
Math 461 F Spring 2011
Homework 4 Solutions Drew Armstrong

A.1. Euclid’s Lemma. Suppose that a divides bc for a, b, c ∈ Z with a
and b coprime (i.e. they have no common factor except ±1). Prove that a
must divide c. (Hint: Since a and b are coprime, you may assume — without
proof — that there exist x, y ∈ Z such that ax+ by = 1.)

Proof. Since a and b are coprime they have greatest common divisor 1. You
may have seen in another class the fact that the greatest common divisor of
(a, b) is always an integer linear combination of a and b. That is, there exist
x, y ∈ Z such that ax+ by = 1. Now multiply both sides of this equation by
c to get

axc+ (bc)y = c.

By assumption we have bc = ak for some k ∈ Z, hence

axc+ (bc)y = axc+ aky = a(xc+ ky) = c.

In other words, a divides c. �

A.2. Prove that 3
√

2 is not rational.

Proof. Suppose for contradiction that 3
√

2 is rational. Then we can write
3
√

2 = a/b as a fraction in lowst terms (i.e. a, b ∈ Z with a, b coprime).
Cubing both sides of this equation gives 2 = a3/b3, or a3 = 2b3. Since a3

is even we may conclude that a is even (for if a were odd then a3 would be
odd), and we write a = 2k for some k ∈ Z. But then we have 2b3 = a3 = 8a3,
or b3 = 4a3, which implies that b3, and hence b, is even. We have found
that a and b are both even, which contradicts the assumption that they are
coprime. Hence 3

√
2 is not rational. �

A.3. Consider a quadratic field extension F ⊆ F [
√
c] = {a+b

√
c : a, b ∈ F}

and define the conjugation map a + b
√
c 7→ a − b

√
c. Prove that for all

u, v ∈ F [
√
c] we have

• u+ v = u+ v,
• uv = u v.

Proof. Let u = a+ b
√
c and v = d+ e

√
c. Then we have

(a+ b
√
c) + (d+ e

√
c) = (a+ d) + (b+ e)

√
c

= (a+ d)− (b+ e)
√
c

= (a− b
√
c) + (d− e

√
c)

=
(
a+ b

√
c
)

+
(
d+ e

√
c
)



and

(a+ b
√
c)(d+ e

√
c) = (ad+ cbe) + (ae+ bd)

√
c

= (ad+ cbe)− (ae+ bd)
√
c

= (a− b
√
c))(d− e

√
c)

=
(
a+ b

√
c
) (

d+ e
√
c
)
.

�

A.4. Consider again the same field extension F ⊆ F [
√
c] and let p(x) ∈ F [x]

be a polynomial with coefficients in F . Prove that for any α ∈ F [
√
c] we

have
p(α) = 0 ⇐⇒ p(α) = 0.

Proof. First we will prove⇒. Suppose that p(x) = anx
n +an−1x

n−1 + · · ·+
a1x+ a0, with a0, . . . , an ∈ F . If α ∈ F [

√
c] is a root of p(x) then we have

anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

Consider the general term aiα
i. Since ai ∈ F we have ai = ai and then the

multiplicative property of conjugation (Problem A.3) gives aiαi = ai(α)i.
Now conjugate both sides of the equation p(α) = 0 to get

anαn + an−1αn−1 + · · ·+ a1α+ a0 = 0

anαn + an−1αn−1 + · · ·+ a1α+ a0 = 0

an(α)n + an−1(α)n−1 + · · ·+ a1α+ a0 = 0.

We conclude that α is a root of p(x), as desired.

Next we will prove ⇐. Suppose that α is a root of p(x). The above
argument then shows that the conjugate of α is also a root. That is, α = α
is a root, as desired. �

For the next two problems you may assume — without proof — that 2 cos(2π/7)
is a root of x3 + x2 − 2x− 1 = 0.

Actually, I’ll prove this for you. Let ω = cos(2π/7) + i sin(2π/7), so that

ω3, ω2, ω, 1, ω−1, ω−2, ω−3

are the 7th roots of unity, and hence their sum is 0. We are interested in
finding an equation satisfied by u = ω + ω−1 = ω + ω = 2 cos(2π/7). If we
try to obtain the sum of all 7th roots by combining powers of u (working
from highest degree inward) we will find that

u3 + u2 − 2u− 1 = ω3 + ω2 + ω + 1 + ω−1 + ω−2 + ω−3 = 0,

as desired.



A.5. Prove that x3 + x2 − 2x− 1 = 0 has no rational root, and hence that
cos(2π/7) is not rational.

Proof. Suppose that a/b is a rational root in lowest terms (i.e. a, b ∈ Z with
a, b coprime). Then we have

a3

b3
+
a2

b2
− 2

a

b
− 1 = 0,

or
a3 + a2b− 2ab2 − b3 = 0.

Taking b3 to the right hand side we find that a divides b3. But since a and b
are coprime this implies that a = ±1. Similarly, taking a3 to the right hand
side shows that b divides a3, and hence b = ±1. That is, the only possible
rational roots of our polynomial are a/b = ±1. We can easily check that
neither of these is a root, and hence there are no rational roots.

Since 2 cos(2π/7) is a root of the polynomial, we conclude that it is not
rational. This implies that cos(2π/7) is not rational since, if it were, then
2 cos(2π/7) would be rational. �

A.6. Prove that cos(2π/7) is not constructible, and hence that the regular
heptagon is not constructible with straightedge and compass.

Proof. Let f(x) = x3 +x2− 2x− 1 and let F ⊆ F [
√
c be any quadratic field

extension such that Q ⊆ F . We saw in class (and on the handout) that:
if f(x) has a root in F [

√
c] then it also has a root in F . Now suppose for

contradiction that 2 cos(2π/7) is constructible. Then there exists a chain of
quadratic extensions

Q = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fk

such that 2 cos(2π/7) ∈ Fk. That is, f(x) has a root in Fk. But by the
above remark, this implies that f(x) also has a root in Fk−1. Repeating
this argument k times shows that f(x) has a root in Q which we showed in
Problem A.5 is a contradiction. Hence 2 cos(2π/7) is not constructible.

(You do not need to say anything more, but I’ll finish off the argument.)
Now suppose that the regular heptagon is constructible with straightedge
and compass. Consider the fan of rays from the center of the heptagon
through its vertices and intersect this with a unit circle to get a hep-
tagon of “unit radius”. We can assume that one of the vertices has co-
ordinates (1, 0) and hence the next vertex counterclockwise has coordinates
(cos(2π/7), sin(2π/7)). This implies that the number cos(2π/7) and hence
the number 2 cos(2π/7) is constructible, which is a contradiction. Hence the
regular heptagon is not constructible. �


