Math 461 Exam 3
Spring 2023 Thurs Apr 27

No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for
a total of 30 points.

Problem 1. Rational Root Test.

(a) Consider a rational polynomial f(z) € Q[z] of degree 3. If f(x) is not prime over
Q, prove that f(z) has a root in Q. [Hint: If f(x) is not prime then we can write
f(z) = g(x)h(z) for some nonconstant polynomials g(z), h(z) € Q[z].]

If f(x) is not prime over Q then we can write f(z) = g(z)h(x) for some nonconstant
polynomials g(z), h(x) € Q[z]. Comparing degrees gives
3 = deg(f) = deg(g) + deg(h).

Since deg(g),deg(h) > 1, one of these polynomials has degree 1. Without loss of
generality suppose that deg(g) =1, so g(z) = az + b for some a,b € Q with a # 0.
But then we have

f(=b/a) = g(=b/a)h(=b/a) = Oh(=b/a) = 0,
hence f(x) has a root —b/a € Q.

(b) Use the contrapositive of (a) and the rational root test to prove that the polynomial
23 — 2 is prime over Q.

The polynomial 22 — 2 € Q[z] has degree 3. If we can show that 3 — 2 has no root
in Q then it will follow from (a) that 3 — 2 is prime over Q.

Suppose for contradiction that 2 — 2 does have a rational root a € Q. We can
write a = a/b for some a,b € Z with gcd(a,b) = 1. Then substituting gives

ot —2=0

(a/b)> —2=0

a’ —2b° =0
a® =23

Since a|2b3 and ged(a, b) = 1 we must have a|2. Similarly, since bla® and ged(a, b) =
1 we must have b|1. We conclude that o = a/b = 41, 42. But (+1)% — 2 # 0 and
(£2)2 — 2 # 0. Hence the polynomial 23 — 2 has no rational root.

Problem 2. The Minimal Polynomial. Let F be a field and let p(x) € F[x] be a prime
polynomial. Let v be an element of some larger field satisfying p(+) = 0.

(a) For any polynomial f(x) € F[z], prove that f(y) = 0 implies f(z) = p(z)g(z) for
some g(x) € Flz]. [Hint: Let f(v) = 0 and assume for contradiction that f(x) is
not a multiple of p(z). Since p(z) is prime, this implies that ged(p, f) = 1.]

Consider any f(z) € F[x] satisfying f(v) = 0. To prove that p(z)|f(x) we assume
for contradiction that p(z) { f(z). Since p(x) is a prime element of the Euclidean
domain F[z], this implies that ged(p, f) = 1. Then from the Extended Euclidean



Algorithm we can find p'(z), f'(z) € Flz] satisfying p(x)p'(z) + f(x)f'(z) = 1.
Finally, we substitute = v to obtain the desired contradiction:
p(@)p' () + f(2)f'(z) =1
PP () + N (v) =1
0p'(7) +0f'(v) =1
0=1.

Let v = V/2 € R be the real cube root of 2. For any rational polynomial f(z) € Q[z],
show that f(v) = 0 implies f(z) = (z* — 2)g(z) for some g(x) € Q[z]. [Hint: 1b.]

Consider the polynomial p(z) = 2*>—2 € Q[z]. In Problem 1(b) we showed that p(z)
is a prime element of Q[z]. Note that the real number v = /2 satisfies p(7y) = 0.
Thus from part (a) we conclude for all rational polynomials f(z) € Q[z] that

f() =0 = [f(z)=(2®-2)g(z) for some g(z) € Q[z].

Problem 3. Adjoining an Element to a Field. Let F be a field and let v be an
element of some larger field E O F. One can check that the set is a subring of E:

(a)

Flv] = {f(7v) : f(z) € Flz]} CE.

Suppose that p(y) = 0 for some polynomial p(z) € F[z] of degree d. In this case
show that every element of F[y] can be expressed in the form ag+aiy+- - -+ag_17% "
for some ay,...,aq—1 € F. [Hint: A general element of F[y] has the form f(y) for
some f(x) € Flz]. Divide f(x) by p(z) to get a remainder.]

Let p(x) € Flx] be anyE| polynomial of degree d satisfying p(v) = 0 and consider
any element o € F[y]. By definition we can write o = f(y) for some polynomial
f(z) € F[z]. Divide f(z) by p(z) to obtain polynomials ¢(z),r(z) € F[z] satisfying

{ f(@) = p(x)q(x) + (),
r(z) =0 or deg(r) < d.

In either case we can write r(z) = ap + a1z + -+ - + ag_1x% 1 for some numbers
ag, a1, ...,aq—1 € F. Now substitute x = v to obtain

a= f(v)
=p(v)q(y) +7(7)
= 0g(v) +7(7)
=7r(7)
=ao+ay+ - +ag17

Again let v = /2 € R. Express the number 1+ v + % 4+ 73 + +* € Q[4] in the
standard form a + by + ¢y? for some a,b,c € Q. [Hint: Divide 2* + 2% + 22 + 2 + 1
by 23 — 2 to get a remainder.]

Let p(z) = 2 — 2 € Q[z] and f(z) =1+ 2 + 2% + 2% + 2* € Q[z]. Divide f(z) by
p(z) to obtain quotient ¢(x) = z + 1 and remainder r(z) = 23 + 3z + 3:

I¥or this problem p(x) need not be prime.



x+1
x3—2) 4t +a2? +ax41

— 24 + 2x
24+ 224+3r+1
— 8 + 2
22 +3r+3

It follows from part (a) that
Ly +92+9° 9t = f(7) =r(7) =3+ 37 +2

Alternatively, we can use the fact that 42 = 2 to obtain
L+ v+ + +9 =1+ 4+ +2+2y
=343y +4%

Problem 4. Existence of Inverses. Let p(z) € F[x] be prime over a field F and let
p(7y) = 0 for a number v in some larger field.

(a)

Consider a polynomial f(z) € F[z] such that f(y) # 0. In this case show that f(x)
is not a multiple of p(z) in the ring F[z].

Consider any polynomial f(x) € F[z] such that f(v) # 0. If we had f(z) = p(x)g(z)
for some g(x) € F[z]| then we would obtain a contradiction:

f(v) =p()g(v) = 0g(v) = 0.
Hence f(x) is not a multiple of p(z).

Prove that the ring F[v] from Problem 3 is actually a field. [Hint: An arbitrary
element of F[y] has the form f(v) for some polynomial f(z). If f(v) # 0, use part
(a) to show that ged(p, f) =1 in the ring F[z].]

Consider an arbitrary nonzero element a € F[y]. By definition we can write o =
f(y) for some (nonzero) polynomial f(z) € F[x]. Since f(y) = a # 0 part (a)
tells us that f(x) is not a multiple of p(z). Since p(x) is a prime element of the
Euclidean domain F|z] this implies that ged(p, f), hence we can find polynomials
P (z), f/(x) € Flz] satisfying p(x)p’(x) + f(x)f (x) = 1. Substitute 2 = v to obtain

p@)p'(x) + f(2)f'(z) =

Thus f/() € F[y] is a multiplicative inverse of

L

Problem 5. Example. Let v = /2 € R. From the previous problems we know that the
following set is a subfield of R:

Q] ={a+by+cy*:a,b,ceQ}.



(a) Express the product (14 +2)(1 —+?) in standard form a + by + cv2.
Since 72 = 2 we have (1 +72)(1 =) =1 —~* =1—2v + 012
Remark: This is not a good problem. (I was a bit rushed when I wrote the exam.)

(b) Express the inverse (1 +~?)~! in standard form a + by + cy?. [Hint: Expand the
left side of (1 4+ ~2)(a + by + ¢y?) = 1 + 0y + 072 and compare coefficients.]

There are two ways to do this. The proof of Problem 4(b) suggests using the Ex-
tended Euclidean Algorithm in the ring Q[z]. I don’t suggest this method because
it’s too easy to make mistakes, but here it is. Consider all triples of polynomi-
als f(z),g(x), h(z) satisfying (23 — 2)f(x) + (2% + 1)g(z) = h(z). Begin with the
easy triples (f,g,h) = (1,0,23 — 2) and (f,g,h) = (0,1,22 + 1), then perform row
operations to obtain a triple of the form (f,g,1):

f(z) g9(z) h(x)
1 0 3 —2
0 1 2+ 1
1 —T -z —2
x—2| —x2+2x+1 5
z—2 —22422+1 1
5 5

We conclude that

2
P +2y+1 1, 2 1
O A

1 2\—1
(L+77) 5 5 5775

It is easier to use linear algebra over Q. Let (1 ++2)~! = a + by + ¢y?, so that
(14++2)(a + by + ¢y?) = 1 + 0y + 072, Expand the left side to get

1+ (a+by+cy?) =140y + 042
a+by+e?+ay? 073 + eyt =140y + 042
a+by+ ey +ay? + 02+ 2y =140y 4 042
(a+2b) + (b+2¢)y + (a+c)y* = 1+ 0y + 042

Then compare coefﬁcientsﬂ to get the system

a + 2b + 0 = 1,
0 + b 4+ 2¢ = 0,

a + 0 4+ ¢ = 0,
which has solution a = 1/5, b =2/5 and ¢ = —1/5. Hence
1 2 1
1+ =atby+er’ = o4y = =77

2Here we are using the fact that a+by+cy? = d+evy+ f+? implies (a,b, c) = (d, e, f) for a,b,c,d, e, f € Q,
which we did not prove on this exam. It follows from the fact that 2 — 3 is prime over Q[x].



