No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Rational Root Test.

(a) Consider a rational polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3. If f(x) is not prime over \mathbb{Q} , prove that f(x) has a root in \mathbb{Q} . [Hint: If f(x) is not prime then we can write f(x) = g(x)h(x) for some nonconstant polynomials $g(x), h(x) \in \mathbb{Q}[x]$.]

If f(x) is not prime over \mathbb{Q} then we can write f(x) = g(x)h(x) for some nonconstant polynomials $g(x), h(x) \in \mathbb{Q}[x]$. Comparing degrees gives

$$3 = \deg(f) = \deg(g) + \deg(h).$$

Since $\deg(g), \deg(h) \ge 1$, one of these polynomials has degree 1. Without loss of generality suppose that $\deg(g) = 1$, so g(x) = ax + b for some $a, b \in \mathbb{Q}$ with $a \ne 0$. But then we have

$$f(-b/a) = g(-b/a)h(-b/a) = 0h(-b/a) = 0,$$

hence f(x) has a root $-b/a \in \mathbb{Q}$.

(b) Use the contrapositive of (a) and the rational root test to prove that the polynomial $x^3 - 2$ is prime over \mathbb{Q} .

The polynomial $x^3 - 2 \in \mathbb{Q}[x]$ has degree 3. If we can show that $x^3 - 2$ has no root in \mathbb{Q} then it will follow from (a) that $x^3 - 2$ is prime over \mathbb{Q} .

Suppose for contradiction that $x^3 - 2$ does have a rational root $\alpha \in \mathbb{Q}$. We can write $\alpha = a/b$ for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1. Then substituting gives

$$\alpha^{3} - 2 = 0$$
$$(a/b)^{3} - 2 = 0$$
$$a^{3} - 2b^{3} = 0$$
$$a^{3} = 2b^{3}.$$

Since $a|2b^3$ and gcd(a,b) = 1 we must have a|2. Similarly, since $b|a^3$ and gcd(a,b) = 1 we must have b|1. We conclude that $\alpha = a/b = \pm 1, \pm 2$. But $(\pm 1)^3 - 2 \neq 0$ and $(\pm 2)^2 - 2 \neq 0$. Hence the polynomial $x^3 - 2$ has no rational root.

Problem 2. The Minimal Polynomial. Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$ be a prime polynomial. Let γ be an element of some larger field satisfying $p(\gamma) = 0$.

(a) For any polynomial $f(x) \in \mathbb{F}[x]$, prove that $f(\gamma) = 0$ implies f(x) = p(x)g(x) for some $g(x) \in \mathbb{F}[x]$. [Hint: Let $f(\gamma) = 0$ and assume for contradiction that f(x) is not a multiple of p(x). Since p(x) is prime, this implies that gcd(p, f) = 1.]

Consider any $f(x) \in \mathbb{F}[x]$ satisfying $f(\gamma) = 0$. To prove that p(x)|f(x) we assume for contradiction that $p(x) \nmid f(x)$. Since p(x) is a prime element of the Euclidean domain $\mathbb{F}[x]$, this implies that gcd(p, f) = 1. Then from the Extended Euclidean Algorithm we can find $p'(x), f'(x) \in \mathbb{F}[x]$ satisfying p(x)p'(x) + f(x)f'(x) = 1. Finally, we substitute $x = \gamma$ to obtain the desired contradiction:

$$p(x)p'(x) + f(x)f'(x) = 1$$

$$p(\gamma)p'(\gamma) + f(\gamma)f'(\gamma) = 1$$

$$0p'(\gamma) + 0f'(\gamma) = 1$$

$$0 = 1.$$

(b) Let $\gamma = \sqrt[3]{2} \in \mathbb{R}$ be the real cube root of 2. For any rational polynomial $f(x) \in \mathbb{Q}[x]$, show that $f(\gamma) = 0$ implies $f(x) = (x^3 - 2)g(x)$ for some $g(x) \in \mathbb{Q}[x]$. [Hint: 1b.]

Consider the polynomial $p(x) = x^3 - 2 \in \mathbb{Q}[x]$. In Problem 1(b) we showed that p(x) is a prime element of $\mathbb{Q}[x]$. Note that the real number $\gamma = \sqrt[3]{2}$ satisfies $p(\gamma) = 0$. Thus from part (a) we conclude for all rational polynomials $f(x) \in \mathbb{Q}[x]$ that

$$f(\gamma) = 0 \implies f(x) = (x^3 - 2)g(x)$$
 for some $g(x) \in \mathbb{Q}[x]$.

Problem 3. Adjoining an Element to a Field. Let \mathbb{F} be a field and let γ be an element of some larger field $\mathbb{E} \supseteq \mathbb{F}$. One can check that the set is a subring of \mathbb{E} :

$$\mathbb{F}[\gamma] = \{ f(\gamma) : f(x) \in \mathbb{F}[x] \} \subseteq \mathbb{E}.$$

(a) Suppose that $p(\gamma) = 0$ for some polynomial $p(x) \in \mathbb{F}[x]$ of degree d. In this case show that every element of $\mathbb{F}[\gamma]$ can be expressed in the form $a_0 + a_1\gamma + \cdots + a_{d-1}\gamma^{d-1}$ for some $a_0, \ldots, a_{d-1} \in \mathbb{F}$. [Hint: A general element of $\mathbb{F}[\gamma]$ has the form $f(\gamma)$ for some $f(x) \in \mathbb{F}[x]$. Divide f(x) by p(x) to get a remainder.]

Let $p(x) \in \mathbb{F}[x]$ be any¹ polynomial of degree d satisfying $p(\gamma) = 0$ and consider any element $\alpha \in \mathbb{F}[\gamma]$. By definition we can write $\alpha = f(\gamma)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x) by p(x) to obtain polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$\begin{cases} f(x) = p(x)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < d. \end{cases}$$

In either case we can write $r(x) = a_0 + a_1 x + \cdots + a_{d-1} x^{d-1}$ for some numbers $a_0, a_1, \ldots, a_{d-1} \in \mathbb{F}$. Now substitute $x = \gamma$ to obtain

$$\alpha = f(\gamma)$$

= $p(\gamma)q(\gamma) + r(\gamma)$
= $0q(\gamma) + r(\gamma)$
= $r(\gamma)$
= $a_0 + a_1\gamma + \dots + a_{d-1}\gamma^{d-1}$

(b) Again let $\gamma = \sqrt[3]{2} \in \mathbb{R}$. Express the number $1 + \gamma + \gamma^2 + \gamma^3 + \gamma^4 \in \mathbb{Q}[\gamma]$ in the standard form $a + b\gamma + c\gamma^2$ for some $a, b, c \in \mathbb{Q}$. [Hint: Divide $x^4 + x^3 + x^2 + x + 1$ by $x^3 - 2$ to get a remainder.]

Let $p(x) = x^3 - 2 \in \mathbb{Q}[x]$ and $f(x) = 1 + x + x^2 + x^3 + x^4 \in \mathbb{Q}[x]$. Divide f(x) by p(x) to obtain quotient q(x) = x + 1 and remainder $r(x) = x^3 + 3x + 3$:

¹For this problem p(x) need not be prime.

$$\begin{array}{r} x + 1 \\ x^3 - 2 \overline{\smash{\big)}\ x^4 + x^3 + x^2 + x + 1} \\ - x^4 + 2x \\ \hline x^3 + x^2 + 3x + 1 \\ - x^3 + 2 \\ \hline x^2 + 3x + 3 \end{array}$$

It follows from part (a) that

$$1 + \gamma + \gamma^2 + \gamma^3 + \gamma^4 = f(\gamma) = r(\gamma) = 3 + 3\gamma + \gamma^2.$$

Alternatively, we can use the fact that $\gamma^3 = 2$ to obtain

$$\begin{split} 1+\gamma+\gamma^2+\gamma^3+\gamma^4 &= 1+\gamma+\gamma^2+2+2\gamma\\ &= 3+3\gamma+\gamma^2. \end{split}$$

Problem 4. Existence of Inverses. Let $p(x) \in \mathbb{F}[x]$ be **prime** over a field \mathbb{F} and let $p(\gamma) = 0$ for a number γ in some larger field.

(a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\gamma) \neq 0$. In this case show that f(x) is not a multiple of p(x) in the ring $\mathbb{F}[x]$.

Consider any polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\gamma) \neq 0$. If we had f(x) = p(x)g(x) for some $g(x) \in \mathbb{F}[x]$ then we would obtain a contradiction:

$$f(\gamma) = p(\gamma)g(\gamma) = 0g(\gamma) = 0.$$

Hence f(x) is not a multiple of p(x).

(b) Prove that the ring $\mathbb{F}[\gamma]$ from Problem 3 is actually a field. [Hint: An arbitrary element of $\mathbb{F}[\gamma]$ has the form $f(\gamma)$ for some polynomial f(x). If $f(\gamma) \neq 0$, use part (a) to show that gcd(p, f) = 1 in the ring $\mathbb{F}[x]$.]

Consider an arbitrary nonzero element $\alpha \in \mathbb{F}[\gamma]$. By definition we can write $\alpha = f(\gamma)$ for some (nonzero) polynomial $f(x) \in \mathbb{F}[x]$. Since $f(\gamma) = \alpha \neq 0$ part (a) tells us that f(x) is not a multiple of p(x). Since p(x) is a prime element of the Euclidean domain $\mathbb{F}[x]$ this implies that $\gcd(p, f)$, hence we can find polynomials $p'(x), f'(x) \in \mathbb{F}[x]$ satisfying p(x)p'(x) + f(x)f'(x) = 1. Substitute $x = \gamma$ to obtain

$$p(x)p'(x) + f(x)f'(x) = 1$$

$$p(\gamma)p'(\gamma) + f(\gamma)f'(\gamma) = 1$$

$$0p'(\gamma) + f(\gamma)f'(\gamma) = 1$$

$$f(\gamma)f'(\gamma) = 1$$

$$\alpha f'(\gamma) = 1.$$

Thus $f'(\gamma) \in \mathbb{F}[\gamma]$ is a multiplicative inverse of α .

Problem 5. Example. Let $\gamma = \sqrt[3]{2} \in \mathbb{R}$. From the previous problems we know that the following set is a subfield of \mathbb{R} :

$$\mathbb{Q}[\gamma] = \{a + b\gamma + c\gamma^2 : a, b, c \in \mathbb{Q}\}.$$

(a) Express the product $(1 + \gamma^2)(1 - \gamma^2)$ in standard form $a + b\gamma + c\gamma^2$.

Since $\gamma^3 = 2$ we have $(1 + \gamma^2)(1 - \gamma^2) = 1 - \gamma^4 = 1 - 2\gamma + 0\gamma^2$.

Remark: This is not a good problem. (I was a bit rushed when I wrote the exam.)

(b) Express the inverse $(1 + \gamma^2)^{-1}$ in standard form $a + b\gamma + c\gamma^2$. [Hint: Expand the left side of $(1 + \gamma^2)(a + b\gamma + c\gamma^2) = 1 + 0\gamma + 0\gamma^2$ and compare coefficients.]

There are two ways to do this. The proof of Problem 4(b) suggests using the Extended Euclidean Algorithm in the ring $\mathbb{Q}[x]$. I don't suggest this method because it's too easy to make mistakes, but here it is. Consider all triples of polynomials f(x), g(x), h(x) satisfying $(x^3 - 2)f(x) + (x^2 + 1)g(x) = h(x)$. Begin with the easy triples $(f, g, h) = (1, 0, x^3 - 2)$ and $(f, g, h) = (0, 1, x^2 + 1)$, then perform row operations to obtain a triple of the form (f, g, 1):

f(x)	g(x)	h(x)
1	0	$x^3 - 2$
0	1	$x^2 + 1$
1	-x	-x - 2
x-2	$-x^2 + 2x + 1$	5
$\frac{x-2}{5}$	$\frac{-x^2+2x+1}{5}$	1

We conclude that

$$(1+\gamma^2)^{-1} = \frac{-\gamma^2 + 2\gamma + 1}{5} = -\frac{1}{5}\gamma^2 + \frac{2}{5}\gamma + \frac{1}{5}.$$

It is easier to use linear algebra over \mathbb{Q} . Let $(1 + \gamma^2)^{-1} = a + b\gamma + c\gamma^2$, so that $(1 + \gamma^2)(a + b\gamma + c\gamma^2) = 1 + 0\gamma + 0\gamma^2$. Expand the left side to get

$$(1 + \gamma^{2})(a + b\gamma + c\gamma^{2}) = 1 + 0\gamma + 0\gamma^{2}$$

$$a + b\gamma + c\gamma^{2} + a\gamma^{2} + b\gamma^{3} + c\gamma^{4} = 1 + 0\gamma + 0\gamma^{2}$$

$$a + b\gamma + c\gamma^{2} + a\gamma^{2} + b2 + c2\gamma = 1 + 0\gamma + 0\gamma^{2}$$

$$(a + 2b) + (b + 2c)\gamma + (a + c)\gamma^{2} = 1 + 0\gamma + 0\gamma^{2}.$$

Then compare $\operatorname{coefficients}^2$ to get the system

$$\begin{cases} a + 2b + 0 = 1\\ 0 + b + 2c = 0\\ a + 0 + c = 0 \end{cases}$$

which has solution a = 1/5, b = 2/5 and c = -1/5. Hence

$$(1+\gamma^2)^{-1} = a + b\gamma + c\gamma^2 = \frac{1}{5} + \frac{2}{5}\gamma - \frac{1}{5}\gamma^2.$$

²Here we are using the fact that $a+b\gamma+c\gamma^2 = d+e\gamma+f\gamma^2$ implies (a,b,c) = (d,e,f) for $a,b,c,d,e,f \in \mathbb{Q}$, which we did not prove on this exam. It follows from the fact that $x^2 - 3$ is prime over $\mathbb{Q}[x]$.