
Math 461 Spring 2023
Homework 1 Drew Armstrong

1. Roots vs Coefficients. One of the earliest theorems of algebra says that any symmetric
function of the letters r1 and r2 can be written in terms of the elementary symmetric functions
e1 = r1 + r2 and e2 = r1r2. There is a general algorithm for many variables, but the case of
two variables can done by trial-and-error.

(a) Express the symmetric function (r1 − r2)2 in terms of e1 and e2.
(b) Express the symmetric function r21 + r22 in terms of e1 and e2.
(c) Expand the right hand side and compare coefficients to show that

x2 − e1x+ e2 = (x− r1)(x− r2).

In other words, r1, r2 are the roots of the polynomial with coefficients −e1 and e2.
1

(d) Let x2 + ax+ b the the2 polynomial with roots r21 and r22. Express a and b in terms of
e1 and e2. [Hint: We must have x2 + ax+ b = (x− r21)(x− r22). Expand the right hand
side and compare coefficients.]

(a): We have

(r1 − r2)2 = r21 − 2r1r2 + r22 = (r1 + r2)
2 − 4r1r2 = e21 − 4e2.

(a): We have

r21 + r22 = (r1 + r2)
2 − 2r1r2 = e21 − 2e2.

(c): Since e1 = r1 + r2 and e2 = r1r2 we have

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 = x2 − e1x+ e2.

(d): We are given that x2 − e1x+ e2 = (x− r1)(x− r2). Now suppose that x2 + ax+ b is the
polynomial with roots r21 and r2, so that

x2 + ax+ b = (x− r21)(x− r22)

= x2 − (r21 + r22)x+ r21r
2
2.

Since r21 + r22 = e21 − 2e2 (from part b) and r21r
2
2 = (r1r2)

2 = e22, we have

x2 + ax+ b = x2 − (e21 − 2e2)x+ e22,

and comparing coefficients gives {
a = −e21 + 2e2,
b = e22.

Example: Let e1 = 5 and e2 = 6 so that x2 − e1x+ e2 has roots r1 = 2 and r2 = 3. Then the
polynomial with roots r21 = 22 = 4 and r22 = 32 = 9 is, indeed,

x2 − (e21 − 2e2)x+ e22 = x2 − (52 − 2 · 6)x+ 62 = x2 − 13x+ 36.

1The negative sign in front of e1 is just a convention.
2You can assume that the values of a and b are unique.



2. Integral Domains. Let (R,+, ·, 0, 1) be a commutative ring. We say that R is an integral
domain (or just a domain) when it satisfies the following property:

ab = 0 =⇒ a = 0 or b = 0.

(a) Cancellation. Let a, b, c ∈ R be elements of an integral domain. Prove that

ac = bc and c 6= 0 =⇒ a = b.

(b) Prove that every field is an integral domain.
(c) Let R be an integral domain and consider the ring of polynomials R[x]. For any two

nonzero polynomials f(x), g(x) ∈ R[x], prove that

deg(fg) = deg(f) + deg(g).

[Hint: Write f(x) =
∑

k akx
k, g(x) =

∑
k bkx

k and f(x)g(x) =
∑

k ckx
k, so that

ck =
∑

i+j=k aibj . Assume that deg(f) = m and deg(g) = n so that am, bn 6= 0, ak = 0
for all k > m and bk = 0 for all k > n. In this case prove that cm+n 6= 0 and ck = 0
for all k > m+ n, hence deg(fg) = m+ n = deg(f) + deg(g).]

(d) Let R be an integral domain. Use part (c) to prove that R[x] is also an integral domain.

(a): Let R be an integral domain and consider a, b, c ∈ R. If ac = bc and c 6= 0 then we have

ac = bc

ac− bc = 0

(a− b)c = 0

a− b = 0 (because R is a domain and c 6= 0)

a = b.

(b): Let R be a field and consider a, b ∈ R. We want to show that ab = 0 implies a = 0 or
b = 0. If a = 0 then we are done, so suppose that a 6= 0. Since R is a field this means that
a−1 exists, so we get

ab = 0

a−1ab = a−10

b = 0.

(c): There are two ways to do this.

Imprecise but Clear Proof. Let deg(f) = m and deg(g) = n so that

f(x) = amx
m + lower terms,

g(x) = bnx
n + lower terms,

where am 6= 0 and bn 6= 0. Then the product is3

f(x)g(x) = ambnx
m+n + lower terms.

Since R is a domain, we know that am 6= 0 and bn 6= 0 imply ambn 6= 0, hence f(x)g(x) has
degree m+ n = deg(f) + deg(g) as desired. �

3But why? This is the imprecise part.



Precise but Annoying Proof. Let deg(f) = m and deg(g) = n. By definition, this means
we can write f(x) =

∑
akx

k and g(x) =
∑

k bkx
k, with

am 6= 0, bn 6= 0, ak = 0 for all k > m, bk = 0 for all k > n.

Now consider the product f(x)g(x) which is defined by

f(x)g(x) =
∑
k≥0

ckx
k, where ck =

∑
i+j=k

aibj .

Our goal is to show that cm+n 6= 0 and ck = 0 for all k > m+ n, so that

deg(fg) = m+ n = deg(f) + deg(g).

The key to the proof is to observe that i+j > m+n implies i > m or j > n.4 If k > m+n then
I claim that every term aibj in the sum ck =

∑
i+j=k aibj is zero. Indeed, if i+ j = k > m+n

then we must have i > m (in which case ai = 0) or j > n (in which case bj = 0), and hence
aibj = 0. We have shown that k > m+ n implies ck = 0.

Finally we will show that cm+n 6= 0. To see this, I claim that every term aibj in the sum
cm+n =

∑
i+j=m+n aibj is zero, except for the single term ambn, which is nonzero. Indeed, if

i+ j = m+ n then one of the following three cases must hold:5

• i = m and j = n, in which case ambn 6= 0 because am 6= 0 and bn 6= 0,
• i > m, in which case ai = 0 and hence aibj = 0,
• j > n, in which case bj = 0 and hence aibj = 0.

Hence cm+n = ambn 6= 0. �

Remark: The first proof is clear to humans but a computer does not understand it. The
second proof makes sense to computers but humans find it annoying. Sorry.

(d): Let R be a domain and consider any two nonzero polynomials f(x), g(x) ∈ R[x]. By part
(c) we know that deg(fg) = deg(f) + deg(g) ≥ 0 + 0 = 0, which implies that f(x)g(x) is not
the zero polynomial.

Remark: Here I used the sort-of-weird but totally correct fact that

f(x) 6= 0 ⇐⇒ deg(f) ≥ 0.

Recall that deg(0) = −∞.

3. Uniqueness of Polynomial Remainders. Let R be a field6 and consider the ring of
polynomials R[x]. Consider two polynomials f(x), g(x) ∈ R[x] with g(x) 6= 0 and suppose
there exist polynomials q1(x), q2(x), r1(x), r2(x) ∈ F[x] satisfying{

f(x) = q1(x)g(x) + r1(x),
deg(r1) < deg(g),

{
f(x) = q2(x)g(x) + r2(x),
deg(r2) < deg(g).

In this case, prove that r1(x) = r2(x) and q1(x) = q2(x). [Hint: We have g(x)[q2(x) −
q1(x)] = r1(x) − r2(x), and you may assume that deg(r1 − r2) ≤ max{deg(r1), deg(r2)}, so
that deg(r1 − r2) < deg(g). Now use Problem 2(c).]

4The contrapositive statement says that i ≤ m and j ≤ n imply i + j ≤ m + n, which is true. To be
completely pedantic, add j to both sides of i ≤ m to get i + j ≤ m + j then add m to both sides of j ≤ n to
get m + j ≤ m + n. Combine to get i + j ≤ m + j ≤ m + n.

5If none of these cases holds then we have i ≤ m and j < n or i < m and j ≤ n, hence i + j < m + n.
6It suffices to let R be an integral domain.



Proof. Suppose we have polynomials f, g, q1, q2, r1, r2 satisfying the given hypotheses. Our
goal is to show that q1 = q2 and r1 = r2. To do this, we first observe that

q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

g(x) [q1(x)− q2(x)] = r2(x)− r1(x).

Assume for contradiction that r1(x) 6= r2(x), so that r2(x)−r1(x) 6= 0. Since R is a field (in
particular, a domain) and g(x) 6= 0, the previous equation also tells us that q1(x)− q2(x) 6= 0.
Thus we can take degrees and apply Problem 2(c) to get

deg(g[q1 − q2]) = deg(r2 − r1)
deg(g) + deg(q1 − q2) = deg(r2 − r1).

On the one hand, this tells us that

deg(r2 − r1) = deg(g) + deg(q1 − q2) ≥ deg(g).

On the other hand, since deg(r1) < deg(g) and deg(r2) < deg(g), we must have

deg(r2 − r1) ≤ max{deg(r1), deg(r2)} < deg(g).

This contradiction proves that r1(x) = r2(x).

Finally, since g(x)[q1(x)−q2(x)] = r2(x)−r1(x) = 0 and g(x) 6= 0 (and since R[x] is a domain)
we conclude that q1(x)− q2(x) = 0 and hence q1(x) = q2(x). �

4. Same Function =⇒ Same Coefficients. Let R be a field with infinitely many elements,
for example the real numbers R.7 Let f(x), g(x) ∈ R[x] be any two monic polynomials
satisfying f(α) = g(α) for all α ∈ R. In this case, prove that f(x) and g(x) must have the
same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). Descartes’ Theorem
implies that any (nonzero) polynomial of degree n ≥ 1 over a field R has at most n distinct
roots in that field.]

Proof. Let R be a field with infinitely many elements. Suppose that nonzero polynomials
f(x), g(x) ∈ R[x] satisfy f(α) = g(α) for all α ∈ R. In this case we will show that f(x) = g(x),
i.e., that f and g have the same coefficients.

The trick is to consider the polynomial h(x) := f(x)− g(x). Then for all α ∈ R we have

h(α) = f(α)− g(α) = 0.

Since R has infinitely many elements we observe that the polynomial h(x) ∈ R[x] has infinitely
many roots. But then Descartes’ Factor Theorem implies that h(x) is the zero polynomial,
hence f(x) = g(x). �

Recall: Descartes’ Factor Theorem implies that a nonzero polynomial h(x) ∈ R[x] of degree
n ≥ 0 with coefficients in a field R has at most n distinct roots in R. If we find some polynomial
h(x) with infinitely many roots, then this implies that h(x) must be the zero polynomial.

Remark: It was necessary to assume that R has infinitely many elements. For example, let
R be the finite field with two elements: R = {0, 1}. Then the polynomials f(x) = x + 1 and
g(x) = x2 + 1 have the same values, but different coefficients.

7It suffices to let R be an integral domain with infinitely many elements, such as the integers Z.



5. Alternate Proof of Descartes’ Theorem.

(a) For any8 variables x, y and for any integer n ≥ 2, check9 that

xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1).

(b) Let R be any commutative ring. For any polynomial f(x) ∈ R[x] and for any constant
α ∈ R, use part (a) to prove that

f(x)− f(α) = (x− α)g(x)

for some polynomial g(x). [Hint: From part (a) we have xn − αn = (x − α)hn−1(x),
with hn−1(x) = xn−1+αxn−2+ · · ·+αn−2x+αn−1. Write f(x) =

∑
k akx

k and observe

that f(x)− f(α) =
∑

k ak(xk − αk).]

(a): When we expand the right hand side we observe that all but two terms cancel:

(x− y)(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)

=
x(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)
−y(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)

=
(xn +����xn−1y + · · ·+����x2yn−2 +����xyn−1)
−(����xn−1y +����xn−2y2 + · · ·+����xyn−1 + yn)

= xn − yn.

(b): Let R be any commutative ring. Consider an integer n ≥ 1 and a constant α ∈ R. We
know from part (a) that the polynomial xn − αn ∈ R[x] factors as

xn − αn = (x− α)(some polynomial in R[x]).

To simplify notation we will write xn − αn = (x− α)hn−1(x), where

hn−1(x) = xn−1 + xn−2α+ · · ·+ xαn−2 + αn−1.

Note that this polynomial hn−1(x) ∈ R[x] has degree n− 1, hence the subscript.

Now consider an arbitrary polynomial f(x) ∈ R[x], let’s say

f(x) = anx
n + · · ·+ a1x+ a0.

Then for any constant α ∈ R we have

f(x)− f(α) = (anx
n + · · ·+ a1x+��a0)− (anα

n + · · ·+ a1α+��a0)

= an(xn − αn) + an−1(x
n−1 − αn−1) + · · ·+ a1(x− α) + 0

= an(x− α)hn−1(x) + an−1(x− α)hn−2(x) + · · ·+ a1(x− α)h0(x)

= (x− α) [anhn−1(x) + an−1hn−2(x) + · · ·+ a1h0(x)]

= (x− α)(some polynomial in R[x]).

�

8By convention we always assume that variables commute: xy = yx.
9When I say “check” there is usually not much to do. The goal is just to convince yourself and then write

down how you would explain it to someone else.



Example: For f(x) = 5x3 − 2x2 + 7 we have

f(x)− f(α) = (5x3 − 2x2 + 7)− (5α3 − 2α2 + 7)

= 5(x3 − α3)− 2(x2 − α2) + 0(x− α) + 0

= 5(x− α)(x2 + xα+ α2)− 2(x− α)(x+ α)

= (x− α)
[
5(x2 + xα+ α2)− 2(x+ α)

]
.

Remark: This proof is more elementary than the one given in class, because it does not use the
concept of quotient and remainder. Of course, that does not mean that this proof is “easier”.


