1. Complex Conjugation. For any complex number $a+i b \in \mathbb{C}$ we define its complex conjugate $\alpha^{*}:=a-i b \in \mathbb{C}$.
(a) For any $\alpha \in \mathbb{C}$, show that $\alpha=\alpha^{*}$ if and only if $\alpha \in \mathbb{R}$.
(b) For any $\alpha, \beta \in \mathbb{C}$ show that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(c) For any real polynomial $f(x) \in \mathbb{R}[x]$ and complex number $\alpha \in \mathbb{C}$, combine parts (a) and (b) to show that $f(\alpha)^{*}=f\left(\alpha^{*}\right)$.
(d) For any complex number $\alpha \in \mathbb{C}$ show that the polynomial $(x-\alpha)\left(x-\alpha^{*}\right)$ has real coefficients. [Hint: Show that $\alpha+\alpha^{*}$ and $\alpha \alpha^{*}$ are real.]
2. Roots of Unity. Recall Euler's formula

$$
e^{i t}=\cos t+i \sin t \quad \text { for any real number } t \in \mathbb{R}
$$

Fix an integer $n \geq 1$ and let $\omega=e^{i 2 \pi / n}$.
(a) For any integer $k \in \mathbb{Z}$, use Euler's formula to show that $\left(\omega^{k}\right)^{n}=1$.
(b) For any integers $k, \ell \in \mathbb{Z}$, use Euler's formula to show that

$$
\omega^{k}=\omega^{\ell} \quad \Longleftrightarrow \quad k-\ell=m n \text { for some integer } m \in \mathbb{Z}
$$

(c) For any integer $k \in \mathbb{Z}$, use Euler's formula to show that $\left(\omega^{k}\right)^{*}=\omega^{-k}$.
(d) It follows from (a) and (b) that the polynomial $x^{n}-1$ can be factored as

$$
x^{n}-1=\left(x-\omega^{0}\right)\left(x-\omega^{1}\right)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{n-1}\right) .
$$

Use this factorization to show that

$$
x^{n}-\alpha^{n}=\left(x-\omega^{0} \alpha\right)\left(x-\omega^{1} \alpha\right)\left(x-\omega^{2} \alpha\right) \cdots\left(x-\omega^{n-1} \alpha\right)
$$

for any complex number $\alpha \in \mathbb{C}$. [Hint: Replace x by x / α.]
3. Leibniz' Mistake. Fix a positive real number $a>0$. In 1702, Leibniz claimed that the polynomial $x^{4}+a^{4}$ cannot be factored over the real numbers. In this problem you will show that Leibniz was wrong.
(a) Let $\lambda=e^{i \pi / 4}=(1+i) / \sqrt{2}$. Use Euler's formula to show that $\lambda^{2}=i$ and $\lambda^{4}=-1$.
(b) Substitute $\alpha=\lambda a$ into Problem 2(d) and use the idea from Problem 1(d) to show that

$$
x^{4}+a^{4}=\left(x^{2}+a \sqrt{2} x+a^{2}\right)\left(x^{2}-a \sqrt{2} x+a^{2}\right)
$$

[It's easy to check that this factorization it correct. I want you to derive the factorization using properties of complex numbers.]
4. Fifth Roots of Unity. Let $\omega=e^{i 2 \pi / 5}$ so that

$$
x^{5}-1=\left(x-\omega^{0}\right)\left(x-\omega^{1}\right)\left(x-\omega^{2}\right)\left(x-\omega^{3}\right)\left(x-\omega^{4}\right) .
$$

(a) Use this factorization to show that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$. [Hint: Expand the right hand side and compare coefficients.]
(b) Show that $\omega^{3}=\omega^{-2}$ and $\omega^{4}=\omega^{-1}$, so that $1+\omega+\omega^{2}+\omega^{-2}+\omega^{-1}=0$. [Hint: 2(b)]
(c) Let $\alpha=\omega+\omega^{-1}$ and use part (b) to show that $\alpha^{2}+\alpha-1=0$.
(d) Solve the quadratic equation in (c) to get an explicit formula for $\cos (2 \pi / 5)$. [Hint: We know from Euler's formula or Problem 1(d) that $\omega+\omega^{-1}=2 \cos (2 \pi / 5)$.]

