
Math 461 Spring 2023
Homework 2 Drew Armstrong

1. The Group of Units. Let R be any commutative ring, and consider the set of units

R× = {u ∈ R : there exists v ∈ R such that uv = 1}.
(a) Prove that 1 ∈ R is a unit and 0 ∈ R is not a unit.
(b) The definition of u ∈ R× says that u has at least one multiplicative inverse. Prove that

this multiplicative inverse must be unique. We will call it u−1.
(c) If u is a unit, prove that u−1 is also a unit.
(d) If u and v are units, prove that uv is also a unit.

Remark: These properties tell us that (R×, ·, 1) is a group.

(a): If v = 1 then 1v = 1, so 1 is a unit. To prove that 0 is not a unit, assume for contradiction
that 0v = 1 for some v ∈ R. Then then since 0v = 0 we have 0 = 1. Contradiction.

(b): Suppose that uv = 1 and uw = 1. Then we have

v = 1v = (uw)v = (uv)w = 1w = w.

(c): Take v = u. Then the equation u−1v = 1 says that u−1 is a unit.

(d): Suppose that u and v are units so that u−1 and v−1 exist. Then since

(uv)(u−1v−1) = (uu−1)(vv−1) = 1 · 1 = 1,

we conclude that uv is a unit. In particular, we have (uv)−1 = u−1v−1.1

2. Associatedness. Let R be any commutative ring and let R× be the group of units. For
any a, b ∈ R we define the relation of associatedness:2

a ∼ b ⇐⇒ there exists a unit u ∈ R× such that au = b.

In this case we say that a and b are associates.

(a) Prove that a ∼ 1 if and only if a ∈ R×, and a ∼ 0 if and only if a = 0.
(b) For any a ∈ R prove that a ∼ a.
(c) For any a, b ∈ R prove that a ∼ b if and only if b ∼ a.
(d) For any a, b, c ∈ R prove that a ∼ b and b ∼ c imply a ∼ c.

Hint: Quote Problem 1 when necessary.

(a): Suppose that a ∼ 1. By definition this means that au = 1 for some unit u ∈ R×. Then
taking v = u shows that av = 1 for some v ∈ R. Hence a is a unit. Conversely, let a be a unit
so that av = 1 for some v ∈ R. Then Problem 1(b,c) implies that v is a unit, hence a ∼ 1.

If a = 0 then au = 0 for any unit u, hence a ∼ 0. Conversely, suppose that a ∼ 0 so that
au = 0 for some unit u. Since u−1 exists this implies that

au = 0

auu−1 = 0u−1

a = 0.

1In non-commutative rings we must take (uv)−1 = v−1u−1 instead of u−1v−1. For example, in the theory
of matrix multiplication.

2Remark: This awkward notation has no connection with “associativity” of binary operators.
1
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(b): For any a we have a1 = a. Since 1 is a unit (Problem 1a) this implies that a ∼ a.

(c): Suppose that a ∼ b, which means that au = b for some unit u. Since u−1 exists, we have

au = b

a = bu−1.

Then since u−1 is a unit (Problem 1c) we have b ∼ a. The other direction follows from
switching the roles of a and b.

(d): Suppose a ∼ b and b ∼ c so that au = b and bv = c for some units u and v. Then we have

c = bv = (au)v = a(uv),

and since uv is a unit (Problem 1d) this implies that a ∼ c.

3. Partial Fractions. Let R be a domain and let a, b ∈ R be coprime. This means that

aR + bR = R.

(a) Prove that there exist x, y ∈ R satisfying ax + by = 1.
(b) Using part (a), prove that there exist A,B ∈ R satisfying

1

ab
=

A

a
+

B

b
.

Remark: The elements A,B are not unique.
(c) Compute some A,B for a = 13 and b = 21 in R = Z.
(d) Compute some A,B for a = x + 1 and b = x2 + 1 in R = R[x].

Remark: These examples are small enough that you can use ad hoc methods. For larger
examples, one would use the Extended Euclidean Algorithm, as in Problem 5.

(a): Assume that aR + bR = R. Then since 1 ∈ R we have 1 ∈ aR + bR, which by definition
says that 1 = ax + by for some x, y ∈ R.

(b): From part (a) we have 1 = ax + by for some x, y ∈ R. Divide both sides by ab to get

1

ab
=

ax + by

ab
=

by

ab
+

ax

ab
=

y

a
+

x

b
.

Thus we can take A = y and B = x.

(c): We will use the Extended Euclidean Algorithm to find x, y ∈ Z such that 13x + 21y = 1.
To do this we consider all triples (x, y, z) ∈ Z3 such that 13x + 21y = z. Starting with the
easy triples (0, 1, 21) and (1, 0, 13), we perform row operations to obtain a triple of the form
(x, y, 1):

x y z operation

0 1 21 (row 1)
1 0 13 (row 2)
−1 1 8 (row 3) = (row 1)− (row 2)
2 −1 5 (row 4) = (row 2)− (row 3)
−3 2 3 (row 5) = (row 3)− (row 4)
5 −3 2 (row 6) = (row 4)− (row 5)
−8 5 1 (row 7) = (row 5)− (row 6)
21 −13 0 (row 8) = (row 6)− 2(row 7)
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From the second-to-last row we see that 13(−8) + 21(5) = 1 and hence

1

13 · 21
=

5

13
+
−8

21
.

(b): There are many methods to compute partial fractions of polynomials. I will use the
Extended Euclidean Algorithm as in part (c). We want to find polynomials A(x) and B(x)
such that

1

(x + 1)(x2 + 1)
=

A(x)

x + 1
+

B(x)

x2 + 1
, and hence 1 = A(x)(x2 + 1) + B(x)(x + 1).

To do this, we consider all triples of polynomials A(x), B(x), C(x) such that

A(x)(x2 + 1) + B(x)(x + 1) = C(x).

Beginning with the easy triples (1, 0, x2 + 1) and (0, 1, x + 1) we perform row operations to
obtain a triple of the form (A(x), B(x), 1):

A(x) B(x) C(x) operation

1 0 x2 + 1 (row 1)
0 1 x + 1 (row 2)
1 −x + 1 2 (row 3) = (row 1)− (x− 1)(row 2)

1/2 (−x + 1)/2 1 (row 4) = (row 3)/2

I performed polynomial long division to find row 3:

x− 1

x + 1
)

x2 + 1
− x2 − x

− x + 1
x + 1

2

Row 4 is not strictly part of the Euclidean Algorithm. It just scales the gcd to be monic.
Thus we obtain

1 = (x2 + 1)(1/2) + (x + 1)(−x + 1)/2

1

(x + 1)(x2 + 1)
=

1/2

x + 1
+

(−x + 1)/2

x2 + 1
.

4. Greatest Common Divisor. Let a, b ∈ R be elements of a commutative ring. We say
that c ∈ R is a greatest common divisor (gcd) of a and b when

aR + bR = cR.

(a) Let c be a gcd of a and b. In this case prove that c|a and c|b. [Remark: This is the
sense in which a greatest common divisor is a “common divisor”.]

(b) Let c be a gcd of a and b and let d be any common divisor of a and b (i.e., suppose
that d|a and d|b). In this case, prove that d|c. [Remark: This is the sense in which a
greatest common divisor is “greatest”.]

(c) Greatest common divisors need not be unique. However, if R is a domain prove that
any two greatest common divisors of a and b are associates.
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Remark: Greatest common divisors need not exist. However, if R is a Euclidean domain then
we proved in class that they do exist.

(a): Suppose that aR+ bR = cR. Since a = a ·1+ b ·0 we have a ∈ aR+ bR and hence a ∈ cR.
By definition this means that a = cr for some r ∈ R, hence c|a. Switching the roles of a and
b shows that c|b.

(b): Now consider any d ∈ R such that d|a and d|b. Say a = dk and b = d`. Since c ∈ cR and
cR = aR + bR we have c = ax + by for some x, y ∈ R. Finally, we have

c = ax + by

= (dk)x + (d`)y

= d(kx + `y),

and hence d|c.

(c): Suppose that aR+ bR = c1R and aR+ bR = c2R, so that c1R = c2R. If one of c1 of c2 is
zero then so is the other, in which case c1 ∼ c2. So we assume that c1, c2 6= 0. Since c1 ∈ c1R
we have c1 ∈ c2R, hence c1 = c2u for some u ∈ R. Similarly, we have c2 = c1v for some v ∈ R.
If R is a domain then I claim that u and v must be units. Indeed, we must have

c2 = c1v

c2 = (c2u)v

c2(1− uv) = 0

1− uv = 0 since c2 6= 0

1 = uv.

Hence c1 ∼ c2.

Remark: This tells us that any two integers have a unique non-negative gcd and that any two
polynomials over a field have a unique monic gcd (i.e., with leading coefficient 1).

5. The Euclidean Algorithm.

(a) Missing Lemma. Let R be a commutative ring and suppose that we have a = bk + c
for some elements a, b, c, k ∈ R. In this case prove that

aR + bR = bR + cR.

It follows that the pairs (a, b) and (b, c) have the same common divisors.
(b) Use the Extended Euclidean Algorithm (as described in class and the notes) to find

some integers x, y ∈ Z satisfying

32x + 47y = 1.

Note: I changed a = bx + c to a = bk + c just for fun.

(a): Suppose that a = bk + c. To see that aR + bR ⊆ bR + cR we note that an arbitrary
element ax + by ∈ aR + bR is also in bR + cR:

ax + by = (bk + c)x + by = b(kx + y) + c(x) ∈ bR + cR.

And to see that bR + cR ⊆ aR + bR we note that an arbitrary element bx + cy ∈ bR + cR is
also in aR + bR:

bx + cy = bx + (a− bk)y = a(y) + b(x− ky) ∈ aR + bR.
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(b): We consider the set of triples (x, y, z) ∈ Z3 such that 32x + 47y = z. Starting with the
easy triples (0, 1, 47) and (1, 0, 32) we perform row operations until we obtain a triple of the
form (x, y, 1):

x y z operation

0 1 47 (row 1)
1 0 32 (row 2)
−1 1 15 (row 3) = (row 1)− 1(row 2)
3 −2 2 (row 4) = (row 2)− 2(row 3)
−22 15 1 (row 5) = (row 3)− 7(row 4)
47 −32 0 (row 6) = (row 4)− 2(row 5)

We conclude that

32(−22) + 47(15) = 1.

Remark: There are infinitely many solutions. The complete solution is

32(−22 + 47k) + 47(15− 32k) = 1 for all k ∈ Z.

6. Fermat Primes. Let k ≥ 1 and assume that the number 2k + 1 is prime. In this case we
will show that k must be a power of 2.

(a) If k = `m with m odd, show that 2k + 1 is divisible by 2` + 1. [Hint: We know from
Homework 1 that am − bm is divisible by a − b for any integers a, b,m with m ≥ 1.
Substitute appropriate values for a and b.]

(b) If k is not a power of 2, use part (a) to show that 2k + 1 is not prime. [Hint: If k is
not a power of 2 then it has an odd prime divisor, say p|k.]

(a): For any integers a, b,m ∈ Z with m ≥ 1 we recall from Homework 1 that

am − bm = (a− b)(am−1 + am−2b + · · ·+ abm−2 + bm−1)

= (a− b)(some integer),

so that a − b divides am − bm. Now let k = `m where k,m ∈ Z and m ≥ 1 is odd. Putting
putting a = 2` and b = −1 gives

a− b = 2` + 1

and

am − bm = (2`)m − (−1)m = 2`m − (−1)odd = 2k + 1.

Hence 2` + 1 divides 2k + 1.

(b): Suppose that k is not a power of 2. By definition, the prime factorization of k contains a
prime p not equal to 2. But every prime except for 2 is odd, hence k has an odd prime factor:

k = `p for some `, p where p is odd and p ≥ 3.

From part (a) (with m = p) this implies that

2` + 1 is a divisor of 2k + 1.

Since 2` + 1 6= 1 and 2` + 1 6= 2k + 1 (because p 6= 1), we conclude that 2k + 1 has a non-trivial
divisor. Hence 2k + 1 is not prime.

Remark: Thus we have shown that

2k + 1 is prime =⇒ k = 2n for some n ≥ 1.
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This was discovered by Pierre de Fermat, who conjectured that the converse is also true:

k = 2n for some n ≥ 1 =⇒ 2k + 1 is prime.

To be precise, consider the nth Fermat number:

Fn = 2(2
n) + 1.

Here are the first few values:

n 0 1 2 3 4

Fn 3 5 17 257 65537

Fermat observed that all of these numbers are prime and he conjectured that Fn is prime for
all n ≥ 0. Euler showed in 1732 that F5 is composite:

F5 = 4294967297 = 641 · 6700417.

As of November 20213 we know that F6 through F11 are also composite, and no other “Fermat
prime” has ever been found. Thus Fermat’s conjecture was very wrong.

Later in the course we will see the Gauss-Wantzel Theorem, which says the following:

The regular n-gon can be constructed with ruler and compass if and only if
n = 2kp1 · · · p` where p1, . . . , p` are distinct Fermat primes.

3https://en.wikipedia.org/wiki/Fermat_number
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