1. Conjugation of Complex Polynomials. For any polynomial $f(x)=\sum \alpha_{k} x^{k} \in \mathbb{C}[x]$ we define the conjugate polynomial by taking the complex conjugate of each coefficient:

$$
f^{*}(x):=\sum \alpha_{k}^{*} x^{k} \in \mathbb{C}[x] .
$$

(a) For any complex polynomial $f(x) \in \mathbb{C}[x]$ and complex number $\alpha \in \mathbb{C}$, show that

$$
[f(\alpha)]^{*}=f^{*}\left(\alpha^{*}\right)
$$

(b) For any complex polynomial $f(x) \in \mathbb{C}[x]$ show that

$$
f(x)=f^{*}(x) \quad \Longleftrightarrow \quad f(x) \in \mathbb{R}[x] .
$$

(c) For any complex polynomials $f(x), g(x) \in \mathbb{C}[x]$, show that

$$
(f+g)^{*}(x)=f^{*}(x)+g^{*}(x) \quad \text { and } \quad(f g)^{*}(x)=f^{*}(x) g^{*}(x) .
$$

(d) For any complex polynomial $f(x) \in \mathbb{C}[x]$, show that

$$
f(x)+f^{*}(x) \in \mathbb{R}[x] \quad \text { and } \quad f(x) f^{*}(x) \in \mathbb{R}[x] .
$$

2. Invariance of Quotient and Remainder. Consider two fields $\mathbb{F} \subseteq \mathbb{E}$, so we can think of $\mathbb{F}[x]$ is a subring of $\mathbb{E}[x]$.
(a) Given $f(x), g(x) \in \mathbb{F}[x]$ such that $g(x) \neq 0$, suppose we have polynomials $q(x), r(x)$ with coefficients in \mathbb{E} satisfying

$$
\left\{\begin{array}{l}
f(x)=q(x) g(x)+r(x) \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(g) .
\end{array}\right.
$$

In this case, prove that $q(x)$ and $r(x)$ actually have coefficients in \mathbb{F}. [Hint: Divide $f(x)$ by $g(x)$ in the ring $\mathbb{F}[x]$ to obtain a quotient and remainder $q^{\prime}(x), r^{\prime}(x) \in \mathbb{F}[x]$. Now use the uniqueness of quotient and remainder in the ring $\mathbb{E}[x]$ (HW1.3).]
(b) Now consider the field extension $\mathbb{C} \supseteq \mathbb{R}$. Suppose that the real polynomial $f(x) \in \mathbb{R}[x]$ has a complex root $\alpha \in \mathbb{C}$ that is not real (i.e., $\alpha \neq \alpha^{*}$). In this case, prove that there exists a real polynomial $h(x) \in \mathbb{R}[x]$ satisfying

$$
f(x)=(x-\alpha)\left(x-\alpha^{*}\right) h(x) .
$$

3. Equivalent Forms of the FTA.

(a) Suppose that every (non-constant) real polynomial $f(x) \in \mathbb{R}[x]$ has a root in \mathbb{C}. Use Problem 2 to prove that every (non-constant) real polynomial factors as a product of real polynomials of degrees 1 and 2 .
(b) Suppose that every (non-constant) real polynomial $f(x) \in \mathbb{R}[x]$ has a root in \mathbb{C}. In this case, use Problem 1 to prove that every (non-constant) complex polynomial $f(x) \in \mathbb{C}[x]$ has a root in \mathbb{C}. [Hint: Let $f(x) \in \mathbb{C}[x]$ be any (non-constant) complex polynomial and consider the polynomial $g(x)=f(x) f^{*}(x)$.]
4. Biquadratic Polynomials. Given real numbers $a, b \in \mathbb{R}$ we will prove that there exist real numbers $p, q, r, s \in \mathbb{R}$ satisfying

$$
x^{4}+a x^{2}+b=\left(x^{2}+p x+r\right)\left(x^{2}+q x+s\right) .
$$

(a) If $a^{2}-4 b \geq 0$, show that $x^{4}+a x^{2}+b=\left(x^{2}-A\right)\left(x^{2}-B\right)$ for some real $A, B \in \mathbb{R}$.
(b) If $a^{2}-4 b<0$, show that $x^{4}+a x^{2}+b=\left(x^{2}-\alpha\right)\left(x^{2}-\alpha^{*}\right)$ for some non-real $\alpha \in \mathbb{C}$.
(c) Continuing from (b), let $\pm \beta \in \mathbb{C}$ be the roots of $x^{2}-\alpha \in \mathbb{C}[x]$ and let $\pm \gamma \in \mathbb{C}$ be the roots of $x^{2}-\alpha^{*} \in \mathbb{C}[x]$, so that

$$
x^{4}+a x^{2}+b=(x-\beta)(x+\beta)(x-\gamma)(x+\gamma) .
$$

Show that $\beta^{*}=\gamma$ or $\beta^{*}=-\gamma$. Now what?
5. Laplace's Proof of the FTA. Consider any field extension $\mathbb{E} \supseteq \mathbb{R}$ and let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{E}$ be any elements satisfying

$$
x^{3}+x+1=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) .
$$

(a) Expand the right hand side and compare coefficients to find formulas for

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}, \quad \alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}, \quad \text { and } \quad \alpha_{1} \alpha_{2} \alpha_{3} .
$$

(b) Now let $t \in \mathbb{R}$ be any real number and consider the polynomial

$$
g_{t}(x)=\left(x-\beta_{12 t}\right)\left(x-\beta_{13 t}\right)\left(x-\beta_{23 t}\right),
$$

where $\beta_{i j t}=\alpha_{i}+\alpha_{j}+t \alpha_{i} \alpha_{j}$ for all pairs $1 \leq i<j \leq 3$. Find explicit formulas for the coefficients of $g_{t}(x)$ in terms of t, and conclude that $g_{t}(x)$ has real coefficients. [Hint: Each coefficient g_{t} is a symmetric function of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Any symmetric function of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ can be expressed in terms of the elementary symmetric functions of $\alpha_{1}, \alpha_{2}, \alpha_{3}$, as listed in part (a).]

