
Math 461 Spring 2023
Homework 3 Drew Armstrong

1. Complex Conjugation. For any complex number a + ib ∈ C we define its complex
conjugate α∗ := a− ib ∈ C.

(a) For any α ∈ C, show that α = α∗ if and only if α ∈ R.
(b) For any α, β ∈ C show that (α+ β)∗ = α∗ + β∗ and (αβ)∗ = α∗β∗.
(c) For any real polynomial f(x) ∈ R[x] and complex number α ∈ C, combine parts (a)

and (b) to show that f(α)∗ = f(α∗).
(d) For any complex number α ∈ C show that the polynomial (x − α)(x − α∗) has real

coefficients. [Hint: Show that α+ α∗ and αα∗ are real.]

(a): For any complex number α = a+ ib ∈ C, note that

α = α∗ ⇐⇒ a+ ib = a− ib
⇐⇒ b = −b
⇐⇒ 2b = 0

⇐⇒ b = 0

⇐⇒ α ∈ R.

(b): Let α = a+ bi and β = c+ di. Then we have

(α+ β)∗ = (a+ bi+ c+ di)∗

= [(a+ c) + (b+ d)i]∗

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= α∗ + β∗

and

α∗β∗ = (a+ ib)∗(c+ id)∗

= (a− ib)(c− id)

= (ac− bd) + (−ad− bc)i
= (ac− bd)− (ad+ bc)i

= [(ac− bd) + (ad+ bc)i]∗

= (αβ)∗.

This second identity becomes less mysterious if we use the polar form. Let α = reiθ and
β = seiµ.1 From Euler’s formula we know that (reiθ)∗ = re−iθ. Hence

α∗β∗ = (reiθ)∗(seiµ)∗

= re−iθse−iµ

= (rs)e−i(θ+µ)

= (rsei(θ+µ))∗

= (αβ)∗.

1By using the word “polar form” we implicitly assume that r, s, θ, µ ∈ R and r, s ≥ 0.
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(c): Consider a polynomial f(x) =
∑
akx

k with real coefficients ak ∈ R, and let α ∈ C be any
complex number. Then combining parts (a) and (b) gives

f(α)∗ =
(∑

akx
k
)∗

=
∑

(akα
k)∗ ∗ preserves addition

=
∑

a∗k(α
∗)k ∗ preserves multiplication

=
∑

ak(α
∗)k ak is real

= f(α∗).

(d): Consider a complex number α = a+ib. We observe that α+α∗ and αα∗ are real numbers:

α+ α∗ = (a+ ib) + (a− ib) = 2a+ 0i,

αα∗ = (a+ ib)(a− ib) = (a2 + b2) + 0i.

It follows that the polynomial (x− α)(x− α∗) has real coefficients:

(x− α)(x− α∗) = x2 − (α+ α∗)x+ αα2

= x2 − 2ax+ (a2 + b2).

Another Proof: We can also use parts (a) and (b) to show that α + α∗ and αα∗ are real.
To do this, we use part (b) to show that

(α+ α∗)∗ = α∗ + (α∗)∗ = α∗ + α = α+ α∗

and

(αα∗)∗ = α∗(α∗)∗ = α∗α = αα∗.

But from part (a) any complex number that is equal to its own conjugate is real. This proof
is nice because we don’t need to waste letters of the alphabet. It also generalizes to fancier
situations.

2. Roots of Unity. Recall Euler’s formula

eit = cos t+ i sin t for any real number t ∈ R.

Fix an integer n ≥ 1 and let ω = ei2π/n.

(a) For any integer k ∈ Z, use Euler’s formula to show that (ωk)n = 1.
(b) For any integers k, ` ∈ Z, use Euler’s formula to show that

ωk = ω` ⇐⇒ k − ` = mn for some integer m ∈ Z.

(c) For any integer k ∈ Z, use Euler’s formula to show that (ωk)∗ = ω−k.
(d) It follows from (a) and (b) that the polynomial xn − 1 can be factored as

xn − 1 = (x− ω0)(x− ω1)(x− ω2) · · · (x− ωn−1).

Use this factorization to show that

xn − αn = (x− ω0α)(x− ω1α)(x− ω2α) · · · (x− ωn−1α)

for any complex number α ∈ C. [Hint: Replace x by x/α.]
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(a): For any integer k ∈ Z we have

(ωk)n = ωkn

= (ei2π/n)kn

= ei2πk

= cos(2πk) + i sin(2πk)

= 1 + 0i

= 1.

Alternatively, first observe that

ωn = (ei2π/n)n = ei2π = cos(2π) + i sin(2π) = 1 + 0i = 1,

and then just use algebra:
(ωk)n = ωkn = (ωn)k = 1k = 1.

It is always better when a proof follows from “just algebra”. Then you don’t have to think.

(b): First we observe that eiθ = 1 if and only if θ = 2πm for some integer m ∈ Z. Indeed,

eiθ = 1 ⇐⇒ cos θ + i sin θ = 1 + 0i

⇐⇒ cos θ = 1 and sin θ = 0

⇐⇒ θ = 2πm for some m ∈ Z.
The final equivalence is just a statement about the unit circle. The point on the unit circle
with coordinates (1, 0) makes angle 0 with the x-axis. And the angle 0 is equivalent to 2πm
for any m ∈ Z.

Now fix n ≥ 1 and ω = ei2π/n. Then for any integers k, ` ∈ Z we have

ωk = ω` ⇐⇒ ωk−` = 1

⇐⇒ ei2π(k−`)/n = 1

⇐⇒ 2π(k − `)/n = 2πm for some m ∈ Z
⇐⇒ k − ` = mn for some m ∈ Z.

(c): Fix ω = ei2π/n. Then for any integer k ∈ Z we have

ω−k = (ei2π/n)−k

= ei(−2πk/n)

= cos

(
−2πk

n

)
+ i sin

(
−2πk

n

)
= cos

(
2πk

n

)
− i sin

(
2πk

n

)
.

On the other hand, we have

(ωk)∗ = (ei2πk/n)∗

=

[
cos

(
2πk

n

)
+ i sin

(
2πk

n

)]∗
= cos

(
2πk

n

)
− i sin

(
2πk

n

)
.
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Remark: It follows from this that

(x− ωk)(x− ω−k) = x2 − (ωk + ω−k)x+ ωkω−k

= x2 − 2 cos(2πk/n)x+ 1.

(d): Fix ω = ei2π/n. From part (b) we know that the n complex numbers

ω0, ω1, . . . , ωn−1

are distinct. Geometrically, these are n equally spaced points around the unit circle in the
complex plane. And we know from (a) that each of these numbers is a root of the polynomial
xn − 1. Hence from Descartes’ Theorem we have

xn − 1 = (x− ω0)(x− ω1) · · · (x− ωn−1).

Now consider a nonzero complex number α 6= 0 and replace x by x/α to obtain(x
α

)n
− 1 =

(x
α
− ω0

)(x
α
− ω1

)
· · ·
(x
α
− ωn−1

)
.

Then multiplying both sides by αn gives

αn
[(x
α

)n
− 1
]

= αn
(x
α
− ω0

)(x
α
− ω1

)
· · ·
(x
α
− ωn−1

)
αn
[
xn

αn
− 1

]
= α

(x
α
− ω0

)
α
(x
α
− ω1

)
· · ·α

(x
α
− ωn−1

)
xn − αn = (x− ω0α)(x− ω1α)(x− ω2α) · · · (x− ωn−1α).

We have proved this formula for α 6= 0, but we observe that it also works for α = 0.

3. Leibniz’ Mistake. Fix a positive real number a > 0. In 1702, Leibniz claimed that the
polynomial x4 + a4 cannot be factored over the real numbers. In this problem you will show
that Leibniz was wrong.

(a) Let λ = eiπ/4 = (1 + i)/
√

2. Use Euler’s formula to show that λ2 = i and λ4 = −1.
(b) Substitute α = λa into Problem 2(d) and use the idea from Problem 1(d) to show that

x4 + a4 = (x2 + a
√

2x+ a2)(x2 − a
√

2x+ a2).

[It’s easy to check that this factorization it correct. I want you to derive the factor-
ization using properties of complex numbers.]

(a): If λ = eiπ/4 then

λ2 = (eiπ/4)2 = eiπ/2 = cos(π/2) + i sin(π/2) = 0 + i = i

and

λ4 = (eiπ/4)4 = eiπ = cos(π) + i sin(π) = −1 + 0i = −1.

Picture:
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Remark: What are the 4th roots of −1? If λ is a 4th of −1 then we must have

λ4 = −1

|λ4| = | − 1|
|λ|4 = 1,

and since |λ| is a non-negative real number we must have |λ| = 1. This implies that λ = eiθ

for some angle θ. But then since −1 = eiθ we must have

λ4 = −1

(eiθ)4 = eiπ

ei4θ = eiπ,

which implies that 4θ − π = 2πm for some integer m ∈ Z. In other words:

θ =
π

4
+
π

2
m for some integer m ∈ Z.

=
π

4
,
3π

4
,
5π

4
,
7π

4
.

It follows that the 4th roots of −1 are

eiπ/4 = (1 + i)/
√

2,

ei3π/4 = (−1 + i)/
√

2,

ei5π/4 = (−1− i)/
√

2,

ei7π/4 = (1− i)/
√

2.

Another point of view: If we let λ = eiπ/4 = (1 + i)/
√

2 denote the principal 4th root of

−1 and let ω = ei2π/4 = i denote the principal 4th root of 1, then the 4th roots of 1 are
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1, ω, ω2, ω3 = 1, i,−1,−i and the 4th roots of −1 are

λ, λω, λω2, λω3 = λ, iλ,−λ,−iλ

= (1 + i)/
√

2, i(1 + i)/
√

2,−(1 + i)/
√

2,−i(1 + i)/
√

2

= (1 + i)/
√

2, (−1 + i)/
√

2, (−1− i)/
√

2, (1− i)/
√

2,

as we have just seen. Picture:

(b): Let a be real and let λ = eiπ/4 = (1 + i)/
√

2, so that

(λa)4 = λ4a4 = −a4.
Thus λa is a 4th root of −a4. Substituting α = λa into 2(d) gives

x4 − α4 = (x− α)(x− iα)(x+ α)(x+ iα)

x4 + a4 = (x− λa)(x− iλa)(x+ λa)(x+ iλa).

Since a is real, we observe that the numbers λa = (a + ai)/
√

2 and −iλa = (a − ai)/
√

2 are
conjugate, while the numbers −λa = (−a − ai)/

√
2 and iλa = (−a + ai)/

√
2 are conjugate.

It follows from 1(d) that the polynomials (x − λa)(x + iλa) and (x + λa)(x − iλa) have real
coefficients. To be specific, we can check that2

(x− λa)(x+ iλa) = x2 − a
√

2x+ a2

and

(x+ λa)(x− iλa) = x2 + a
√

2x+ a2,

hence

x4 + a4 = (x2 + a
√

2x+ a2)(x2 − a
√

2x+ a2).

Remark: This factorization guarantees that the integral of 1/(x4 + a4) can be expressed
in terms of exponential and trigonometric functions, which Leibniz claimed is impossible.

2The sum of conjugates is just 2 times the real part. The quick way to verify that (λa)(−iλa) = a2 is to use
the fact that λ2 = i:

(λa)(−iλa) = −iλ2a2 = −i(i)a2 = +a2.
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More generally, the Fundamental Theorem of Algebra guarantees that any real polynomial
f(x) ∈ R[x] can be factored as a product of real polynomials of degrees 1 and 2.

4. Fifth Roots of Unity. Let ω = ei2π/5 so that

x5 − 1 = (x− ω0)(x− ω1)(x− ω2)(x− ω3)(x− ω4).

(a) Use this factorization to show that 1 + ω+ ω2 + ω3 + ω4 = 0. [Hint: Expand the right
hand side and compare coefficients.]

(b) Show that ω3 = ω−2 and ω4 = ω−1, so that 1 + ω + ω2 + ω−2 + ω−1 = 0. [Hint: 2(b)]
(c) Let α = ω + ω−1 and use part (b) to show that α2 + α− 1 = 0.
(d) Solve the quadratic equation in (c) to get an explicit formula for cos(2π/5). [Hint: We

know from Euler’s formula or Problem 2(c) that ω + ω−1 = 2 cos(2π/5).]

(a): Expanding the right hand side gives

x5 − 1 = (x− 1)(x− ω1)(x− ω2)(x− ω3)(x− ω4)

= x5

− (1 + ω + ω2 + ω3 + ω4)x4

+ (sum of products of pairs of the roots)x3

− (sum of products of triples of the roots)x2

+ (sum of products of quadruples of the roots)x

− 1 · ω · ω2 · ω3 · ω4.

Since the coefficient of x4 in the left side is zero, we conclude that

1 + ω + ω2 + ω3 + ω4 = 0.

Remark: Looking at the other coefficients gives other interesting identities; for example:

1 · ω · ω2 · ω3 ·+1 · ω · ω2 · ·ω4 + 1 · ω · ·ω3 · ω4 + 1 · ·ω2 · ω3 · ω4 + ω · ω2 · ω3 · ω4 = 0.

Another Proof: We know that

x5 − 1 = (x− 1)(1 + x+ x2 + x3 + x4).

We also know that ω5−1 = 0 and ω−1 6= 0, so substituting x = ω into the previous equation
gives the desired result.

Yet Another Proof: Geometrically, the numbers 1, ω, ω2, ω3, ω4 are the vertices of a regular
pentagon in the complex plane, centered at the origin. But addition in the complex plane is
the same as vector addition, so we obtain

0 = center of mass of the five points

= (1 + ω + ω2 + ω3 + ω4)/5.

Picture:
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(b): If ωi2π/n then we know from 2(b) that

ωk = ω` ⇐⇒ k − ` = mn for some integer m ∈ Z.

In our case we have n = 5, so that

ωk = ω` ⇐⇒ k − ` = 5m for some integer m ∈ Z.

It follows that ω3 = ω−2 and ω4 = ω−1.

(c): Define α = ω + ω−1. Then from parts (a) and (b) we have

α2 + α− 1 = (ω + ω−1)2 + (ω + ω−1)− 1

= (ω2 + 2 + ω−2) + (ω + ω−1)− 1

= 1 + ω + ω2 + ω−2 + ω−1

= 0.

(d): We also know from 2(c) that

α = ω + ω−1

=

[
cos

(
2π

5

)
+ i sin

(
2π

5

)]
+

[
cos

(
2π

5

)
− i sin

(
2π

5

)]
= 2 cos

(
2π

5

)
.

Hence the quadratic formula gives

2 cos

(
2π

5

)
= α =

−1±
√

12 − 4(−1)

2
=
−1±

√
5

2
.
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Finally, since 2π/5 is less than 90◦ we know that cos(2π/5) > 0, hence we must have

cos

(
2π

5

)
=
−1 +

√
5

4
.

You can verify with a calculator that this is correct. Thus, to our favorite 30◦, 60◦, 90◦ and
45◦, 45◦, 90◦ triangles, we can add the 18◦, 72◦, 90◦ triangle:

Remark: Why is this identity never taught? I don’t know. It’s only a bit more complicated
than the identities for cos(2π/n) when n = 3, 4, 6. I guess it’s a bit less useful.

Remark: Later we will discuss the Gauss-Wantzel Theorem, which says that the number
cos(2π/n) can be expressed in terms of integers and square roots if and only if n = 2kp1p2 · · · p`,
where p1, . . . , p` are distinct Fermat primes. In particular, since 7 and 9 are not of this
form, the numbers cos(2π/7) and cos(2π/9) cannot be expressed in terms of square roots.
Geometrically, this first fact implies that the regular 7-gon is not constructible with ruler and
compass; the second fact implies that it is impossible in general to trisect an angle using ruler
and compass.


