No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Units. Let R be a (commutative) ring. An element $u \in R$ is called a unit when there exists an element $r \in R$ such that $u r=1$.
(a) If $u r_{1}=1$ and $u r_{2}=1$, prove that $r_{1}=r_{2}$. Hence the inverse of of u (if it exists) is unique. We typically call it u^{-1}.

Proof. If $u r_{1}=1$ and $u r_{2}=1$ then we have

$$
r_{1}=1 r_{1}=\left(u r_{2}\right) r_{1}=\left(u r_{1}\right) r_{2}=1 r_{2}=r_{2}
$$

(b) If u and v are units, prove that the product $u v$ is also a unit.

Proof. Let u and v be units. By definition this means that $u r=1$ and $v r^{\prime}=1$ for some elements $r, r^{\prime} \in R$. But then

$$
1=1 \cdot 1=(u r)\left(v r^{\prime}\right)=(u v)\left(r r^{\prime}\right)=(u v)(\text { some element of } R)
$$

which tells us that $u v$ is a unit.
Remark: If we incorporate part (a) then we can say that $(u v)^{-1}=u^{-1} v^{-1}$.

Problem 2. Domains. Let R be a (commutative) ring. We say that R is a domain (also called an integral domain) if for all $a, b \in R$ we have

$$
a b=0 \quad \Longrightarrow \quad a=0 \text { or } b=0
$$

(a) Assuming that R is a domain, prove that $a b=a c$ and $a \neq 0$ imply $b=c$.

Proof. Let a, b, c be elements of a domain R satisfying $a b=a c$ and $a \neq 0$. Then

$$
\begin{aligned}
a b & =a c \\
a b-a c & =0 \\
a(b-c) & =0 \\
b-c & =0 \quad \text { because } a \neq 0 \text { and } R \text { is a domain } \\
b & =c .
\end{aligned}
$$

(b) A field is a (commutative) ring in which every nonzero element is a unit. Prove that every field is a domain.

Proof. Let \mathbb{F} be a field. Our goal is to show for all $a, b \in \mathbb{F}$ that $a b=0$ implies $a=0$ or $b=0$. Equivalently, we will show that $a b=0$ and $a \neq 0$ imply $b=0$.

So suppose that $a b=0$ and $a \neq 0$. Since $a \neq 0$ and \mathbb{F} is a field, the multiplicative inverse a^{-1} exists. Now multiply both sides of $a b=0$ by a^{-1} to get

$$
\begin{aligned}
a b & =0 \\
a^{-1} a b & =a^{-1} 0 \\
b & =0 .
\end{aligned}
$$

Problem 3. Divisibility. Let R be a (commutative) ring.
(a) Given elements $a, b \in R$, state the definition of the symbol " $a \mid b$ ".

$$
" a \mid b " \quad \Longleftrightarrow \quad \text { "there exists an element } k \in R \text { such that } a k=b "
$$

(b) Given an element $a \in R$ we define the set $a R=\{a r: r \in R\}$. If $b R \subseteq a R$, prove that $a \mid b$. [Hint: First show that $b \in b R$.]

Proof. Suppose that $b R \subseteq a R$. Since $b=b 1$ and $1 \in R$ we see that $b \in b R$. Then since $b R \subseteq a R$ we see that $b \in a R$. By definition of $a R$ this means that $b=a r$ for some $r \in R$, and hence $a \mid b$ as desired.
(c) Conversely, if $a \mid b$, prove that $b R \subseteq a R$.

Proof. Suppose that $a \mid b$, so that $a k=b$ for some $k \in R$. In order to show that $b R \subseteq a R$ we must show that every element of $b R$ is an element of $a R$. So consider an arbitrary element $b r \in b R$. Then we have

$$
b r=(a k) r=a(k r)=a(\text { some element of } R) \in a R,
$$

as desired.

Problem 4. Greatest Comomon Divisors.

(a) Use the Extended Euclidean Algorithm to find some specific integers $x, y \in \mathbb{Z}$ satisfying $32 x+14 y=2$. [There are infinitely many correct answers.]

Consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ satisfying $32 x+14 y=z$. Starting with the obvious triples $(1,0,32)$ and $(0,1,14)$, we perform row operations to obtain a triple of the form $(x, y, 2)$:

x	y	z
1	0	32
0	1	14
1	-2	4
-3	7	2

The final row tells us that $32(-3)+14(7)=2$. [Remark: In this case it is not possible to find $x, y \in \mathbb{Z}$ satisfying $32 x+14 y=1$ because 32 and 14 not coprime.]
(b) For any integers $a, b \in \mathbb{Z}$ we define the set $a \mathbb{Z}+b \mathbb{Z}=\{a x+b y: x, y \in \mathbb{Z}\}$. Use your result from part (a) to prove that $32 \mathbb{Z}+14 \mathbb{Z}=2 \mathbb{Z}$. [Hint: You need to show that $32 \mathbb{Z}+14 \mathbb{Z} \subseteq 2 \mathbb{Z}$ and $2 \mathbb{Z} \subseteq 32 \mathbb{Z}+14 \mathbb{Z}$.]

Proof. First we show that $32 \mathbb{Z}+14 \mathbb{Z}$ is a subset of $2 \mathbb{Z}$. To do this, consider an arbitrary element $32 x+14 y \in 32 \mathbb{Z}+14 \mathbb{Z}$. Then we have

$$
32 x+14 y=(2 \cdot 16) x+(2 \cdot 7) y=2(16 x+7 y) \in 2 \mathbb{Z}
$$

as desired. Conversely, we will show that $2 \mathbb{Z}$ is a subset of $32 \mathbb{Z}+14 \mathbb{Z}$. To do this, consider an arbitrary element $2 z \in 2 \mathbb{Z}$. Then from part (a) we have

$$
2 z=(32(-3)+14(7)) z=32(-3 z)+14(7 z) \in 32 \mathbb{Z}+14 \mathbb{Z},
$$

as desired.
Problem 5. Descartes' Theorem. Consider ring of polynomials $\mathbb{F}[x]$ over a field \mathbb{F}.
(a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ and a constant $a \in \mathbb{F}$ satisfying $f(a)=0$. Prove that $f(x)=(x-a) g(x)$ for some polynomial $g(x)$. [Hint: Consider the quotient and remainder when $f(x)$ is divided by $x-a$.]

Proof. Dividing $f(x)$ by $x-a$ in the ring $\mathbb{F}[x]$ gives (unique) polynomials $q(x), r(x) \in$ $\mathbb{F}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=(x-a) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(x-a) .
\end{array}\right.
$$

Since $\operatorname{deg}(x-a)=1$, the second condition says that $r(x)=c$ for some constant $c \in \mathbb{F}$. To determine this constant we substitute $x=a$ to get

$$
f(a)=(a-a) q(a)+c=0 q(a)+c=c .
$$

It follows that $f(x)=(x-a) q(x)+f(a)$ for some polynomial $q(x)$. And if $f(a)=0$ then we get $f(x)=(x-a) q(x)$ as desired.
(b) In part (a) you showed that $f(x)=(x-a) g(x)$ for some polynomial $g(x)$. Now suppose that $f(b)=0$ for some other constant $b \neq a$. In this case show that $f(x)=(x-a)(x-b) h(x)$ for some polynomial $h(x)$. [Hint: Show that $g(b)=0$.]

Proof. Suppose that $f(a)=0$. In part (a) we showed that $f(x)=(x-a) g(x)$ for some polynomial $g(x)$. Now suppose that $f(b)=0$ for some other constant $b \neq a$. Substituting $x=b$ gives

$$
\begin{aligned}
f(b) & =(b-a) g(b) \\
0 & =(b-a) g(b) .
\end{aligned}
$$

Since \mathbb{F} is a domain (indeed, every field is a domain) and $b-a \neq 0$ this implies that $g(b)=0$. Then by applying (a) we must have $g(x)=(x-b) h(x)$ for some polynomial $h(x)$, and hence

$$
f(x)=(x-a) g(x)=(x-a)(x-b) h(x) .
$$

