
Math 461 Spring 2015
Homework 3 Drew Armstrong

1. De Moivre’s Theorem.

(a) Use de Moivre’s Theorem to express cos(2θ) as a polynomial in cos(θ).
(b) Solve this polynomial to obtain a formula for cos(θ) in terms of cos(2θ).
(c) Use the formula from (b) to find the exact value of cos(π/8).

For part (a) we have

cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos θ cos θ + 2i sin θ cos θ + i2 sin θ sin θ

= (cos2 θ − sin2 θ) + i(2 sin θ cos θ).

Comparing the real parts of both sides gives

cos(2θ) = cos2 θ − sin2 θ.

Now remember that cos2 θ + sin2 θ = 1. Why? This is just the Pythagorean Theorem:

Thus we have

(1) cos(2θ) = cos2 θ − sin2 θ = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1.

For part (b), we solve equation (1) to obtain

cos θ =

√
cos(2θ) + 1

2
.

This is sometimes called the “half-angle formula” because it allows us to compute cos(θ/2)
whenever we know cos θ:

cos(θ/2) =

√
cos θ + 1

2
=

1

2

√
2 + 2 cos θ.

For part (c), start with an angle you know. Do you know that cos(π/2) = 0? Good. Then

cos(π/4) =
1

2

√
2 + 2 cos(π/2) =

1

2

√
2 + 2 · 0 =

1

2

√
2.

Applying the formula again gives

cos(π/8) =
1

2

√
2 + 2 cos(π/4) =

1

2

√
2 +
√

2.

Just for fun, let’s also compute cos(π/16):

cos(π/16) =
1

2

√
2 + 2 cos(π/8) =

1

2

√
2 +

√
2 +
√

2.



Hey, now I see a pattern. And it tells me that

lim
n→∞

cos
( π

2n

)
=

1

2

√
2 +

√
2 +

√
2 +
√

2 + · · · .

But of course we know that

lim
n→∞

cos
( π

2n

)
= cos(0) = 1,

hence

2 =

√
2 +

√
2 +

√
2 +
√

2 + · · · .

That’s was kind of fun, right?

2. Quadratic Formula Again.

(a) Compute the square roots of i.
(b) Use part (a) to solve the equation 1

2z
2 + (1 + i)z + i

2 = 0 for z ∈ C.

For part (a) we want to solve the equation x2 = i. To do this we will express x and i in

polar coordinates: let x = reiθ and note that i = eiπ/2. Then we have

x2 = i

(reiθ)2 = eiπ/2

r2ei2θ = eiπ/2

Comparing lengths gives r = 1 and comparing angles gives

2θ − π/2 = 2πk

2θ = 2πk + π/2

θ =
2πk + π/2

2
θ = π/4 + πk

for any k ∈ Z. We conclude that the square roots of i are

x =
√
i = eπ/4+πk, for any k ∈ Z.

That looks like a lot, but it really just represents two complex numbers:

eiπ/4 = (1 + i)/
√

2 and ei(π/4+π) = −(1 + i)/
√

2.

Here is a picture of i and its two square roots:



For part (b) we apply the good old Quadratic Formula to get

z = −(1 + i) +
√

(1 + i)2 − i = −(1 + i) +
√

(1 + 2i− 1)− i = −(1 + i) +
√
i.

Finally, we use the square roots of i computed in part (a) to get

z = −(1 + i) +
1√
2

(1 + i) =

(
−1 +

1√
2

)
(1 + i) =

(
−2 +

√
2

2

)
(1 + i),

or

z = −(1 + i)− 1√
2

(1 + i) =

(
−1− 1√

2

)
(1 + i) =

(
−2−

√
2

2

)
(1 + i),

3. Complex Conjugation. Recall that complex conjgation ∗ : C→ C is defined by

(a+ ib)∗ := a− ib.

Show that for all u, v ∈ C we have

(a) (u+ v)∗ = u∗ + v∗

(b) (uv)∗ = u∗v∗

(c) |u||v| = |uv|. [Hint: |u|2 = uu∗.]

Let u = a+ ib and v = c+ id where a, b, c, d are real. For part (a) we have

u∗ + v∗ = (a+ ib)∗ + (c+ id)∗

= (a− ib) + (c− id)

= (a+ c)− i(b+ d)

= ((a+ c) + i(b+ d))∗

= ((a+ ib) + (c+ id))∗

= (u+ v)∗.



For part (b) we have

u∗v∗ = (a+ ib)∗(c+ id)∗

= (a− ib)(c− id)

= (ac− bd) + i(−ad− bc)
= (ac− bd)− i(ad+ bc)

= ((ac− bd) + i(ad+ bc))∗

= ((a+ ib)(c+ id))∗

= (uv)∗.

For part (c) we don’t need to do any more real work, because it follows directly from (b) that

|u|2|v|2 = (uu∗)(vv∗)

= (uv)(u∗v∗)

= (uv)(uv)∗

= |uv|2.
Now take the positive square root of both sides.

4. Conjugate Pairs of Roots.

(a) Consider a polynomial with real coefficients, f(x) ∈ R[x]. Show that for all complex
numbers z ∈ C we have f(z)∗ = f(z∗).

(b) Conclude that the complex roots of a real polynomial come in conjugate pairs.

For part (a), assume that f(x) =
∑

k≥0 akx
k is a polynomial with real coefficients, and let

z be any complex number. Then f(z) is a complex number so we can compute its conjugate.
Since the coefficients ak are real we have (ak)

∗ = ak for all k. Using Problem 3(a) and then
3(b) gives

f(z)∗ =

∑
k≥0

akz
k

∗

=
∑
k≥0

(akz
k)∗ 3(a)

=
∑
k≥0

(ak)
∗(zk)∗ 3(b)

=
∑
k≥0

ak(z
k)∗ ak is real

=
∑
k≥0

ak(z
∗)k ?

= f(z∗).

In the last step we used the fact that (zk)∗ = (z∗)k. Why is this true? Because of 3(b):

(zk)∗ = (z · z · · · z︸ ︷︷ ︸
k times

)∗ = z∗ · z∗ · · · z∗︸ ︷︷ ︸
k times

= (z∗)k.

Technically, we should use induction on k to prove this, but why bother?



For part (b), assume that f(x) is a polynomial with real coefficients and suppose that
f(z) = 0 for some complex number z. Then from part (a) we have

f(z∗) = f(z)∗ = 0∗ = 0,

hence z∗ is also a root. This implies that the complex (non-real) roots of f(x) come in complex-
conjugate pairs. In other words, the set of roots of f(x) in the complex plane has a reflection
symmetry across the real axis.

5. Useful Little Theorem. Let f(x) be a polynomial of degree 3 with real coefficients.
Prove that if f(x) has a complex root, then it must also have a real root. [Hint: If f(u) = 0
for some u ∈ C, show that f(x) is divisible by (x2− (u+ u∗)x+ uu∗). Show that the quotient
must have real coefficients.]

You might think that this is a Useless Little Theorem, because we already know (by the
Intermediate Value Theorem) that every real polynomial of degree 3 has a real root. That’s
a valid objection, but we will see later that this theorem is surprisingly useful in a different
context. For example, we will use it to prove that a regular 7-gon can not be constructed with
a ruler and compass.

Proof. Suppose that f(x) ∈ R[x] has degree 3 and suppose that f(u) = 0 for some u ∈ C. We
will show that f(x) has a real root. If u is real then we’re done. Otherwise, Problem 4(b)
implies that u∗ is another root of f(x). Using Descartes’ Factor Theorem gives

f(x) = (x− u)(x− u∗)g(x)

where g(x) is a polynomial of degree 1, say g(x) = ax + b. But then g(−b/a) = 0 and hence
f(−b/a) = 0. We will be done if we can show that −b/a is a real number. In fact, we will
show that a and b are both real.

This might seem obvious, but it’s not. We know that f(x) has real coefficients, but there
are complex numbers on the right side of the equation and it’s possible that they cancel in
some complicated way. The key is to expand

(x− u)(x− u∗) = (x2 − (u+ u∗)x+ uu∗),

and to observe that u+u∗ and uu∗ are both real. [Why is this?] Thus g(x) is the quotient of a
real polynomial divided by a real polynomial. This implies that g(x) has real coefficients. �

[That last part (showing that g(x) has real coefficients) was a little bit subtle. I expect many
people got confused, and that’s OK! As I mentioned before, it is not immediately obvious that this
Useful Little Theorem is interesting. You’ll have to take my word for it and be patient.]


