
Math 461 Spring 2020
Homework 4 Drew Armstrong

Problem 1. Complex Numbers as Real 2 × 2 Matrices. For any complex number
α = a+ bi ∈ C with a, b ∈ R we define the following matrix:

Mα :=

(
a −b
b a

)
.

(a) Check that for all r ∈ R and α ∈ C we have M(rα) = rMα.
(b) Check that for all α, β ∈ C we have Mα+β = Mα +Mβ and Mαβ = MαMβ.
(c) Check that for all α ∈ C we have det(Mα) = |α|2.
(d) Check that for all α ∈ C we have (Mα)∗ = M(α∗), where the star operation denotes

the transpose matrix and the complex conjugate, respectively.

(a): For all r ∈ R and α = a+ bi ∈ C we have

M(rα) = M(ra+rbi) =

(
ra −rb
rb ra

)
= r

(
a −b
b a

)
= rMα.

(b): For all α = a+ bi ∈ C and β = c+ di ∈ C we have

Mα+β = M(a+c)+(b+d)i =

(
a+ c −(b+ d)
b+ d a+ c

)
=

(
a −b
b a

)
+

(
c −d
d c

)
= Mα +Mβ.

Furthermore, since αβ = (ac− bd) + (ad+ bc)i, we have

MαMβ =

(
a −b
b a

)(
c −d
d c

)
=

(
ac− bd −ad− bc
bc+ ad −bd+ ac

)
=

(
ac− bd −(ad+ bc)
ad+ bc ac− bd

)
= Mαβ.

(c): For all α = a+ bi ∈ C we have

det(Mα) = det

(
a −b
b a

)
= aa− (−b)b = a2 + b2 = |α|2.

[Remark: For all α, β ∈ C, it follows from the multiplicative property of determinants that

|α|2|β|2 = det(Mα) det(Mβ) = det(MαMβ) = det(Mαβ) = |αβ|2.
This is another way to prove the multiplicative property of absolute value.]

[Remark: There wasn’t really anything to do in this problem. I just wanted you to observe
that these facts are true. In modern jargon, we say that the function α 7→Mα is an injective
homomorphism of R-algebras.]

(d): For all α = a+ bi ∈ C we have

(Mα)∗ =

(
a −b
b a

)∗
=

(
a b
−b a

)
=

(
a −(−b)
−b a

)
= Ma−bi = M(α∗).



Problem 2. Greatest Common Divisor. Let a, b ∈ Z with d = gcd(a, b). Since d is a
common divisor of a and b we must have a = da′ and b = db′ for some integers a′, b′ ∈ Z. In
this case, prove that the numbers a′, b′ are coprime:

gcd(a′, b′) = 1.

[HInt: From Bézout’s Identity we know that ax + by = d for some (non-unique) integers
x, y ∈ Z. Use this to show that any common divisor e|a′ and e|b′ must satisfy e|1.]

Proof. Let d = gcd(a, b) with a = da′ and b = db′ for some integers a′, b′ ∈ Z. From Bézout’s
Identity there exist some x, y ∈ Z such that ax+ by = d, hence we have

ax+ by = d

da′x+ db′y = d

�d(a′x+ b′y) = �d

a′x+ b′y = 1.

We will use this equation to show that gcd(a′, b′) = 1. To do this, let e be any common divisor
of a′ and b′, so that a′ = ea′′ and b′ = db′′ for some integers a′′, b′′ ∈ Z. It follows that

a′x+ b′y = 1

ea′′x+ eb′′y = 1

e(a′′x+ b′′y) = 1.

But this implies that e = ±1, hence the greatest common divisor of a′′ and b′′ is 1. �

Problem 3. Euclid’s Lemma. For all integers a, b, c ∈ Z, prove that

(a|bc and gcd(a, b) = 1) ⇒ a|c.

[Hint: If gcd(a, b) = 1 then from Bézout’s Identity there exist some (non-unique) integers
x, y ∈ Z satisfying ax+ by = 1. Multiply both sides by c to get acx+ bcy = c. Now what?]

Proof. Suppose that a|bc; say ak = bc for some k ∈ Z. Suppose also that gcd(a, b) = 1, hence
from Bézout’s Identity we have ax + by = 1 for some x, y ∈ Z. Not multiply both sides by c
to obtain

ax+ by = 1

acx+ bcy = c

acx+ aky = c

a(cx+ ky) = c.

We conclude that a|c, as desired. �

Problem 4. Rational Root Test. Let f(x) = cnx
n + · · ·+ c1x+ c0 ∈ Z[x] be a polynomial

of degree n with integer coefficients. Suppose that f(x) has a rational root a/b ∈ Q in lowest
terms, i.e., with gcd(a, b) = 1. In this case, prove that we must have

a|c0 and b|cn.

[HInt: Suppose that f(a/b) = 0. Multiply both sides by bn and then use Euclid’s Lemma.]



Proof. Let f(a/b) = 0 for some a, b ∈ Z with b 6= 0 and gcd(a, b) = 1. Then we have

f(a/b) = 0

cn(a/b)n + · · ·+ c1(a/b) + c0 = 0

bn [cn(a/b)n + · · ·+ c1(a/b) + c0] = 0

cna
n + cn−1a

n−1b+ · · ·+ c1ab
n−1 + c0b

n = 0.

By taking the term c0b
n to one side, we have

c0b
n = −cnan − cn−1an−1b− · · · − c1abn−1

= a
[
−cnan−1 − cn−1an−2b− · · · − c1bn−1

]
.

which implies that a|c0bn. Then since gcd(a, b) = 1, Euclid’s Lemma implies that a|c0. Simi-
larly, by taking the term cna

n to one side, we have

cna
n = −cn−1an−1b− · · · − c1abn−1 − c0bn

= b
[
−cn−1an−1 − · · · − c1abn−2 − c0bn−1

]
,

hence b|cnan. Then since gcd(a, b) = 1, Euclid’s Lemma implies that b|cn. �

Example. This result gives an algorithm to quickly find all of the rational roots of any
polynomial with integer coefficients. For example, let f(x) = 4x3 − 12x2 + 11x − 3. If
f(a/b) = 0 for some fraction a/b ∈ Q in lowest terms, then the Rational Root Test says that
a|3 and b|4, which leads to a finite list of potential rational roots:

a

b
∈
{
±1,±3,±1

2
,±3

2
,±1

4
,±3

4

}
.

By direct checking we find that 1, 1/2 and 3/2 are actual roots, hence

f(x) = 4(x− 1)(x− 1/2)(x− 3/2).

This method does not help us to find non-rational roots.

Problem 5. The Regular 7-Gon. Let ω = e2πi/7 and α = ω + ω−1 = 2 cos(2π/7).

(a) Combine the numbers 1, α, α2, α3 to find some polynomial f(x) ∈ Z[x] of degree 3
satisfying f(α) = 0. [Hint: Use the fact that ω3 + ω2 + ω+ 1 + ω−1 + ω−2 + ω−3 = 0.]

(b) Use Problem 4 to show that your polynomial f(x) from part (a) has no rational roots.
(c) Use part (b) to prove that the real number cos(2π/7) ∈ R is irrational.

(a): First we compute the powers of α:

1 = 1
α = ω + 0 + ω−1

α2 = ω2 + 0 + 2 + 0 + ω2

α3 = ω3 + 0 + 3ω + 0 + 3ω−1 + 0 + ω−3

Working from outside in, we find that

α3 + α2 − 2α− 1 = ω3 + ω2 + ω + 1 + ω−1 + ω−2 + ω−3 = 0.

Therefore we define f(x) = x3 + x2 − 2x− 1 ∈ Z[x] and we observe that f(α) = 0.

(b): Suppose that f(x) has a rational root, so that f(a/b) = 0 for some integers a, b ∈ Z with
gcd(a, b) = 1. Then from part (b) we must have a|1 and b|1, hence a/b = ±1. But we observe
that f(1)− 1 6= 0 and f(−1) = −3 6= 0. Hence the polynomial f(x) has no rational roots, and
it follows from part (a) that α = 2 cos(2π/7) is not rational.



(c): Assume for contradiction that cos(2π/7) = c/d for some integers c, d ∈ Z. It follows that

α = 2 cos

(
2π

7

)
=

2c

d
∈ Q,

which contradicts part (b). Hence we conclude that cos(2π/7) is irrational. �

[Remark: We will use this result later to prove that a regular 7-gon is not constructible with
straightedge and compass.]

Problem 6. Conjugation of Complex Polynomials. For any polynomial f(x) =∑
k≥0 akx

k ∈ C[x] with complex coefficients, we define the conjugate polynomial as follows:

f∗(x) :=
∑
k≥0

a∗kx
k.

(a) We can think of R[x] ⊆ C[x] as a subring. For all f(x) ∈ C[x], prove that

f(x) ∈ R[x] ⇔ f∗(x) = f(x).

(b) For all f(x), g(x) ∈ C[x], prove (f +g)∗(x) = f∗(x)+g∗(x) and (fg)∗(x) = f∗(x)g∗(x).
(c) For all f(x) ∈ C[x] use (a),(b) to prove that f(x)+f∗(x) ∈ R[x] and f(x)f∗(x) ∈ R[x].

(a): Recall that for all a ∈ C we have a∗ = a if and only if a ∈ R. Then for all polynomials
f(x) =

∑
k≥0 akx

k ∈ C[x] we have

f∗(x) = f(x)⇔
∑
k≥0

a∗kx
k =

∑
k≥0

akx
k

⇔ a∗k = ak for all k ≥ 0

⇔ ak ∈ R for all k ≥ 0

⇔ f(x) ∈ R[x].

(b): Recall that for all a, b ∈ C we have (a + b)∗ = a∗ + b∗ and (ab)∗ = a∗b∗. Then for all
f(x) =

∑
k≥0 akx

k ∈ C[x] and g(x) =
∑

k≥0 bkx
k ∈ C[x] we have

(f + g)∗(x) =
∑
k≥0

(ak + bk)
∗xk

=
∑
k≥0

(a∗k + b∗k)x
k

=
∑
k≥0

a∗kx
k +

∑
k≥0

b∗kx
k

= f∗(x) + g∗(x)



and

(fg)∗(x) =
∑
k≥0

(
k∑
i=1

aibk−i

)∗
xk

=
∑
k≥0

(
k∑
i=1

a∗i b
∗
k−i

)
xk

=

∑
k≥0

a∗kx
k

∑
k≥0

b∗kx
k


= f∗(x)g∗(x).

(c): For all f(x) ∈ C[x] we observe from part (b) that

(f + f∗)∗(x) = (f∗ + f∗∗)(x) = (f∗ + f)(x) = (f + f∗)(x)

and
(ff∗)∗(x) = (f∗f∗∗)(x) = (f∗f)(x) = (ff∗)(x).

Hence it follows from part (a) that f(x) + f∗(x) ∈ R[x] and f(x)f∗(x) ∈ R[x].

[Remark: We will use this last fact in our discussion of the Fundamental Theorem of Algebra.
Here is a preview: Suppose that every real polynomial factors as a product of real polynomials
of degrees 1 and 2. Now consider any complex polynomial f(x) ∈ C[x]. Since g(x) = f(x)f∗(x)
has real coefficients we know that g(x) factors as a product of real polynomials of degrees 1
and 2, hence by the quadratic formula we know that g(x) splits over C. Now suppose for
contradiction that there exists a prime polynomial p(x) ∈ C[x] of degree ≥ 2 such that
p(x)|f(x). Then we also have p(x)|g(x), which contradicts the fact that g(x) splits over C.
We conclude that f(x) also splits over C. In summary, we have shown that the real version
of the FTA implies the complex version of the FTA.]


