
Math 461 Spring 2023
Homework 4 Drew Armstrong

1. Conjugation of Complex Polynomials. For any polynomial f(x) =
∑
αkx

k ∈ C[x] we
define the conjugate polynomial by taking the complex conjugate of each coefficient:

f∗(x) :=
∑

α∗kx
k ∈ C[x].

(a) For any complex polynomial f(x) ∈ C[x] and complex number α ∈ C, show that

[f(α)]∗ = f∗(α∗).

(b) For any complex polynomial f(x) ∈ C[x] show that

f(x) = f∗(x) ⇐⇒ f(x) ∈ R[x].

(c) For any complex polynomials f(x), g(x) ∈ C[x], show that

(f + g)∗(x) = f∗(x) + g∗(x) and (fg)∗(x) = f∗(x)g∗(x).

(d) For any complex polynomial f(x) ∈ C[x], show that

f(x) + f∗(x) ∈ R[x] and f(x)f∗(x) ∈ R[x].

2. Invariance of Quotient and Remainder. Consider two fields F ⊆ E, so we can think
of F[x] is a subring of E[x].

(a) Given f(x), g(x) ∈ F[x] such that g(x) 6= 0, suppose we have polynomials q(x), r(x)
with coefficients in E satisfying{

f(x) = q(x)g(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

In this case, prove that q(x) and r(x) actually have coefficients in F. [Hint: Divide
f(x) by g(x) in the ring F[x] to obtain a quotient and remainder q′(x), r′(x) ∈ F[x].
Now use the uniqueness of quotient and remainder in the ring E[x] (HW1.3).]

(b) Now consider the field extension C ⊇ R. Suppose that the real polynomial f(x) ∈ R[x]
has a complex root α ∈ C that is not real (i.e., α 6= α∗). In this case, prove that there
exists a real polynomial h(x) ∈ R[x] satisfying

f(x) = (x− α)(x− α∗)h(x).

3. Equivalent Forms of the FTA.

(a) Suppose that every (non-constant) real polynomial f(x) ∈ R[x] has a root in C. Use
Problem 2 to prove that every (non-constant) real polynomial factors as a product of
real polynomials of degrees 1 and 2.

(b) Suppose that every (non-constant) real polynomial f(x) ∈ R[x] has a root in C. In this
case, use Problem 1 to prove that every (non-constant) complex polynomial f(x) ∈ C[x]
has a root in C. [Hint: Let f(x) ∈ C[x] be any (non-constant) complex polynomial
and consider the polynomial g(x) = f(x)f∗(x).]

4. Biquadratic Polynomials. Given real numbers a, b ∈ R we will prove that there exist
real numbers p, q, r, s ∈ R satisfying

x4 + ax2 + b = (x2 + px+ r)(x2 + qx+ s).

(a) If a2 − 4b ≥ 0, show that x4 + ax2 + b = (x2 −A)(x2 −B) for some real A,B ∈ R.
(b) If a2 − 4b < 0, show that x4 + ax2 + b = (x2 − α)(x2 − α∗) for some non-real α ∈ C.



(c) Continuing from (b), let ±β ∈ C be the roots of x2 − α ∈ C[x] and let ±γ ∈ C be the
roots of x2 − α∗ ∈ C[x], so that

x4 + ax2 + b = (x− β)(x+ β)(x− γ)(x+ γ).

Show that β∗ = γ or β∗ = −γ. Now what?

5. Laplace’s Proof of the FTA. Consider any field extension E ⊇ R and let α1, α2, α3 ∈ E
be any elements satisfying

x3 + x+ 1 = (x− α1)(x− α2)(x− α3).

(a) Expand the right hand side and compare coefficients to find formulas for

α1 + α2 + α3, α1α2 + α1α3 + α2α3, and α1α2α3.

(b) Now let t ∈ R be any real number and consider the polynomial

gt(x) = (x− β12t)(x− β13t)(x− β23t),
where βijt = αi + αj + tαiαj for all pairs 1 ≤ i < j ≤ 3. Find explicit formulas for the
coefficients of gt(x) in terms of t, and conclude that gt(x) has real coefficients. [Hint:
Each coefficient gt is a symmetric function of α1, α2, α3. Any symmetric function of
α1, α2, α3 can be expressed in terms of the elementary symmetric functions of α1, α2, α3,
as listed in part (a).]


