No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Rational Root Test.

(a) Consider a rational polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3. If $f(x)$ is not prime over \mathbb{Q}, prove that $f(x)$ has a root in \mathbb{Q}. [Hint: If $f(x)$ is not prime then we can write $f(x)=g(x) h(x)$ for some nonconstant polynomials $g(x), h(x) \in \mathbb{Q}[x]$.

If $f(x)$ is not prime over \mathbb{Q} then we can write $f(x)=g(x) h(x)$ for some nonconstant polynomials $g(x), h(x) \in \mathbb{Q}[x]$. Comparing degrees gives

$$
3=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)
$$

Since $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$, one of these polynomials has degree 1 . Without loss of generality suppose that $\operatorname{deg}(g)=1$, so $g(x)=a x+b$ for some $a, b \in \mathbb{Q}$ with $a \neq 0$. But then we have

$$
f(-b / a)=g(-b / a) h(-b / a)=0 h(-b / a)=0,
$$

hence $f(x)$ has a root $-b / a \in \mathbb{Q}$.
(b) Use the contrapositive of (a) and the rational root test to prove that the polynomial $x^{3}-2$ is prime over \mathbb{Q}.

The polynomial $x^{3}-2 \in \mathbb{Q}[x]$ has degree 3 . If we can show that $x^{3}-2$ has no root in \mathbb{Q} then it will follow from (a) that $x^{3}-2$ is prime over \mathbb{Q}.

Suppose for contradiction that $x^{3}-2$ does have a rational root $\alpha \in \mathbb{Q}$. We can write $\alpha=a / b$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Then substituting gives

$$
\begin{aligned}
\alpha^{3}-2 & =0 \\
(a / b)^{3}-2 & =0 \\
a^{3}-2 b^{3} & =0 \\
a^{3} & =2 b^{3} .
\end{aligned}
$$

Since $a \mid 2 b^{3}$ and $\operatorname{gcd}(a, b)=1$ we must have $a \mid 2$. Similarly, since $b \mid a^{3}$ and $\operatorname{gcd}(a, b)=$ 1 we must have $b \mid 1$. We conclude that $\alpha=a / b= \pm 1, \pm 2$. But $(\pm 1)^{3}-2 \neq 0$ and $(\pm 2)^{2}-2 \neq 0$. Hence the polynomial $x^{3}-2$ has no rational root.

Problem 2. The Minimal Polynomial. Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$ be a prime polynomial. Let γ be an element of some larger field satisfying $p(\gamma)=0$.
(a) For any polynomial $f(x) \in \mathbb{F}[x]$, prove that $f(\gamma)=0$ implies $f(x)=p(x) g(x)$ for some $g(x) \in \mathbb{F}[x]$. [Hint: Let $f(\gamma)=0$ and assume for contradiction that $f(x)$ is not a multiple of $p(x)$. Since $p(x)$ is prime, this implies that $\operatorname{gcd}(p, f)=1$.]

Consider any $f(x) \in \mathbb{F}[x]$ satisfying $f(\gamma)=0$. To prove that $p(x) \mid f(x)$ we assume for contradiction that $p(x) \nmid f(x)$. Since $p(x)$ is a prime element of the Euclidean domain $\mathbb{F}[x]$, this implies that $\operatorname{gcd}(p, f)=1$. Then from the Extended Euclidean

Algorithm we can find $p^{\prime}(x), f^{\prime}(x) \in \mathbb{F}[x]$ satisfying $p(x) p^{\prime}(x)+f(x) f^{\prime}(x)=1$. Finally, we substitute $x=\gamma$ to obtain the desired contradiction:

$$
\begin{aligned}
p(x) p^{\prime}(x)+f(x) f^{\prime}(x) & =1 \\
p(\gamma) p^{\prime}(\gamma)+f(\gamma) f^{\prime}(\gamma) & =1 \\
0 p^{\prime}(\gamma)+0 f^{\prime}(\gamma) & =1 \\
0 & =1
\end{aligned}
$$

(b) Let $\gamma=\sqrt[3]{2} \in \mathbb{R}$ be the real cube root of 2 . For any rational polynomial $f(x) \in \mathbb{Q}[x]$, show that $f(\gamma)=0$ implies $f(x)=\left(x^{3}-2\right) g(x)$ for some $g(x) \in \mathbb{Q}[x]$. [Hint: 1b.]

Consider the polynomial $p(x)=x^{3}-2 \in \mathbb{Q}[x]$. In Problem $1(\mathrm{~b})$ we showed that $p(x)$ is a prime element of $\mathbb{Q}[x]$. Note that the real number $\gamma=\sqrt[3]{2}$ satisfies $p(\gamma)=0$. Thus from part (a) we conclude for all rational polynomials $f(x) \in \mathbb{Q}[x]$ that

$$
f(\gamma)=0 \quad \Longrightarrow \quad f(x)=\left(x^{3}-2\right) g(x) \text { for some } g(x) \in \mathbb{Q}[x]
$$

Problem 3. Adjoining an Element to a Field. Let \mathbb{F} be a field and let γ be an element of some larger field $\mathbb{E} \supseteq \mathbb{F}$. One can check that the set is a subring of \mathbb{E} :

$$
\mathbb{F}[\gamma]=\{f(\gamma): f(x) \in \mathbb{F}[x]\} \subseteq \mathbb{E}
$$

(a) Suppose that $p(\gamma)=0$ for some polynomial $p(x) \in \mathbb{F}[x]$ of degree d. In this case show that every element of $\mathbb{F}[\gamma]$ can be expressed in the form $a_{0}+a_{1} \gamma+\cdots+a_{d-1} \gamma^{d-1}$ for some $a_{0}, \ldots, a_{d-1} \in \mathbb{F}$. [Hint: A general element of $\mathbb{F}[\gamma]$ has the form $f(\gamma)$ for some $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by $p(x)$ to get a remainder.]

Let $p(x) \in \mathbb{F}[x]$ be any ${ }^{1}$ polynomial of degree d satisfying $p(\gamma)=0$ and consider any element $\alpha \in \mathbb{F}[\gamma]$. By definition we can write $\alpha=f(\gamma)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by $p(x)$ to obtain polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=p(x) q(x)+r(x) \\
r(x)=0 \text { or } \operatorname{deg}(r)<d
\end{array}\right.
$$

In either case we can write $r(x)=a_{0}+a_{1} x+\cdots+a_{d-1} x^{d-1}$ for some numbers $a_{0}, a_{1}, \ldots, a_{d-1} \in \mathbb{F}$. Now substitute $x=\gamma$ to obtain

$$
\begin{aligned}
\alpha & =f(\gamma) \\
& =p(\gamma) q(\gamma)+r(\gamma) \\
& =0 q(\gamma)+r(\gamma) \\
& =r(\gamma) \\
& =a_{0}+a_{1} \gamma+\cdots+a_{d-1} \gamma^{d-1}
\end{aligned}
$$

(b) Again let $\gamma=\sqrt[3]{2} \in \mathbb{R}$. Express the number $1+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4} \in \mathbb{Q}[\gamma]$ in the standard form $a+b \gamma+c \gamma^{2}$ for some $a, b, c \in \mathbb{Q}$. [Hint: Divide $x^{4}+x^{3}+x^{2}+x+1$ by $x^{3}-2$ to get a remainder.]

Let $p(x)=x^{3}-2 \in \mathbb{Q}[x]$ and $f(x)=1+x+x^{2}+x^{3}+x^{4} \in \mathbb{Q}[x]$. Divide $f(x)$ by $p(x)$ to obtain quotient $q(x)=x+1$ and remainder $r(x)=x^{3}+3 x+3$:

[^0]\[

$$
\begin{array}{r}
\left.x^{3}-2\right) \begin{array}{r}
x+1 \\
\begin{array}{r}
x^{4}+x^{3}+x^{2}+x+1 \\
-x^{4} \\
+2 x
\end{array} \\
\frac{x^{3}+x^{2}+3 x+1}{x^{3}+3 x+3}
\end{array} \\
\frac{x^{3}+2}{}
\end{array}
$$
\]

It follows from part (a) that

$$
1+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}=f(\gamma)=r(\gamma)=3+3 \gamma+\gamma^{2}
$$

Alternatively, we can use the fact that $\gamma^{3}=2$ to obtain

$$
\begin{aligned}
1+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4} & =1+\gamma+\gamma^{2}+2+2 \gamma \\
& =3+3 \gamma+\gamma^{2}
\end{aligned}
$$

Problem 4. Existence of Inverses. Let $p(x) \in \mathbb{F}[x]$ be prime over a field \mathbb{F} and let $p(\gamma)=0$ for a number γ in some larger field.
(a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\gamma) \neq 0$. In this case show that $f(x)$ is not a multiple of $p(x)$ in the ring $\mathbb{F}[x]$.

Consider any polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\gamma) \neq 0$. If we had $f(x)=p(x) g(x)$ for some $g(x) \in \mathbb{F}[x]$ then we would obtain a contradiction:

$$
f(\gamma)=p(\gamma) g(\gamma)=0 g(\gamma)=0
$$

Hence $f(x)$ is not a multiple of $p(x)$.
(b) Prove that the ring $\mathbb{F}[\gamma]$ from Problem 3 is actually a field. [Hint: An arbitrary element of $\mathbb{F}[\gamma]$ has the form $f(\gamma)$ for some polynomial $f(x)$. If $f(\gamma) \neq 0$, use part (a) to show that $\operatorname{gcd}(p, f)=1$ in the ring $\mathbb{F}[x]$.]

Consider an arbitrary nonzero element $\alpha \in \mathbb{F}[\gamma]$. By definition we can write $\alpha=$ $f(\gamma)$ for some (nonzero) polynomial $f(x) \in \mathbb{F}[x]$. Since $f(\gamma)=\alpha \neq 0$ part (a) tells us that $f(x)$ is not a multiple of $p(x)$. Since $p(x)$ is a prime element of the Euclidean domain $\mathbb{F}[x]$ this implies that $\operatorname{gcd}(p, f)$, hence we can find polynomials $p^{\prime}(x), f^{\prime}(x) \in \mathbb{F}[x]$ satisfying $p(x) p^{\prime}(x)+f(x) f^{\prime}(x)=1$. Substitute $x=\gamma$ to obtain

$$
\begin{aligned}
p(x) p^{\prime}(x)+f(x) f^{\prime}(x) & =1 \\
p(\gamma) p^{\prime}(\gamma)+f(\gamma) f^{\prime}(\gamma) & =1 \\
0 p^{\prime}(\gamma)+f(\gamma) f^{\prime}(\gamma) & =1 \\
f(\gamma) f^{\prime}(\gamma) & =1 \\
\alpha f^{\prime}(\gamma) & =1 .
\end{aligned}
$$

Thus $f^{\prime}(\gamma) \in \mathbb{F}[\gamma]$ is a multiplicative inverse of α.
Problem 5. Example. Let $\gamma=\sqrt[3]{2} \in \mathbb{R}$. From the previous problems we know that the following set is a subfield of \mathbb{R} :

$$
\mathbb{Q}[\gamma]=\left\{a+b \gamma+c \gamma^{2}: a, b, c \in \mathbb{Q}\right\} .
$$

(a) Express the product $\left(1+\gamma^{2}\right)\left(1-\gamma^{2}\right)$ in standard form $a+b \gamma+c \gamma^{2}$.

Since $\gamma^{3}=2$ we have $\left(1+\gamma^{2}\right)\left(1-\gamma^{2}\right)=1-\gamma^{4}=1-2 \gamma+0 \gamma^{2}$.
Remark: This is not a good problem. (I was a bit rushed when I wrote the exam.)
(b) Express the inverse $\left(1+\gamma^{2}\right)^{-1}$ in standard form $a+b \gamma+c \gamma^{2}$. [Hint: Expand the left side of $\left(1+\gamma^{2}\right)\left(a+b \gamma+c \gamma^{2}\right)=1+0 \gamma+0 \gamma^{2}$ and compare coefficients.]

There are two ways to do this. The proof of Problem 4(b) suggests using the Extended Euclidean Algorithm in the ring $\mathbb{Q}[x]$. I don't suggest this method because it's too easy to make mistakes, but here it is. Consider all triples of polynomials $f(x), g(x), h(x)$ satisfying $\left(x^{3}-2\right) f(x)+\left(x^{2}+1\right) g(x)=h(x)$. Begin with the easy triples $(f, g, h)=\left(1,0, x^{3}-2\right)$ and $(f, g, h)=\left(0,1, x^{2}+1\right)$, then perform row operations to obtain a triple of the form $(f, g, 1)$:

$f(x)$	$g(x)$	$h(x)$
1	0	$x^{3}-2$
0	1	$x^{2}+1$
1	$-x$	$-x-2$
$x-2$	$-x^{2}+2 x+1$	5
$\frac{x-2}{5}$	$\frac{-x^{2}+2 x+1}{5}$	1

We conclude that

$$
\left(1+\gamma^{2}\right)^{-1}=\frac{-\gamma^{2}+2 \gamma+1}{5}=-\frac{1}{5} \gamma^{2}+\frac{2}{5} \gamma+\frac{1}{5}
$$

It is easier to use linear algebra over \mathbb{Q}. Let $\left(1+\gamma^{2}\right)^{-1}=a+b \gamma+c \gamma^{2}$, so that $\left(1+\gamma^{2}\right)\left(a+b \gamma+c \gamma^{2}\right)=1+0 \gamma+0 \gamma^{2}$. Expand the left side to get

$$
\begin{aligned}
\left(1+\gamma^{2}\right)\left(a+b \gamma+c \gamma^{2}\right) & =1+0 \gamma+0 \gamma^{2} \\
a+b \gamma+c \gamma^{2}+a \gamma^{2}+b \gamma^{3}+c \gamma^{4} & =1+0 \gamma+0 \gamma^{2} \\
a+b \gamma+c \gamma^{2}+a \gamma^{2}+b 2+c 2 \gamma & =1+0 \gamma+0 \gamma^{2} \\
(a+2 b)+(b+2 c) \gamma+(a+c) \gamma^{2} & =1+0 \gamma+0 \gamma^{2}
\end{aligned}
$$

Then compare coefficients s^{2} to get the system

$$
\left\{\begin{array}{c}
a+2 b+0=1 \\
0+b+2 c=0 \\
a+0+c=0
\end{array}\right.
$$

which has solution $a=1 / 5, b=2 / 5$ and $c=-1 / 5$. Hence

$$
\left(1+\gamma^{2}\right)^{-1}=a+b \gamma+c \gamma^{2}=\frac{1}{5}+\frac{2}{5} \gamma-\frac{1}{5} \gamma^{2}
$$

[^1]
[^0]: ${ }^{1}$ For this problem $p(x)$ need not be prime.

[^1]: ${ }^{2}$ Here we are using the fact that $a+b \gamma+c \gamma^{2}=d+e \gamma+f \gamma^{2}$ implies $(a, b, c)=(d, e, f)$ for $a, b, c, d, e, f \in \mathbb{Q}$, which we did not prove on this exam. It follows from the fact that $x^{2}-3$ is prime over $\mathbb{Q}[x]$.

