No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Complex Numbers.

(a) Express -1 in polar form.

$$1 \cdot e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1 + i0 = -1$$

Picture:

(b) Express 1 + i in polar form.

$$\sqrt{2} \cdot e^{i\pi/4} = \sqrt{2} \left(\cos(\pi/4) + i \sin(\pi/4) \right) = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = 1 + i.$$

Picture:

(c) Let $\omega = e^{i\theta}$ for some real $\theta \in \mathbb{R}$. Use Euler's formula to show that $\omega^* = \omega^{-1}$.

We have

$$\omega^* = (e^{i\theta})^*$$

= $(\cos \theta + i \sin \theta)^*$
= $\cos \theta - i \sin \theta$

Euler's formula

and

ω

Euler's formula

Picture:

Problem 2. Roots of Unity. Let $\omega = e^{i2\pi/6}$ so that $x^6 - 1 = (x - 1)(x - \omega)(x - \omega^2)(x - \omega^3)(x - \omega^4)(x - \omega^5).$

(a) Complete the sentence: For integers $k, \ell \in \mathbb{Z}$ we have $\omega^k = \omega^\ell$ if and only if ...

 $k - \ell = 6n$ for some integer $n \in \mathbb{Z}$.

(b) Find the complete factorization of $x^6 - 1$ over the real numbers. [Hint: Use part (a) and Problem 1(c) to group the non-real roots into complex conjugate pairs. Then use the fact that $\alpha = e^{i\theta}$ implies $\alpha \alpha^* = 1$ and $\alpha + \alpha^* = 2 \cos \theta$.]

It follows from part (a) and 1(d) that $\omega^5 = \omega^{-1} = \omega^*$, hence

$$= (x - \omega)(x - \omega^{*})$$

= $x^{2} - (\omega + \omega^{*})x + 1$
= $x^{2} - 2\cos(2\pi/6)x + 1$

$$= x^2 - x + 1.$$

Similarly, we have $\omega^4 = \omega^{-2} = (\omega^2)^*$ and hence

$$(x - \omega^2)(x - \omega^4) = (x - \omega^2)(x - (\omega^2)^*)$$

= $x^2 - (\omega^2 + (\omega^2)^*)x + 1$
= $x^2 - 2\cos(4\pi/6)x + 1$
= $x^2 + x + 1$.

Finally, since $\omega^3 = e^{i\pi} = -1$ we have

$$x^{6} - 1 = (x - 1)(x - \omega)(x - \omega^{2})(x - \omega^{3})(x - \omega^{4})(x - \omega^{5})$$

= $(x - 1)(x + 1)(x - \omega)(x - \omega^{5})(x - \omega^{2})(x - \omega^{4})$
= $(x - 1)(x + 1)(x^{2} - x + 1)(x^{2} + x + 1).$

Problem 3. Roots of Other Complex Numbers.

(a) Find all of the third roots of 8i. [Hint: Express 8i in polar form.]

Note that $e^{i\pi/2} = \cos(\pi/2) + i\sin(\pi/2) = 0 + i = i$. Hence

$$8i = 8 \cdot e^{i\pi/2}.$$

We are looking for $\alpha = re^{i\theta}$ such that

$$\alpha^{3} = 8i$$
$$(re^{i\theta})^{3} = 8e^{i\pi/2}$$
$$r^{3}e^{i3\theta} = 8e^{i\pi/2}$$

Comparing lengths gives $r^3 = 8$ and hence r = 2 because r is positive and real. Then comparing angles gives

$$e^{i3\theta} = e^{i\pi/2}$$
$$3\theta = \pi/2 + 2\pi k$$
$$\theta = \pi/6 + (2\pi/3)k$$

for any integer $k \in \mathbb{Z}$. This corresponds to three angles $\theta = \pi/6, 5\pi/6, 9\pi/6$. Hence the third roots of 8i are

$$2 \cdot e^{i\pi/6} = 2\left(\cos(\pi/6) + i\sin(\pi/6)\right) = \sqrt{3} + i,$$

$$2 \cdot e^{i5\pi/6} = 2\left(\cos(5\pi/6) + i\sin(5\pi/6)\right) = -\sqrt{3} + i,$$

$$2 \cdot e^{i9\pi/6} = 2\left(\cos(9\pi/6) + i\sin(9\pi/6)\right) = -2i.$$

Picture:

(b) Use part (a) to completely factor $x^3 - 8i$ over the complex numbers.

From part (a) and Descartes' Theorem we have

$$x^{3} - 8i = (x - (-2i))\left(x - (\sqrt{3} + i)\right)\left(x - (-\sqrt{3} + i)\right).$$

Alternatively, a few students observed that $(2i)^3 = -8i$ and then used the sum of cubes formula:

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{3} + (2i)^{3} = (x + 2i)(x^{2} - (2i)x + (2i)^{2})$$

$$x^{3} - 8i = (x + 2i)(x^{2} - 2ix - 4).$$

Then we can factor $x^2 - 2ix - 4$ using the quadratic formula:

$$x = \frac{2i \pm \sqrt{-4 + 16}}{2} = i \pm \sqrt{3}.$$

Problem 4. Abstract Conjugation. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension and let $* : \mathbb{E} \to \mathbb{E}$ be any function with the following properties:

(1) $\alpha = \alpha^*$ if and only if $\alpha \in \mathbb{F}$,

(2)
$$\alpha^{**} = \alpha$$
,

- (3) $(\alpha + \beta)^* = \alpha^* + \beta^*,$ (4) $(\alpha\beta)^* = \alpha^*\beta^*.$
- (a) For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $\alpha \in \mathbb{E}$ use the above properties to show that that $[f(\alpha)]^* = f(\alpha^*)$.

Consider a polynomial $f(x) = \sum a_k x^k$ with $a_k \in \mathbb{F}$ for all k. Then

$$[f(\alpha)]^* = \left(\sum a_k \alpha^k\right)^*$$

$$=\sum \left(a_k \alpha^k\right)^* \tag{3}$$

$$=\sum a_k^* (\alpha^*)^k \tag{4}$$

$$= \sum_{k=1}^{\infty} a_k (\alpha^*)^k$$
(1)
= $f(\alpha^*).$

(b) For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $\alpha \in \mathbb{E}$ use part (a) to show that $f(\alpha) = 0$ if and only if $f(\alpha^*) = 0$. [Hint: Property (2) implies that $\beta = \gamma$ if and only if $\beta^* = \gamma^*$.]

Remark: Suppose that $\beta, \gamma \in \mathbb{E}$ satisfy $\beta^* = \gamma^*$, so that $\beta^{**} = \gamma^{**}$. Then (2) implies $\beta = \gamma$. Also observe that property (1) implies $0^* = 0$. We will use these facts in our proof.

Proof: Consider a polynomial $f(x) \in \mathbb{F}[x]$ and a constant $\alpha \in \mathbb{E}$. Then we have

$$f(\alpha) = 0 \iff [f(\alpha)]^* = 0^* \qquad \text{previous remark} \\ \iff f(\alpha^*) = 0. \qquad \text{part (a) and (1)}$$

Problem 5. Complex Roots of Real Polynomials. Let $f(x) \in \mathbb{R}[x]$ be a real polynomial satisfying f(1+i) = 0. Thus from Descartes' Theorem we have

f(x) = (x - (1 + i))g(x) for some complex polynomial $g(x) \in \mathbb{C}[x]$.

(a) Show that g(1-i) = 0. [Hint: Use Problem 4(b).]

Since f(x) has real coefficients and f(1+i) = 0, Problem 4(b) implies that

$$0 = f((1+i)^*) = f(1-i).$$

But then

$$f(1-i) = ((1-i) - (1+i))g(1-i)$$

$$0 = (-2i)g(1-i)$$

$$0 = g(1-i).$$

(b) Use part (a) to show that $f(x) = (x^2 - 2x + 2)h(x)$ for some **real** polynomial $h(x) \in \mathbb{R}[x]$. You may assume the following result without proof: If f(x) = p(x)h(x) with $f(x), p(x) \in \mathbb{R}[x]$ and $h(x) \in \mathbb{C}[x]$, then we must have $h(x) \in \mathbb{R}[x]$.

Since g(1-i) = 0, Descartes' Theorem implies that g(x) = (x - (1-i))h(x) for some polynomial $h(x) \in \mathbb{C}[x]$. Then we have

$$f(x) = (x - (1 + i))(x - (1 - i))h(x)$$

= $(x^2 - 2x + 2)h(x)$.

Finally, since f(x) and $x^2 - 2x + 2$ have real coefficients, we conclude that h(x) has real coefficients.