
Math 461 Exam 3
Spring 2023 Thurs Apr 27

No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for
a total of 30 points.

Problem 1. Rational Root Test.

(a) Consider a rational polynomial f(x) ∈ Q[x] of degree 3. If f(x) is not prime over
Q, prove that f(x) has a root in Q. [Hint: If f(x) is not prime then we can write
f(x) = g(x)h(x) for some nonconstant polynomials g(x), h(x) ∈ Q[x].]

If f(x) is not prime over Q then we can write f(x) = g(x)h(x) for some nonconstant
polynomials g(x), h(x) ∈ Q[x]. Comparing degrees gives

3 = deg(f) = deg(g) + deg(h).

Since deg(g), deg(h) ≥ 1, one of these polynomials has degree 1. Without loss of
generality suppose that deg(g) = 1, so g(x) = ax+ b for some a, b ∈ Q with a 6= 0.
But then we have

f(−b/a) = g(−b/a)h(−b/a) = 0h(−b/a) = 0,

hence f(x) has a root −b/a ∈ Q.

(b) Use the contrapositive of (a) and the rational root test to prove that the polynomial
x3 − 2 is prime over Q.

The polynomial x3− 2 ∈ Q[x] has degree 3. If we can show that x3− 2 has no root
in Q then it will follow from (a) that x3 − 2 is prime over Q.

Suppose for contradiction that x3 − 2 does have a rational root α ∈ Q. We can
write α = a/b for some a, b ∈ Z with gcd(a, b) = 1. Then substituting gives

α3 − 2 = 0

(a/b)3 − 2 = 0

a3 − 2b3 = 0

a3 = 2b3.

Since a|2b3 and gcd(a, b) = 1 we must have a|2. Similarly, since b|a3 and gcd(a, b) =
1 we must have b|1. We conclude that α = a/b = ±1,±2. But (±1)3 − 2 6= 0 and
(±2)2 − 2 6= 0. Hence the polynomial x3 − 2 has no rational root.

Problem 2. The Minimal Polynomial. Let F be a field and let p(x) ∈ F[x] be a prime
polynomial. Let γ be an element of some larger field satisfying p(γ) = 0.

(a) For any polynomial f(x) ∈ F[x], prove that f(γ) = 0 implies f(x) = p(x)g(x) for
some g(x) ∈ F[x]. [Hint: Let f(γ) = 0 and assume for contradiction that f(x) is
not a multiple of p(x). Since p(x) is prime, this implies that gcd(p, f) = 1.]

Consider any f(x) ∈ F[x] satisfying f(γ) = 0. To prove that p(x)|f(x) we assume
for contradiction that p(x) - f(x). Since p(x) is a prime element of the Euclidean
domain F[x], this implies that gcd(p, f) = 1. Then from the Extended Euclidean



Algorithm we can find p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) = 1.
Finally, we substitute x = γ to obtain the desired contradiction:

p(x)p′(x) + f(x)f ′(x) = 1

p(γ)p′(γ) + f(γ)f ′(γ) = 1

0p′(γ) + 0f ′(γ) = 1

0 = 1.

(b) Let γ = 3
√

2 ∈ R be the real cube root of 2. For any rational polynomial f(x) ∈ Q[x],
show that f(γ) = 0 implies f(x) = (x3 − 2)g(x) for some g(x) ∈ Q[x]. [Hint: 1b.]

Consider the polynomial p(x) = x3−2 ∈ Q[x]. In Problem 1(b) we showed that p(x)
is a prime element of Q[x]. Note that the real number γ = 3

√
2 satisfies p(γ) = 0.

Thus from part (a) we conclude for all rational polynomials f(x) ∈ Q[x] that

f(γ) = 0 =⇒ f(x) = (x3 − 2)g(x) for some g(x) ∈ Q[x].

Problem 3. Adjoining an Element to a Field. Let F be a field and let γ be an
element of some larger field E ⊇ F. One can check that the set is a subring of E:

F[γ] = {f(γ) : f(x) ∈ F[x]} ⊆ E.

(a) Suppose that p(γ) = 0 for some polynomial p(x) ∈ F[x] of degree d. In this case
show that every element of F[γ] can be expressed in the form a0+a1γ+· · ·+ad−1γd−1
for some a0, . . . , ad−1 ∈ F. [Hint: A general element of F[γ] has the form f(γ) for
some f(x) ∈ F[x]. Divide f(x) by p(x) to get a remainder.]

Let p(x) ∈ F[x] be any1 polynomial of degree d satisfying p(γ) = 0 and consider
any element α ∈ F[γ]. By definition we can write α = f(γ) for some polynomial
f(x) ∈ F[x]. Divide f(x) by p(x) to obtain polynomials q(x), r(x) ∈ F[x] satisfying{

f(x) = p(x)q(x) + r(x),
r(x) = 0 or deg(r) < d.

In either case we can write r(x) = a0 + a1x + · · · + ad−1x
d−1 for some numbers

a0, a1, . . . , ad−1 ∈ F. Now substitute x = γ to obtain

α = f(γ)

= p(γ)q(γ) + r(γ)

= 0q(γ) + r(γ)

= r(γ)

= a0 + a1γ + · · ·+ ad−1γ
d−1.

(b) Again let γ = 3
√

2 ∈ R. Express the number 1 + γ + γ2 + γ3 + γ4 ∈ Q[γ] in the
standard form a+ bγ + cγ2 for some a, b, c ∈ Q. [Hint: Divide x4 + x3 + x2 + x+ 1
by x3 − 2 to get a remainder.]

Let p(x) = x3 − 2 ∈ Q[x] and f(x) = 1 + x+ x2 + x3 + x4 ∈ Q[x]. Divide f(x) by
p(x) to obtain quotient q(x) = x+ 1 and remainder r(x) = x3 + 3x+ 3:

1For this problem p(x) need not be prime.



x+ 1

x3 − 2
)

x4 + x3 + x2 + x+ 1
− x4 + 2x

x3 + x2 + 3x+ 1
− x3 + 2

x2 + 3x+ 3

It follows from part (a) that

1 + γ + γ2 + γ3 + γ4 = f(γ) = r(γ) = 3 + 3γ + γ2.

Alternatively, we can use the fact that γ3 = 2 to obtain

1 + γ + γ2 + γ3 + γ4 = 1 + γ + γ2 + 2 + 2γ

= 3 + 3γ + γ2.

Problem 4. Existence of Inverses. Let p(x) ∈ F[x] be prime over a field F and let
p(γ) = 0 for a number γ in some larger field.

(a) Consider a polynomial f(x) ∈ F[x] such that f(γ) 6= 0. In this case show that f(x)
is not a multiple of p(x) in the ring F[x].

Consider any polynomial f(x) ∈ F[x] such that f(γ) 6= 0. If we had f(x) = p(x)g(x)
for some g(x) ∈ F[x] then we would obtain a contradiction:

f(γ) = p(γ)g(γ) = 0g(γ) = 0.

Hence f(x) is not a multiple of p(x).

(b) Prove that the ring F[γ] from Problem 3 is actually a field. [Hint: An arbitrary
element of F[γ] has the form f(γ) for some polynomial f(x). If f(γ) 6= 0, use part
(a) to show that gcd(p, f) = 1 in the ring F[x].]

Consider an arbitrary nonzero element α ∈ F[γ]. By definition we can write α =
f(γ) for some (nonzero) polynomial f(x) ∈ F[x]. Since f(γ) = α 6= 0 part (a)
tells us that f(x) is not a multiple of p(x). Since p(x) is a prime element of the
Euclidean domain F[x] this implies that gcd(p, f), hence we can find polynomials
p′(x), f ′(x) ∈ F[x] satisfying p(x)p′(x) + f(x)f ′(x) = 1. Substitute x = γ to obtain

p(x)p′(x) + f(x)f ′(x) = 1

p(γ)p′(γ) + f(γ)f ′(γ) = 1

0p′(γ) + f(γ)f ′(γ) = 1

f(γ)f ′(γ) = 1

αf ′(γ) = 1.

Thus f ′(γ) ∈ F[γ] is a multiplicative inverse of α.

Problem 5. Example. Let γ = 3
√

2 ∈ R. From the previous problems we know that the
following set is a subfield of R:

Q[γ] = {a+ bγ + cγ2 : a, b, c ∈ Q}.



(a) Express the product (1 + γ2)(1− γ2) in standard form a+ bγ + cγ2.

Since γ3 = 2 we have (1 + γ2)(1− γ2) = 1− γ4 = 1− 2γ + 0γ2.

Remark: This is not a good problem. (I was a bit rushed when I wrote the exam.)

(b) Express the inverse (1 + γ2)−1 in standard form a + bγ + cγ2. [Hint: Expand the
left side of (1 + γ2)(a+ bγ + cγ2) = 1 + 0γ + 0γ2 and compare coefficients.]

There are two ways to do this. The proof of Problem 4(b) suggests using the Ex-
tended Euclidean Algorithm in the ring Q[x]. I don’t suggest this method because
it’s too easy to make mistakes, but here it is. Consider all triples of polynomi-
als f(x), g(x), h(x) satisfying (x3 − 2)f(x) + (x2 + 1)g(x) = h(x). Begin with the
easy triples (f, g, h) = (1, 0, x3 − 2) and (f, g, h) = (0, 1, x2 + 1), then perform row
operations to obtain a triple of the form (f, g, 1):

f(x) g(x) h(x)

1 0 x3 − 2
0 1 x2 + 1
1 −x −x− 2

x− 2 −x2 + 2x+ 1 5
x−2
5

−x2+2x+1
5 1

We conclude that

(1 + γ2)−1 =
−γ2 + 2γ + 1

5
= −1

5
γ2 +

2

5
γ +

1

5
.

It is easier to use linear algebra over Q. Let (1 + γ2)−1 = a + bγ + cγ2, so that
(1 + γ2)(a+ bγ + cγ2) = 1 + 0γ + 0γ2. Expand the left side to get

(1 + γ2)(a+ bγ + cγ2) = 1 + 0γ + 0γ2

a+ bγ + cγ2 + aγ2 + bγ3 + cγ4 = 1 + 0γ + 0γ2

a+ bγ + cγ2 + aγ2 + b2 + c2γ = 1 + 0γ + 0γ2

(a+ 2b) + (b+ 2c)γ + (a+ c)γ2 = 1 + 0γ + 0γ2.

Then compare coefficients2 to get the system a + 2b + 0 = 1,
0 + b + 2c = 0,
a + 0 + c = 0,

which has solution a = 1/5, b = 2/5 and c = −1/5. Hence

(1 + γ2)−1 = a+ bγ + cγ2 =
1

5
+

2

5
γ − 1

5
γ2.

2Here we are using the fact that a+bγ+cγ2 = d+eγ+fγ2 implies (a, b, c) = (d, e, f) for a, b, c, d, e, f ∈ Q,
which we did not prove on this exam. It follows from the fact that x2 − 3 is prime over Q[x].


