1. The Group of Units. Let R be any commutative ring, and consider the set of units

$$
R^{\times}=\{u \in R: \text { there exists } v \in R \text { such that } u v=1\} .
$$

(a) Prove that $1 \in R$ is a unit and $0 \in R$ is not a unit.
(b) The definition of $u \in R^{\times}$says that u has at least one multiplicative inverse. Prove that this multiplicative inverse must be unique. We will call it u^{-1}.
(c) If u is a unit, prove that u^{-1} is also a unit.
(d) If u and v are units, prove that $u v$ is also a unit.

Remark: These properties tell us that $\left(R^{\times}, \cdot, 1\right)$ is a group.
(a): If $v=1$ then $1 v=1$, so 1 is a unit. To prove that 0 is not a unit, assume for contradiction that $0 v=1$ for some $v \in R$. Then then since $0 v=0$ we have $0=1$. Contradiction.
(b): Suppose that $u v=1$ and $u w=1$. Then we have

$$
v=1 v=(u w) v=(u v) w=1 w=w
$$

(c): Take $v=u$. Then the equation $u^{-1} v=1$ says that u^{-1} is a unit.
(d): Suppose that u and v are units so that u^{-1} and v^{-1} exist. Then since

$$
(u v)\left(u^{-1} v^{-1}\right)=\left(u u^{-1}\right)\left(v v^{-1}\right)=1 \cdot 1=1,
$$

we conclude that $u v$ is a unit. In particular, we have $(u v)^{-1}=u^{-1} v^{-1} \mid 1$
2. Associatedness. Let R be any commutative ring and let R^{\times}be the group of units. For any $a, b \in R$ we define the relation of associatedness ${ }^{2}$ 2

$$
a \sim b \quad \Longleftrightarrow \quad \text { there exists a unit } u \in R^{\times} \text {such that } a u=b .
$$

In this case we say that a and b are associates.
(a) Prove that $a \sim 1$ if and only if $a \in R^{\times}$, and $a \sim 0$ if and only if $a=0$.
(b) For any $a \in R$ prove that $a \sim a$.
(c) For any $a, b \in R$ prove that $a \sim b$ if and only if $b \sim a$.
(d) For any $a, b, c \in R$ prove that $a \sim b$ and $b \sim c$ imply $a \sim c$.

Hint: Quote Problem 1 when necessary.
(a): Suppose that $a \sim 1$. By definition this means that $a u=1$ for some unit $u \in R^{\times}$. Then taking $v=u$ shows that $a v=1$ for some $v \in R$. Hence a is a unit. Conversely, let a be a unit so that $a v=1$ for some $v \in R$. Then Problem 1(b,c) implies that v is a unit, hence $a \sim 1$.

If $a=0$ then $a u=0$ for any unit u, hence $a \sim 0$. Conversely, suppose that $a \sim 0$ so that $a u=0$ for some unit u. Since u^{-1} exists this implies that

$$
\begin{aligned}
a u & =0 \\
a u u^{-1} & =0 u^{-1} \\
a & =0 .
\end{aligned}
$$

[^0](b): For any a we have $a 1=a$. Since 1 is a unit (Problem 1a) this implies that $a \sim a$.
(c): Suppose that $a \sim b$, which means that $a u=b$ for some unit u. Since u^{-1} exists, we have
\[

$$
\begin{aligned}
a u & =b \\
a & =b u^{-1} .
\end{aligned}
$$
\]

Then since u^{-1} is a unit (Problem 1c) we have $b \sim a$. The other direction follows from switching the roles of a and b.
(d): Suppose $a \sim b$ and $b \sim c$ so that $a u=b$ and $b v=c$ for some units u and v. Then we have

$$
c=b v=(a u) v=a(u v),
$$

and since $u v$ is a unit (Problem 1d) this implies that $a \sim c$.
3. Partial Fractions. Let R be a domain and let $a, b \in R$ be coprime. This means that

$$
a R+b R=R .
$$

(a) Prove that there exist $x, y \in R$ satisfying $a x+b y=1$.
(b) Using part (a), prove that there exist $A, B \in R$ satisfying

$$
\frac{1}{a b}=\frac{A}{a}+\frac{B}{b} .
$$

Remark: The elements A, B are not unique.
(c) Compute some A, B for $a=13$ and $b=21$ in $R=\mathbb{Z}$.
(d) Compute some A, B for $a=x+1$ and $b=x^{2}+1$ in $R=\mathbb{R}[x]$.

Remark: These examples are small enough that you can use ad hoc methods. For larger examples, one would use the Extended Euclidean Algorithm, as in Problem 5.
(a): Assume that $a R+b R=R$. Then since $1 \in R$ we have $1 \in a R+b R$, which by definition says that $1=a x+b y$ for some $x, y \in R$.
(b): From part (a) we have $1=a x+b y$ for some $x, y \in R$. Divide both sides by $a b$ to get

$$
\frac{1}{a b}=\frac{a x+b y}{a b}=\frac{b y}{a b}+\frac{a x}{a b}=\frac{y}{a}+\frac{x}{b} .
$$

Thus we can take $A=y$ and $B=x$.
(c): We will use the Extended Euclidean Algorithm to find $x, y \in \mathbb{Z}$ such that $13 x+21 y=1$. To do this we consider all triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $13 x+21 y=z$. Starting with the easy triples $(0,1,21)$ and $(1,0,13)$, we perform row operations to obtain a triple of the form $(x, y, 1)$:

x	y	z	operation
0	1	21	(row 1)
1	0	13	(row 2)
-1	1	8	$($ row 3$)=($ row 1$)-($ row 2$)$
2	-1	5	$($ row 4$)=($ row 2$)-($ row 3$)$
-3	2	3	$($ row 5$)=($ row 3$)-($ row 4$)$
5	-3	2	$($ row 6$)=($ row 4$)-($ row 5$)$
-8	5	1	$($ row 7$)=($ row 5$)-($ row 6$)$
21	-13	0	$($ row 8$)=($ row 6$)-2($ row 7$)$

From the second-to-last row we see that $13(-8)+21(5)=1$ and hence

$$
\frac{1}{13 \cdot 21}=\frac{5}{13}+\frac{-8}{21} .
$$

(b): There are many methods to compute partial fractions of polynomials. I will use the Extended Euclidean Algorithm as in part (c). We want to find polynomials $A(x)$ and $B(x)$ such that

$$
\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A(x)}{x+1}+\frac{B(x)}{x^{2}+1}, \quad \text { and hence } \quad 1=A(x)\left(x^{2}+1\right)+B(x)(x+1) .
$$

To do this, we consider all triples of polynomials $A(x), B(x), C(x)$ such that

$$
A(x)\left(x^{2}+1\right)+B(x)(x+1)=C(x) .
$$

Beginning with the easy triples $\left(1,0, x^{2}+1\right)$ and $(0,1, x+1)$ we perform row operations to obtain a triple of the form $(A(x), B(x), 1)$:

$A(x)$	$B(x)$	$C(x)$	operation
1	0	$x^{2}+1$	$($ row 1)
0	1	$x+1$	$($ row 2)
1	$-x+1$	2	$($ row 3) $=($ row 1) $-(x-1)($ row 2)
$1 / 2$	$(-x+1) / 2$	1	$($ row 4) $=($ row 3) $/ 2$

I performed polynomial long division to find row 3:

$$
x+1) \begin{array}{r}
x-1 \\
\begin{array}{r}
x^{2}+1 \\
-x^{2}-x \\
\hline-x+1 \\
-x+1
\end{array}
\end{array}
$$

Row 4 is not strictly part of the Euclidean Algorithm. It just scales the gcd to be monic. Thus we obtain

$$
\begin{aligned}
1 & =\left(x^{2}+1\right)(1 / 2)+(x+1)(-x+1) / 2 \\
\frac{1}{(x+1)\left(x^{2}+1\right)} & =\frac{1 / 2}{x+1}+\frac{(-x+1) / 2}{x^{2}+1}
\end{aligned}
$$

4. Greatest Common Divisor. Let $a, b \in R$ be elements of a commutative ring. We say that $c \in R$ is a greatest common divisor (gcd) of a and b when

$$
a R+b R=c R .
$$

(a) Let c be a gcd of a and b. In this case prove that $c \mid a$ and $c \mid b$. [Remark: This is the sense in which a greatest common divisor is a "common divisor".]
(b) Let c be a gcd of a and b and let d be any common divisor of a and b (i.e., suppose that $d \mid a$ and $d \mid b)$. In this case, prove that $d \mid c$. [Remark: This is the sense in which a greatest common divisor is "greatest".]
(c) Greatest common divisors need not be unique. However, if R is a domain prove that any two greatest common divisors of a and b are associates.

Remark: Greatest common divisors need not exist. However, if R is a Euclidean domain then we proved in class that they do exist.
(a): Suppose that $a R+b R=c R$. Since $a=a \cdot 1+b \cdot 0$ we have $a \in a R+b R$ and hence $a \in c R$. By definition this means that $a=c r$ for some $r \in R$, hence $c \mid a$. Switching the roles of a and b shows that $c \mid b$.
(b): Now consider any $d \in R$ such that $d \mid a$ and $d \mid b$. Say $a=d k$ and $b=d \ell$. Since $c \in c R$ and $c R=a R+b R$ we have $c=a x+b y$ for some $x, y \in R$. Finally, we have

$$
\begin{aligned}
c & =a x+b y \\
& =(d k) x+(d \ell) y \\
& =d(k x+\ell y)
\end{aligned}
$$

and hence $d \mid c$.
(c): Suppose that $a R+b R=c_{1} R$ and $a R+b R=c_{2} R$, so that $c_{1} R=c_{2} R$. If one of c_{1} of c_{2} is zero then so is the other, in which case $c_{1} \sim c_{2}$. So we assume that $c_{1}, c_{2} \neq 0$. Since $c_{1} \in c_{1} R$ we have $c_{1} \in c_{2} R$, hence $c_{1}=c_{2} u$ for some $u \in R$. Similarly, we have $c_{2}=c_{1} v$ for some $v \in R$. If R is a domain then I claim that u and v must be units. Indeed, we must have

$$
\begin{aligned}
c_{2} & =c_{1} v \\
c_{2} & =\left(c_{2} u\right) v \\
c_{2}(1-u v) & =0 \\
1-u v & =0 \quad \text { since } c_{2} \neq 0 \\
1 & =u v .
\end{aligned}
$$

Hence $c_{1} \sim c_{2}$.
Remark: This tells us that any two integers have a unique non-negative gcd and that any two polynomials over a field have a unique monic gcd (i.e., with leading coefficient 1).

5. The Euclidean Algorithm.

(a) Missing Lemma. Let R be a commutative ring and suppose that we have $a=b k+c$ for some elements $a, b, c, k \in R$. In this case prove that

$$
a R+b R=b R+c R
$$

It follows that the pairs (a, b) and (b, c) have the same common divisors.
(b) Use the Extended Euclidean Algorithm (as described in class and the notes) to find some integers $x, y \in \mathbb{Z}$ satisfying

$$
32 x+47 y=1
$$

Note: I changed $a=b x+c$ to $a=b k+c$ just for fun.
(a): Suppose that $a=b k+c$. To see that $a R+b R \subseteq b R+c R$ we note that an arbitrary element $a x+b y \in a R+b R$ is also in $b R+c R$:

$$
a x+b y=(b k+c) x+b y=b(k x+y)+c(x) \in b R+c R
$$

And to see that $b R+c R \subseteq a R+b R$ we note that an arbitrary element $b x+c y \in b R+c R$ is also in $a R+b R$:

$$
b x+c y=b x+(a-b k) y=a(y)+b(x-k y) \in a R+b R
$$

(b): We consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $32 x+47 y=z$. Starting with the easy triples $(0,1,47)$ and $(1,0,32)$ we perform row operations until we obtain a triple of the form $(x, y, 1)$:

x	y	z	operation
0	1	47	(row 1)
1	0	32	(row 2)
-1	1	15	(row 3) (row 1) -1 (row 2)
3	-2	2	(row 4) $=$ (row 2) -2 (row 3)
-22	15	1	(row 5) $=$ (row 3) -7 (row 4)
47	-32	0	(row 6) $=($ row 4) $-2($ row 5)

We conclude that

$$
32(-22)+47(15)=1
$$

Remark: There are infinitely many solutions. The complete solution is

$$
32(-22+47 k)+47(15-32 k)=1 \text { for all } k \in \mathbb{Z}
$$

6. Fermat Primes. Let $k \geq 1$ and assume that the number $2^{k}+1$ is prime. In this case we will show that k must be a power of 2 .
(a) If $k=\ell m$ with m odd, show that $2^{k}+1$ is divisible by $2^{\ell}+1$. [Hint: We know from Homework 1 that $a^{m}-b^{m}$ is divisible by $a-b$ for any integers a, b, m with $m \geq 1$. Substitute appropriate values for a and b.]
(b) If k is not a power of 2 , use part (a) to show that $2^{k}+1$ is not prime. [Hint: If k is not a power of 2 then it has an odd prime divisor, say $p \mid k$.]
(a): For any integers $a, b, m \in \mathbb{Z}$ with $m \geq 1$ we recall from Homework 1 that

$$
\begin{aligned}
a^{m}-b^{m} & =(a-b)\left(a^{m-1}+a^{m-2} b+\cdots+a b^{m-2}+b^{m-1}\right) \\
& =(a-b)(\text { some integer }),
\end{aligned}
$$

so that $a-b$ divides $a^{m}-b^{m}$. Now let $k=\ell m$ where $k, m \in \mathbb{Z}$ and $m \geq 1$ is odd. Putting putting $a=2^{\ell}$ and $b=-1$ gives

$$
a-b=2^{\ell}+1
$$

and

$$
a^{m}-b^{m}=\left(2^{\ell}\right)^{m}-(-1)^{m}=2^{\ell m}-(-1)^{\text {odd }}=2^{k}+1 .
$$

Hence $2^{\ell}+1$ divides $2^{k}+1$.
(b): Suppose that k is not a power of 2 . By definition, the prime factorization of k contains a prime p not equal to 2 . But every prime except for 2 is odd, hence k has an odd prime factor:

$$
k=\ell p \text { for some } \ell, p \text { where } p \text { is odd and } p \geq 3 \text {. }
$$

From part (a) (with $m=p$) this implies that

$$
2^{\ell}+1 \text { is a divisor of } 2^{k}+1 .
$$

Since $2^{\ell}+1 \neq 1$ and $2^{\ell}+1 \neq 2^{k}+1$ (because $p \neq 1$), we conclude that $2^{k}+1$ has a non-trivial divisor. Hence $2^{k}+1$ is not prime.

Remark: Thus we have shown that

$$
2^{k}+1 \text { is prime } \quad \Longrightarrow \quad k=2^{n} \text { for some } n \geq 1
$$

This was discovered by Pierre de Fermat, who conjectured that the converse is also true:

$$
k=2^{n} \text { for some } n \geq 1 \quad \Longrightarrow \quad 2^{k}+1 \text { is prime. }
$$

To be precise, consider the nth Fermat number:

$$
F_{n}=2^{\left(2^{n}\right)}+1 .
$$

Here are the first few values:

n	0	1	2	3	4
F_{n}	3	5	17	257	65537

Fermat observed that all of these numbers are prime and he conjectured that F_{n} is prime for all $n \geq 0$. Euler showed in 1732 that F_{5} is composite:

$$
F_{5}=4294967297=641 \cdot 6700417 .
$$

As of November 2021] we know that F_{6} through F_{11} are also composite, and no other "Fermat prime" has ever been found. Thus Fermat's conjecture was very wrong.

Later in the course we will see the Gauss-Wantzel Theorem, which says the following:
The regular n-gon can be constructed with ruler and compass if and only if $n=2^{k} p_{1} \cdots p_{\ell}$ where p_{1}, \ldots, p_{ℓ} are distinct Fermat primes.

[^1]
[^0]: ${ }^{1}$ In non-commutative rings we must take $(u v)^{-1}=v^{-1} u^{-1}$ instead of $u^{-1} v^{-1}$. For example, in the theory of matrix multiplication.
 ${ }^{2}$ Remark: This awkward notation has no connection with "associativity" of binary operators.

[^1]: 3 https://en.wikipedia.org/wiki/Fermat_number

