
Math 461 Exam 1
Spring 2023 Thurs Feb 23

No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for
a total of 30 points.

Problem 1. Units. Let R be a (commutative) ring. An element u ∈ R is called a unit
when there exists an element r ∈ R such that ur = 1.

(a) If ur1 = 1 and ur2 = 1, prove that r1 = r2. Hence the inverse of of u (if it exists)
is unique. We typically call it u−1.

Proof. If ur1 = 1 and ur2 = 1 then we have

r1 = 1r1 = (ur2)r1 = (ur1)r2 = 1r2 = r2.

(b) If u and v are units, prove that the product uv is also a unit.

Proof. Let u and v be units. By definition this means that ur = 1 and vr′ = 1 for
some elements r, r′ ∈ R. But then

1 = 1 · 1 = (ur)(vr′) = (uv)(rr′) = (uv)(some element of R),

which tells us that uv is a unit.

Remark: If we incorporate part (a) then we can say that (uv)−1 = u−1v−1.

Problem 2. Domains. Let R be a (commutative) ring. We say that R is a domain (also
called an integral domain) if for all a, b ∈ R we have

ab = 0 =⇒ a = 0 or b = 0.

(a) Assuming that R is a domain, prove that ab = ac and a 6= 0 imply b = c.

Proof. Let a, b, c be elements of a domain R satisfying ab = ac and a 6= 0. Then

ab = ac

ab− ac = 0

a(b− c) = 0

b− c = 0 because a 6= 0 and R is a domain

b = c.

(b) A field is a (commutative) ring in which every nonzero element is a unit. Prove
that every field is a domain.

Proof. Let F be a field. Our goal is to show for all a, b ∈ F that ab = 0 implies
a = 0 or b = 0. Equivalently, we will show that ab = 0 and a 6= 0 imply b = 0.



So suppose that ab = 0 and a 6= 0. Since a 6= 0 and F is a field, the multiplicative
inverse a−1 exists. Now multiply both sides of ab = 0 by a−1 to get

ab = 0

a−1ab = a−10

b = 0.

Problem 3. Divisibility. Let R be a (commutative) ring.

(a) Given elements a, b ∈ R, state the definition of the symbol “a|b”.

“a|b” ⇐⇒ “there exists an element k ∈ R such that ak = b”.

(b) Given an element a ∈ R we define the set aR = {ar : r ∈ R}. If bR ⊆ aR, prove
that a|b. [Hint: First show that b ∈ bR.]

Proof. Suppose that bR ⊆ aR. Since b = b1 and 1 ∈ R we see that b ∈ bR. Then
since bR ⊆ aR we see that b ∈ aR. By definition of aR this means that b = ar for
some r ∈ R, and hence a|b as desired.

(c) Conversely, if a|b, prove that bR ⊆ aR.

Proof. Suppose that a|b, so that ak = b for some k ∈ R. In order to show that
bR ⊆ aR we must show that every element of bR is an element of aR. So consider
an arbitrary element br ∈ bR. Then we have

br = (ak)r = a(kr) = a(some element of R) ∈ aR,

as desired.

Problem 4. Greatest Comomon Divisors.

(a) Use the Extended Euclidean Algorithm to find some specific integers x, y ∈ Z
satisfying 32x + 14y = 2. [There are infinitely many correct answers.]

Consider the set of triples (x, y, z) ∈ Z3 satisfying 32x + 14y = z. Starting with
the obvious triples (1, 0, 32) and (0, 1, 14), we perform row operations to obtain a
triple of the form (x, y, 2):

x y z

1 0 32
0 1 14
1 −2 4
−3 7 2

The final row tells us that 32(−3) + 14(7) = 2. [Remark: In this case it is not
possible to find x, y ∈ Z satisfying 32x + 14y = 1 because 32 and 14 not coprime.]



(b) For any integers a, b ∈ Z we define the set aZ+ bZ = {ax+ by : x, y ∈ Z}. Use your
result from part (a) to prove that 32Z + 14Z = 2Z. [Hint: You need to show that
32Z + 14Z ⊆ 2Z and 2Z ⊆ 32Z + 14Z.]

Proof. First we show that 32Z + 14Z is a subset of 2Z. To do this, consider an
arbitrary element 32x + 14y ∈ 32Z + 14Z. Then we have

32x + 14y = (2 · 16)x + (2 · 7)y = 2(16x + 7y) ∈ 2Z,
as desired. Conversely, we will show that 2Z is a subset of 32Z + 14Z. To do this,
consider an arbitrary element 2z ∈ 2Z. Then from part (a) we have

2z = (32(−3) + 14(7))z = 32(−3z) + 14(7z) ∈ 32Z + 14Z,
as desired.

Problem 5. Descartes’ Theorem. Consider ring of polynomials F[x] over a field F.

(a) Consider a polynomial f(x) ∈ F[x] and a constant a ∈ F satisfying f(a) = 0. Prove
that f(x) = (x − a)g(x) for some polynomial g(x). [Hint: Consider the quotient
and remainder when f(x) is divided by x− a.]

Proof. Dividing f(x) by x−a in the ring F[x] gives (unique) polynomials q(x), r(x) ∈
F[x] satisfying {

f(x) = (x− a)q(x) + r(x),
r(x) = 0 or deg(r) < deg(x− a).

Since deg(x − a) = 1, the second condition says that r(x) = c for some constant
c ∈ F. To determine this constant we substitute x = a to get

f(a) = (a− a)q(a) + c = 0q(a) + c = c.

It follows that f(x) = (x−a)q(x)+f(a) for some polynomial q(x). And if f(a) = 0
then we get f(x) = (x− a)q(x) as desired.

(b) In part (a) you showed that f(x) = (x − a)g(x) for some polynomial g(x). Now
suppose that f(b) = 0 for some other constant b 6= a. In this case show that
f(x) = (x− a)(x− b)h(x) for some polynomial h(x). [Hint: Show that g(b) = 0.]

Proof. Suppose that f(a) = 0. In part (a) we showed that f(x) = (x− a)g(x) for
some polynomial g(x). Now suppose that f(b) = 0 for some other constant b 6= a.
Substituting x = b gives

f(b) = (b− a)g(b)

0 = (b− a)g(b).

Since F is a domain (indeed, every field is a domain) and b − a 6= 0 this implies
that g(b) = 0. Then by applying (a) we must have g(x) = (x − b)h(x) for some
polynomial h(x), and hence

f(x) = (x− a)g(x) = (x− a)(x− b)h(x).


