No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Units. Let R be a (commutative) ring. An element $u \in R$ is called a *unit* when there exists an element $r \in R$ such that ur = 1.

(a) If $ur_1 = 1$ and $ur_2 = 1$, prove that $r_1 = r_2$. Hence the inverse of u (if it exists) is unique. We typically call it u^{-1} .

Proof. If $ur_1 = 1$ and $ur_2 = 1$ then we have

 $r_1 = 1r_1 = (ur_2)r_1 = (ur_1)r_2 = 1r_2 = r_2.$

(b) If u and v are units, prove that the product uv is also a unit.

Proof. Let u and v be units. By definition this means that ur = 1 and vr' = 1 for some elements $r, r' \in R$. But then

$$1 = 1 \cdot 1 = (ur)(vr') = (uv)(rr') = (uv)(\text{some element of } R),$$

which tells us that uv is a unit.

Remark: If we incorporate part (a) then we can say that $(uv)^{-1} = u^{-1}v^{-1}$.

Problem 2. Domains. Let R be a (commutative) ring. We say that R is a *domain* (also called an *integral domain*) if for all $a, b \in R$ we have

$$ab = 0 \implies a = 0 \text{ or } b = 0.$$

(a) Assuming that R is a domain, prove that ab = ac and $a \neq 0$ imply b = c.

Proof. Let a, b, c be elements of a domain R satisfying ab = ac and $a \neq 0$. Then

ab = ac ab - ac = 0 a(b - c) = 0 b - c = 0 b = c.because $a \neq 0$ and R is a domain

(b) A *field* is a (commutative) ring in which every nonzero element is a unit. Prove that every field is a domain.

Proof. Let \mathbb{F} be a field. Our goal is to show for all $a, b \in \mathbb{F}$ that ab = 0 implies a = 0 or b = 0. Equivalently, we will show that ab = 0 and $a \neq 0$ imply b = 0.

So suppose that ab = 0 and $a \neq 0$. Since $a \neq 0$ and \mathbb{F} is a field, the multiplicative inverse a^{-1} exists. Now multiply both sides of ab = 0 by a^{-1} to get

$$ab = 0$$
$$a^{-1}ab = a^{-1}0$$
$$b = 0.$$

Problem 3. Divisibility. Let R be a (commutative) ring.

(a) Given elements $a, b \in R$, state the definition of the symbol "a|b".

"a|b" \iff "there exists an element $k \in R$ such that ak = b".

(b) Given an element $a \in R$ we define the set $aR = \{ar : r \in R\}$. If $bR \subseteq aR$, prove that a|b. [Hint: First show that $b \in bR$.]

Proof. Suppose that $bR \subseteq aR$. Since b = b1 and $1 \in R$ we see that $b \in bR$. Then since $bR \subseteq aR$ we see that $b \in aR$. By definition of aR this means that b = ar for some $r \in R$, and hence a|b as desired.

(c) Conversely, if a|b, prove that $bR \subseteq aR$.

Proof. Suppose that a|b, so that ak = b for some $k \in R$. In order to show that $bR \subseteq aR$ we must show that every element of bR is an element of aR. So consider an arbitrary element $br \in bR$. Then we have

$$br = (ak)r = a(kr) = a$$
(some element of R) $\in aR$,

as desired.

Problem 4. Greatest Comomon Divisors.

(a) Use the Extended Euclidean Algorithm to find some specific integers $x, y \in \mathbb{Z}$ satisfying 32x + 14y = 2. [There are infinitely many correct answers.]

Consider the set of triples $(x, y, z) \in \mathbb{Z}^3$ satisfying 32x + 14y = z. Starting with the obvious triples (1, 0, 32) and (0, 1, 14), we perform row operations to obtain a triple of the form (x, y, 2):

x	y	z
1	0	32
0	1	14
1	-2	4
-3	7	2

The final row tells us that 32(-3) + 14(7) = 2. [Remark: In this case it is not possible to find $x, y \in \mathbb{Z}$ satisfying 32x + 14y = 1 because 32 and 14 not coprime.]

(b) For any integers $a, b \in \mathbb{Z}$ we define the set $a\mathbb{Z} + b\mathbb{Z} = \{ax + by : x, y \in \mathbb{Z}\}$. Use your result from part (a) to prove that $32\mathbb{Z} + 14\mathbb{Z} = 2\mathbb{Z}$. [Hint: You need to show that $32\mathbb{Z} + 14\mathbb{Z} \subseteq 2\mathbb{Z}$ and $2\mathbb{Z} \subseteq 32\mathbb{Z} + 14\mathbb{Z}$.]

Proof. First we show that $32\mathbb{Z} + 14\mathbb{Z}$ is a subset of $2\mathbb{Z}$. To do this, consider an arbitrary element $32x + 14y \in 32\mathbb{Z} + 14\mathbb{Z}$. Then we have

$$32x + 14y = (2 \cdot 16)x + (2 \cdot 7)y = 2(16x + 7y) \in 2\mathbb{Z},$$

as desired. Conversely, we will show that $2\mathbb{Z}$ is a subset of $32\mathbb{Z} + 14\mathbb{Z}$. To do this, consider an arbitrary element $2z \in 2\mathbb{Z}$. Then from part (a) we have

$$2z = (32(-3) + 14(7))z = 32(-3z) + 14(7z) \in 32\mathbb{Z} + 14\mathbb{Z}$$

as desired.

Problem 5. Descartes' Theorem. Consider ring of polynomials $\mathbb{F}[x]$ over a field \mathbb{F} .

(a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ and a constant $a \in \mathbb{F}$ satisfying f(a) = 0. Prove that f(x) = (x - a)g(x) for some polynomial g(x). [Hint: Consider the quotient and remainder when f(x) is divided by x - a.]

Proof. Dividing f(x) by x-a in the ring $\mathbb{F}[x]$ gives (unique) polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$\begin{cases} f(x) = (x-a)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < \deg(x-a) \end{cases}$$

Since $\deg(x - a) = 1$, the second condition says that r(x) = c for some constant $c \in \mathbb{F}$. To determine this constant we substitute x = a to get

$$f(a) = (a - a)q(a) + c = 0q(a) + c = c.$$

It follows that f(x) = (x-a)q(x) + f(a) for some polynomial q(x). And if f(a) = 0 then we get f(x) = (x-a)q(x) as desired.

(b) In part (a) you showed that f(x) = (x - a)g(x) for some polynomial g(x). Now suppose that f(b) = 0 for some other constant $b \neq a$. In this case show that f(x) = (x - a)(x - b)h(x) for some polynomial h(x). [Hint: Show that g(b) = 0.]

Proof. Suppose that f(a) = 0. In part (a) we showed that f(x) = (x - a)g(x) for some polynomial g(x). Now suppose that f(b) = 0 for some other constant $b \neq a$. Substituting x = b gives

$$f(b) = (b - a)g(b)$$
$$0 = (b - a)g(b).$$

Since \mathbb{F} is a domain (indeed, every field is a domain) and $b - a \neq 0$ this implies that g(b) = 0. Then by applying (a) we must have g(x) = (x - b)h(x) for some polynomial h(x), and hence

$$f(x) = (x - a)g(x) = (x - a)(x - b)h(x).$$