees n−1 and n−2. Since Pn−1 and Pn−2 are true, each of them has the desired
type of factorization.

(b): Suppose that every non-constant polynomial f(x) ∈ R[x] has a complex root. We wish
to prove that every non-constant polynomial f(x) ∈ C[x] has a complex root.

So consider any non-constant polynomial f(x) ∈ C[x] and define the polynomial

g(x) = f(x)f∗(x),
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which is also non-constant. In fact deg(g) = 2 deg(f). From 1(d) we know that g(x) has real
coefficients, hence by assumption g(x) has a complex root, say α ∈ C. But then

f(x)f∗(x) = g(x)

f(α)f∗(α) = g(α)

f(α)f∗(α) = 0,

which implies that f(α) = 0 or f∗(α) = 0. If f(α) = 0 then f(x) has a complex root α and
we are done. Otherwise, if f∗(α) = 0 then

f(α∗) = f∗∗(α∗) = [f∗(α∗)]∗ = 0∗ = 0.

Hence f(x) has a complex root α∗. �

4. Biquadratic Polynomials. Given real numbers a, b ∈ R we will prove that there exist
real numbers p, q, r, s ∈ R satisfying

x4 + ax2 + b = (x2 + px+ r)(x2 + qx+ s).

(a) If a2 − 4b ≥ 0, show that x4 + ax2 + b = (x2 −A)(x2 −B) for some real A,B ∈ R.
(b) If a2 − 4b < 0, show that x4 + ax2 + b = (x2 − α)(x2 − α∗) for some non-real α ∈ C.
(c) Continuing from (b), let ±β ∈ C be the roots of x2 − α ∈ C[x] and let ±γ ∈ C be the

roots of x2 − α∗ ∈ C[x], so that

x4 + ax2 + b = (x− β)(x+ β)(x− γ)(x+ γ).

Show that β∗ = γ or β∗ = −γ. Now what?

(a): Given any real numbers a, b ∈ R we consider the polynomials

f(x) = x4 + ax2 + b and g(x) = x2 + ax+ b.

By the quadratic formula, we can write g(x) = (x−A)(x−B), where

A,B =
−a±

√
a2 − 4b

2
.

If a2 − 4b ≥ 0 then both of these roots are real (possibly equal), and we conclude that

f(x) = g(x2) = (x2 −A)(x2 −B)

for some real numbers A,B.

(b): If a2 − 4b < 0 then I claim that A,B = α, α∗ for some non-real complex number α.
Indeed, in this case we have

A,B =
−a±

√
a2 − 4b

2
=
−a
2
± i1

2

√
4b− a2,

where
√

4b− a2 is real because 4b− a2 > 0.

(c): Continuing from (b), we have shown that

f(x) = g(x2) = (x2 − α)(x2 − α∗)
for some non-real complex number α. Recall that any nonzero complex number α has two
square roots ±β ∈ C which are negatives of each other. Indeed, a square root β2 = α must
exist.1 Then we also have (−β)2 = β2 = α. And we cannot have more than two square roots

1We can show this using the polar form. If α = reiθ with r, θ ∈ R and r > 0 then we can take β =
√
r · eiθ/2,

where
√
r is the positive real square root of r. If you want to be really thorough, the square root

√
r exists

because of the Intermediate Value Theorem.
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because Descartes’ Theorem says that the polynomial x2−α has at most two roots. Similarly,
the number α∗ has exactly two square roots ±γ ∈ C. It follows from Descartes’ Theorem that

f(x) = (x2 − α)(x2 − α∗) = (x− β)(x+ β)(x− γ)(x+ γ).

Finally, we will show that β∗ = γ or β∗ = −γ. Indeed, since β2 = α we have

β2 = α

(β2)∗ = α∗

(β∗)2 = α∗.

Since ±γ are the only square roots of α∗ it follows that β∗ equals one of these. In either
case, we have

f(x) = (x− β)(x+ β)(x− γ)(x+ γ)

= (x− β)(x− β∗)(x+ β)(x+ β∗)

= (x2 − (β + β∗)x+ ββ∗)(x2 + (β + β∗)x+ ββ∗),

where all of the coefficients are real. �

Remark: This proof was abstract. Actually, the coefficients can be computed explicitly. In
the course notes there is a section on “Euler’s Attempt”, which give the following example:

x4 − 4x2 + 7 =

(
x2 +

√
4 + 2

√
7 · x+

√
7

)(
x2 −

√
4 + 2

√
7 · x+

√
7

)
.

This is a special feature of biquadratic polynomials x4+ax2+b. The factorization of a general
quartic x4 + ax3 + bx2 + cx+ d cannot be easily described.

5. Laplace’s Proof of the FTA (Bonus). Consider any field extension E ⊇ R and let
α1, α2, α3 ∈ E be any elements satisfying

x3 + x+ 1 = (x− α1)(x− α2)(x− α3).

(a) Expand the right hand side and compare coefficients to find formulas for

α1 + α2 + α3, α1α2 + α1α3 + α2α3, and α1α2α3.

(b) Now let t ∈ R be any real number and consider the polynomial

gt(x) = (x− β12t)(x− β13t)(x− β23t),
where βijt = αi + αj + tαiαj for all pairs 1 ≤ i < j ≤ 3. Find explicit formulas for the
coefficients of gt(x) in terms of t, and conclude that gt(x) has real coefficients. [Hint:
Each coefficient gt is a symmetric function of α1, α2, α3. Any symmetric function of
α1, α2, α3 can be expressed in terms of the elementary symmetric functions of α1, α2, α3,
as listed in part (a).]

(a): Expanding the right hand side gives

x3 + x+ 1 = (x− α1)(x− α2)(x− α3)

= x3 − (α1 + α2 + α3)x
2 + (α1α2 + α1α3 + α2α3)x− (α1α2α3),

hence  α1 + α2 + α3 = 0,
α1α2 + α1α3 + α2α3 = 1,

α1α2α3 = −1.
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(b): Now let t ∈ R be any real number. Expanding the right hand side of gt(x) gives

gt(x) = x3 −Ax2 +Bx− C,

where

A = (α1 + α2 + tα1α2) + (α1 + α3 + tα1α3) + (α2 + α3 + tα2α3)

= (α1α2 + α1α3 + α2α3) t

+ 2α1 + 2α2 + 2α3

= (α1α2 + α1α3 + α2α3) t

+ 2(α1 + α2 + α3)

= (1)t+ 2(0)

= t

and

B = (α1 + α2 + tα1α2)(α1 + α3 + tα1α3)

+ (α1 + α2 + tα1α2)(α2 + α3 + tα2α3)

+ (α1 + α3 + tα1α3)(α2 + α3 + tα2α3)

=
(
α1

2α2α3 + α1α2
2α3 + α1α2α3

2
)
t2

+
(
α1

2α2 + α1
2α3 + α1α2

2 + 6α1α2α3 + α1α3
2 + α2

2α3 + α2α3
2
)
t

+ α1
2 + 3α1α2 + 3α1α3 + α2

2 + 3α2α3 + α3
2

= (α1 + α2 + α3)(α1α2α3)t
2

+ [(α1 + α2 + α3) (α1α2 + α1α3 + α2α3) + 3α1α2α3] t

[(α1α2 + α1α3 + α2α3) + (α1 + α2 + α3)]

= (0)(−1)t2 + [(0)(1) + 3(−1)]t+ [(1) + (0)]

= −3t+ 1

and

C = (α1 + α2 + tα1α2)(α1 + α3 + tα1α3)(α2 + α3 + tα2α3)

= α1
2α2

2α3
2t3

+
(
2α1

2α2
2α3 + 2α1

2α2α3
2 + 2α1α2

2α3
2
)
t2

+
(
α1

2α2
2 + 3α1

2α2α3 + α1
2α3

2 + 3α1α2
2α3 + 3α1α2α3

2 + α2
2α3

2
)
t

+ α1
2α2 + α1

2α3 + α1α2
2 + 2α1α2α3 + α1α3

2 + α2
2α3 + α2α3

2

= (α1α2α3)
2t3

+ [2(α1α2 + α1α3 + α2α3)(α1α2α3)] t
2

+
[
(α1α2 + α1α3 + α2α3)

2 + (α1 + α2 + α3)(α1α2α3)
]
t

+ [(α1 + α2 + α3)(α1α2 + α1α3 + α2α3)− (α1α2α3)]

= (−1)2t3 + 2(1)(−1)t2 + [(1)2 + (0)(−1)]t+ [(0)(1)− (−1)]

= t3 − 2t2 + t+ 1.

Hence

gt(x) = [x− (α1 + α2 + tα1α2)] · [x− (α1 + α3 + tα1α3)] · [x− (α2 + α3 + tα2α3)]
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= x3 − (t)x2 + (−3t+ 1)t− (t3 − 2t2 + t+ 1).

Remark: I don’t know what I was thinking when I assigned this. The computations are
extremely tedious. I used a computer to output the latex code. If I did it by hand I would
have made 1000 mistakes. It is an unfortunate feature of this subject that the smallest non-
trivial examples cannot be done by hand. Therefore the subject often seems more abstract
than it really is. Perhaps I should teach the students how to do this on a computer.


