Math 461 Spring 2023
Homework 2 Drew Armstrong

1. The Group of Units. Let R be any commutative ring, and consider the set of units
R* ={u € R : there exists v € R such that uv = 1}.

(a) Prove that 1 € R is a unit and 0 € R is not a unit.

(b) The definition of u € R* says that u has at least one multiplicative inverse. Prove that
this multiplicative inverse must be unique. We will call it u~!.

(¢) If u is a unit, prove that u~! is also a unit.

(d) If w and v are units, prove that wv is also a unit.

Remark: These properties tell us that (R*,-, 1) is a group.

(a): If v = 1 then 1v = 1, so 1 is a unit. To prove that 0 is not a unit, assume for contradiction
that Ov = 1 for some v € R. Then then since Qv = 0 we have 0 = 1. Contradiction.

(b): Suppose that uv =1 and uw = 1. Then we have

v=1v = (uw)v = (w)w = lw = w.
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(c): Take v = u. Then the equation v~ 'v = 1 says that «~! is a unit.

(d): Suppose that u and v are units so that «~! and v~! exist. Then since
(wo)(w o™ = (™ HwvH =1-1=1,

we conclude that uv is a unit. In particular, we have (uv)~! = u_lv_lEl

2. Associatedness. Let R be any commutative ring and let R* be the group of units. For
any a,b € R we define the relation of associatednessf]

a~b <= there exists a unit v € R* such that au = b.

In this case we say that a and b are associates.

(a) Prove that a ~ 1 if and only if « € R*, and a ~ 0 if and only if a = 0.
(b) For any a € R prove that a ~ a.

(c) For any a,b € R prove that a ~ b if and only if b ~ a.

(d) For any a,b,c € R prove that a ~ b and b ~ ¢ imply a ~ c.

Hint: Quote Problem 1 when necessary.

(a): Suppose that a ~ 1. By definition this means that au = 1 for some unit w € R*. Then
taking v = u shows that av = 1 for some v € R. Hence a is a unit. Conversely, let a be a unit
so that av = 1 for some v € R. Then Problem 1(b,c) implies that v is a unit, hence a ~ 1.

If @ = 0 then au = 0 for any unit u, hence a ~ 0. Conversely, suppose that a ~ 0 so that
au = 0 for some unit w. Since u~! exists this implies that

au=0

avu~ ! = 0u~!
a=0.

14! instead of u~*v ™!, For example, in the theory

1In non-commutative rings we must take (uw)™t =v~
of matrix multiplication.
2Remark: This awkward notation has no connection with “associativity” of binary operators.
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(b): For any a we have al = a. Since 1 is a unit (Problem la) this implies that a ~ a.

(c): Suppose that a ~ b, which means that au = b for some unit u. Since u~! exists, we have
au ==
a=bul.

Then since v~ ! is a unit (Problem 1c) we have b ~ a. The other direction follows from

switching the roles of a and b.

(d): Suppose a ~ b and b ~ ¢ so that au = b and bv = ¢ for some units u and v. Then we have
¢ =bv = (au)v = a(ww),

and since uv is a unit (Problem 1d) this implies that a ~ c.

3. Partial Fractions. Let R be a domain and let a,b € R be coprime. This means that
aR+ bR = R.

(a) Prove that there exist x,y € R satisfying ax + by = 1.
(b) Using part (a), prove that there exist A, B € R satisfying
1 A n B
ab a b’
Remark: The elements A, B are not unique.
(c) Compute some A, B for a =13 and b =21 in R = Z.
(d) Compute some A, B fora =z + 1 and b=2? +1 in R = R[z].
Remark: These examples are small enough that you can use ad hoc methods. For larger
examples, one would use the Extended Euclidean Algorithm, as in Problem 5.

(a): Assume that aR + bR = R. Then since 1 € R we have 1 € aR + bR, which by definition
says that 1 = ax + by for some z,y € R.

(b): From part (a) we have 1 = ax + by for some x,y € R. Divide both sides by ab to get

1 ax+by by ax y w
ab  ab _ab+ab_a+b'
Thus we can take A =y and B = z.

(c): We will use the Extended Euclidean Algorithm to find z,y € Z such that 13z 4+ 21y = 1.
To do this we consider all triples (z,y,z) € Z3 such that 13x + 21y = z. Starting with the
easy triples (0,1,21) and (1,0, 13), we perform row operations to obtain a triple of the form

(z,y,1):

T Y z | operation
1 21| (row 1)
1 0 |13 ] (row 2)
—1| 1 | 8 | (row 3) = (row 1) — (row 2)
2 | =1 | 5 | (row 4) = (row 2) — (row 3)
-3 2 | 3 | (row 5) = (row 3) — (row 4)
5| =3 | 2 | (row 6) = (row 4) — (row 5)
-8 5 | 1 | (row 7)= (row 5) — (row 6)
21 | =13 | 0 | (row 8) = (row 6) — 2(row 7)



From the second-to-last row we see that 13(—8) + 21(5) = 1 and hence
1 5 =8

1321 132U

(b): There are many methods to compute partial fractions of polynomials. I will use the
Extended Euclidean Algorithm as in part (c). We want to find polynomials A(x) and B(x)
such that

L A(z)  B(z) )
- dh 1=A 1)+ B 0.
(z +1)(z* +1) s+l [ g2qq Andhence (z)(z® + 1) + B(z)(x + 1)
To do this, we consider all triples of polynomials A(x), B(x),C(z) such that
A(z)(z® +1) + B(z)(z + 1) = C(z).

Beginning with the easy triples (1,0,2% + 1) and (0,1, 2 + 1) we perform row operations to
obtain a triple of the form (A(zx), B(x),1):

A(x) B(x) C(z) | operation
1 0 224+ 1 | (row 1)
0 1 x+1 | (row 2)
1 —x+1 2 (row 3) = (row 1) — (z — 1)(row 2)
1/2 | (—z+1)/2 1 (row 4) = (row 3)/2
I performed polynomial long division to find row 3:
z—1
T+ 1) 2 +1
—2?—z
—z+1
r+1
2

Row 4 is not strictly part of the Euclidean Algorithm. It just scales the ged to be monic.
Thus we obtain

1=(2*+1)(1/2) + (z + 1)(—z + 1)/2
1 12 (- +1)/2
(x+1)(224+1) z+1 22 +1

4. Greatest Common Divisor. Let a,b € R be elements of a commutative ring. We say
that ¢ € R is a greatest common divisor (gcd) of a and b when

aR + bR = cR.

(a) Let ¢ be a ged of a and b. In this case prove that c|a and c|b. [Remark: This is the
sense in which a greatest common divisor is a “common divisor”.]

(b) Let ¢ be a ged of a and b and let d be any common divisor of a and b (i.e., suppose
that d|a and d|b). In this case, prove that d|c. [Remark: This is the sense in which a
greatest common divisor is “greatest” .

(¢) Greatest common divisors need not be unique. However, if R is a domain prove that
any two greatest common divisors of a and b are associates.
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Remark: Greatest common divisors need not exist. However, if R is a Euclidean domain then
we proved in class that they do exist.

(a): Suppose that aR+bR = cR. Since a = a-14b-0 we have a € aR+ bR and hence a € cR.
By definition this means that a = ¢r for some r € R, hence c|a. Switching the roles of a and
b shows that c|b.

(b): Now consider any d € R such that d|a and d|b. Say a = dk and b = d{. Since ¢ € cR and
cR =aR+ bR we have ¢ = ax + by for some z,y € R. Finally, we have

c=ax+by
= (dk)x + (dl)y
= d(kz + ly),
and hence d|c.
(c): Suppose that aR+bR = c1 R and aR+ bR = c2R, so that ¢; R = coR. If one of ¢; of ¢y is
zero then so is the other, in which case ¢; ~ ca. So we assume that ¢q,co # 0. Since ¢1 € 1R

we have ¢; € coR, hence ¢; = cou for some v € R. Similarly, we have co = c1v for some v € R.
If R is a domain then I claim that u and v must be units. Indeed, we must have

Cy = C1V

co = (cou)v

c2(l—uv) =0
l—uww=0 since co # 0
1 =ww.

Hence ¢; ~ cs.

Remark: This tells us that any two integers have a unique non-negative gcd and that any two
polynomials over a field have a unique monic ged (i.e., with leading coefficient 1).

5. The Euclidean Algorithm.

(a) Missing Lemma. Let R be a commutative ring and suppose that we have a = bk + ¢
for some elements a, b, c, k € R. In this case prove that

aR+ bR =bR + cR.

It follows that the pairs (a,b) and (b, ¢) have the same common divisors.
(b) Use the Extended Euclidean Algorithm (as described in class and the notes) to find
some integers x,y € Z satisfying

32 + 47y = 1.

Note: I changed a = bz + ¢ to a = bk + ¢ just for fun.
(a): Suppose that a = bk + ¢. To see that aR + bR C bR + cR we note that an arbitrary
element ax + by € aR + bR is also in bR + cR:

ax + by = (bk + ¢)x + by = b(kx + y) + c¢(z) € bR + cR.

And to see that bR + ¢cR C aR + bR we note that an arbitrary element bx 4+ cy € bR + cR is
also in aR + bR:

br +cy =bx + (a — bk)y = a(y) + b(z — ky) € aR + bR.
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(b): We consider the set of triples (z,y, z) € Z such that 32z + 47y = 2. Starting with the
easy triples (0,1,47) and (1,0,32) we perform row operations until we obtain a triple of the
form (z,y,1):

T Y z | operation

0 1 |47 | (row 1)

1 0 |32] (row 2)

—1 | 1 [15] (row 3) = (row 1) — 1(row 2)

3 | =2 | 2 | (row 4) = (row 2) — 2(row 3)
=22 | 15 | 1 | (row 5) = (row 3) — 7(row 4)
47 | =32 | 0 | (row 6) = (row 4) — 2(row 5)

We conclude that
32(—22) +47(15) = 1.
Remark: There are infinitely many solutions. The complete solution is

32(—22 + 47k) + 47(15 — 32k) = 1 for all k € Z.

6. Fermat Primes. Let k£ > 1 and assume that the number 2% + 1 is prime. In this case we
will show that k& must be a power of 2.

(a) If k = ¢m with m odd, show that 2¥ + 1 is divisible by 2¢ 4 1. [Hint: We know from
Homework 1 that o™ — ™ is divisible by a — b for any integers a,b, m with m > 1.
Substitute appropriate values for a and b.

(b) If k is not a power of 2, use part (a) to show that 2% 4- 1 is not prime. [Hint: If & is
not a power of 2 then it has an odd prime divisor, say p|k.]

(a): For any integers a,b, m € Z with m > 1 we recall from Homework 1 that
a™ —pm = (a _ b)(am—l +am—2b+ L +abm_2 + bm—l)
= (a — b)(some integer),
so that a — b divides @™ — 0'™. Now let k = fm where k,m € Z and m > 1 is odd. Putting
putting @ = 2¢ and b = —1 gives
a—b=2+1
and
a™ —pm = (2€)m o (_1)m — 2£m o (_1)odd — 2k +1.
Hence 2¢ + 1 divides 2F + 1.

(b): Suppose that k is not a power of 2. By definition, the prime factorization of k contains a
prime p not equal to 2. But every prime except for 2 is odd, hence k has an odd prime factor:
k = ¢p for some ¢, p where p is odd and p > 3.

From part (a) (with m = p) this implies that

2¢ + 1 is a divisor of 2% + 1.
Since 2/ +1 # 1 and 2/ + 1 # 2F 41 (because p # 1), we conclude that 2 + 1 has a non-trivial
divisor. Hence 2* + 1 is not prime.

Remark: Thus we have shown that

2F 4 1is prime = k=2" for some n > 1.
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This was discovered by Pierre de Fermat, who conjectured that the converse is also true:
k=2"forsomen>1 = 2% 41 is prime.
To be precise, consider the nth Fermat number:
Fp, =20 4 1.
Here are the first few values:
n ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4
F,|3]5]17]257 65537

Fermat observed that all of these numbers are prime and he conjectured that F), is prime for
all n > 0. Euler showed in 1732 that F5 is composite:

F5 = 4294967297 = 641 - 6700417.

As of November 2021E| we know that Fg through Fj; are also composite, and no other “Fermat
prime” has ever been found. Thus Fermat’s conjecture was very wrong.

Later in the course we will see the Gauss-Wantzel Theorem, which says the following:

The regular n-gon can be constructed with ruler and compass if and only if
n = 2kp; .- pp where p1,...,ps are distinct Fermat primes.

3https ://en.wikipedia.org/wiki/Fermat_number
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