No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Complex Numbers.

(a) Express -1 in polar form.

$$
1 \cdot e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+i 0=-1
$$

Picture:

(b) Express $1+i$ in polar form.

$$
\sqrt{2} \cdot e^{i \pi / 4}=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i .
$$

Picture:

(c) Let $\omega=e^{i \theta}$ for some real $\theta \in \mathbb{R}$. Use Euler's formula to show that $\omega^{*}=\omega^{-1}$.

We have

$$
\begin{array}{rlr}
\omega^{*} & =\left(e^{i \theta}\right)^{*} & \\
& =(\cos \theta+i \sin \theta)^{*} & \text { Euler's formula } \\
& =\cos \theta-i \sin \theta &
\end{array}
$$

and

$$
\begin{array}{rlr}
\omega^{-1} & =\left(e^{i \theta}\right)^{-1} & \\
& =e^{i(-\theta)} & \\
& =\cos (-\theta)+i \sin (-\theta) & \text { Euler's formula } \\
& =\cos \theta-i \sin \theta . &
\end{array}
$$

Picture:

Problem 2. Roots of Unity. Let $\omega=e^{i 2 \pi / 6}$ so that

$$
x^{6}-1=(x-1)(x-\omega)\left(x-\omega^{2}\right)\left(x-\omega^{3}\right)\left(x-\omega^{4}\right)\left(x-\omega^{5}\right) .
$$

(a) Complete the sentence: For integers $k, \ell \in \mathbb{Z}$ we have $\omega^{k}=\omega^{\ell}$ if and only if \ldots

$$
k-\ell=6 n \text { for some integer } n \in \mathbb{Z} \text {. }
$$

(b) Find the complete factorization of $x^{6}-1$ over the real numbers. [Hint: Use part (a) and Problem 1(c) to group the non-real roots into complex conjugate pairs. Then use the fact that $\alpha=e^{i \theta}$ implies $\alpha \alpha^{*}=1$ and $\alpha+\alpha^{*}=2 \cos \theta$.]

It follows from part (a) and 1 (d) that $\omega^{5}=\omega^{-1}=\omega^{*}$, hence

$$
\begin{aligned}
& =(x-\omega)\left(x-\omega^{*}\right) \\
& =x^{2}-\left(\omega+\omega^{*}\right) x+1 \\
& =x^{2}-2 \cos (2 \pi / 6) x+1
\end{aligned}
$$

$$
=x^{2}-x+1
$$

Similarly, we have $\omega^{4}=\omega^{-2}=\left(\omega^{2}\right)^{*}$ and hence

$$
\begin{aligned}
\left(x-\omega^{2}\right)\left(x-\omega^{4}\right) & =\left(x-\omega^{2}\right)\left(x-\left(\omega^{2}\right)^{*}\right) \\
& =x^{2}-\left(\omega^{2}+\left(\omega^{2}\right)^{*}\right) x+1 \\
& =x^{2}-2 \cos (4 \pi / 6) x+1 \\
& =x^{2}+x+1
\end{aligned}
$$

Finally, since $\omega^{3}=e^{i \pi}=-1$ we have

$$
\begin{aligned}
x^{6}-1 & =(x-1)(x-\omega)\left(x-\omega^{2}\right)\left(x-\omega^{3}\right)\left(x-\omega^{4}\right)\left(x-\omega^{5}\right) \\
& =(x-1)(x+1)(x-\omega)\left(x-\omega^{5}\right)\left(x-\omega^{2}\right)\left(x-\omega^{4}\right) \\
& =(x-1)(x+1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)
\end{aligned}
$$

Problem 3. Roots of Other Complex Numbers.

(a) Find all of the third roots of $8 i$. [Hint: Express $8 i$ in polar form.]

Note that $e^{i \pi / 2}=\cos (\pi / 2)+i \sin (\pi / 2)=0+i=i$. Hence

$$
8 i=8 \cdot e^{i \pi / 2}
$$

We are looking for $\alpha=r e^{i \theta}$ such that

$$
\begin{aligned}
\alpha^{3} & =8 i \\
\left(r e^{i \theta}\right)^{3} & =8 e^{i \pi / 2} \\
r^{3} e^{i 3 \theta} & =8 e^{i \pi / 2}
\end{aligned}
$$

Comparing lengths gives $r^{3}=8$ and hence $r=2$ because r is positive and real. Then comparing angles gives

$$
\begin{aligned}
e^{i 3 \theta} & =e^{i \pi / 2} \\
3 \theta & =\pi / 2+2 \pi k \\
\theta & =\pi / 6+(2 \pi / 3) k
\end{aligned}
$$

for any integer $k \in \mathbb{Z}$. This corresponds to three angles $\theta=\pi / 6,5 \pi / 6,9 \pi / 6$. Hence the third roots of $8 i$ are

$$
\begin{aligned}
2 \cdot e^{i \pi / 6} & =2(\cos (\pi / 6)+i \sin (\pi / 6))=\sqrt{3}+i \\
2 \cdot e^{i 5 \pi / 6} & =2(\cos (5 \pi / 6)+i \sin (5 \pi / 6))=-\sqrt{3}+i \\
2 \cdot e^{i 9 \pi / 6} & =2(\cos (9 \pi / 6)+i \sin (9 \pi / 6))=-2 i
\end{aligned}
$$

Picture:

(b) Use part (a) to completely factor $x^{3}-8 i$ over the complex numbers.

From part (a) and Descartes' Theorem we have

$$
x^{3}-8 i=(x-(-2 i))(x-(\sqrt{3}+i))(x-(-\sqrt{3}+i)) .
$$

Alternatively, a few students observed that $(2 i)^{3}=-8 i$ and then used the sum of cubes formula:

$$
\begin{aligned}
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right) \\
x^{3}+(2 i)^{3} & =(x+2 i)\left(x^{2}-(2 i) x+(2 i)^{2}\right) \\
x^{3}-8 i & =(x+2 i)\left(x^{2}-2 i x-4\right) .
\end{aligned}
$$

Then we can factor $x^{2}-2 i x-4$ using the quadratic formula:

$$
x=\frac{2 i \pm \sqrt{-4+16}}{2}=i \pm \sqrt{3} .
$$

Problem 4. Abstract Conjugation. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension and let $*: \mathbb{E} \rightarrow \mathbb{E}$ be any function with the following properties:
(1) $\alpha=\alpha^{*}$ if and only if $\alpha \in \mathbb{F}$,
(2) $\alpha^{* *}=\alpha$,
(3) $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$,
(4) $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(a) For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $\alpha \in \mathbb{E}$ use the above properties to show that that $[f(\alpha)]^{*}=f\left(\alpha^{*}\right)$.

Consider a polynomial $f(x)=\sum a_{k} x^{k}$ with $a_{k} \in \mathbb{F}$ for all k. Then

$$
[f(\alpha)]^{*}=\left(\sum a_{k} \alpha^{k}\right)^{*}
$$

$$
\begin{align*}
& =\sum\left(a_{k} \alpha^{k}\right)^{*} \tag{3}\\
& =\sum a_{k}^{*}\left(\alpha^{*}\right)^{k} \tag{4}\\
& =\sum a_{k}\left(\alpha^{*}\right)^{k} \tag{1}\\
& =f\left(\alpha^{*}\right) .
\end{align*}
$$

(b) For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $\alpha \in \mathbb{E}$ use part (a) to show that $f(\alpha)=0$ if and only if $f\left(\alpha^{*}\right)=0$. [Hint: Property (2) implies that $\beta=\gamma$ if and only if $\beta^{*}=\gamma^{*}$.]

Remark: Suppose that $\beta, \gamma \in \mathbb{E}$ satisfy $\beta^{*}=\gamma^{*}$, so that $\beta^{* *}=\gamma^{* *}$. Then (2) implies $\beta=\gamma$. Also observe that property (1) implies $0^{*}=0$. We will use these facts in our proof.

Proof: Consider a polynomial $f(x) \in \mathbb{F}[x]$ and a constant $\alpha \in \mathbb{E}$. Then we have

$$
\begin{aligned}
f(\alpha)=0 & \Longleftrightarrow[f(\alpha)]^{*}=0^{*} & & \text { previous remark } \\
& \Longleftrightarrow f\left(\alpha^{*}\right)=0 . & & \text { part (a) and (1) }
\end{aligned}
$$

Problem 5. Complex Roots of Real Polynomials. Let $f(x) \in \mathbb{R}[x]$ be a real polynomial satisfying $f(1+i)=0$. Thus from Descartes' Theorem we have

$$
f(x)=(x-(1+i)) g(x) \text { for some complex polynomial } g(x) \in \mathbb{C}[x] .
$$

(a) Show that $g(1-i)=0$. [Hint: Use Problem 4(b).]

Since $f(x)$ has real coefficients and $f(1+i)=0$, Problem 4(b) implies that

$$
0=f\left((1+i)^{*}\right)=f(1-i) .
$$

But then

$$
\begin{aligned}
f(1-i) & =((1-i)-(1+i)) g(1-i) \\
0 & =(-2 i) g(1-i) \\
0 & =g(1-i) .
\end{aligned}
$$

(b) Use part (a) to show that $f(x)=\left(x^{2}-2 x+2\right) h(x)$ for some real polynomial $h(x) \in \mathbb{R}[x]$. You may assume the following result without proof: If $f(x)=p(x) h(x)$ with $f(x), p(x) \in \mathbb{R}[x]$ and $h(x) \in \mathbb{C}[x]$, then we must have $h(x) \in \mathbb{R}[x]$.

Since $g(1-i)=0$, Descartes' Theorem implies that $g(x)=(x-(1-i)) h(x)$ for some polynomial $h(x) \in \mathbb{C}[x]$. Then we have

$$
\begin{aligned}
f(x) & =(x-(1+i))(x-(1-i)) h(x) \\
& =\left(x^{2}-2 x+2\right) h(x) .
\end{aligned}
$$

Finally, since $f(x)$ and $x^{2}-2 x+2$ have real coefficients, we conclude that $h(x)$ has real coefficients.

