Math 461 F Spring 2011
Homework 1 Solutions Drew Armstrong

Book Problems.

Let r and s be the roots of the quadratic equation az? + bz + ¢ = 0. The
Factor Theorem then implies that

ax® +bx +c=a(x —7r)(z —s) = ax® — a(r + s)x + crs.

Recall that two polynomials are equal if and only if their coefficients coincide.
Hence we get 7+ s = —b/a and rs = ¢/a, which completes Exercises 1.1.5
and 1.1.6. Next, for Exercise 1.1.8 we have
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Exercise 1.1.16. Now let 7, s # 0 be the roots of the quadratic 22 +px +q,
so that r+s = —p and rs = ¢. In this case, what is “the” quadratic equation
with roots 1/r and 1/s7 (Recall that the equation is unique up to a constant
multiple.) By the Factor Theorem, the equation is
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and the left side simplifies to
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Thus the simplest way to write the equation is:

qx? +pr+1=0.

Exercise 1.1.17. For which real values of « are the roots of the equation
22 + ax + o = 0 real? Answer: The quadratic formula gives the roots as
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and these will be real precisely when o® — 4a > 0. To solve this polynomial
inequality, first factor to get a(a —4) > 0. There are two ways that the
product of real numbers o and o — 4 can be nonnegative. Either: Both
numbers are nonnegative, in which case we have a > 0 and o — 4 > 0 (i.e.

xr=
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a > 4). Or: Both numbers are nonpositive, in which case we have a < 0
and a« —4 < 0 (i.e. @ <4). Conclusion: The roots will be real when we have

’aSO or a>4.

Additional Problems.
A.1. We will solve Exercise 1.1.1 using the given hint. First note that
(V3+1)* = (V33 +3(v3)2 +3(vV3) +1
=3V3+9+3V3+1
=6v3+10
= /108 + 10,

and, similarly, that (v/3 —1)3 = v/108 — 10. Finally, we have
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A.2. If the quadratic 22 +px +¢ has roots r and s, then the quantity (r—s)?
is called the discriminant. We know that » + s = —p and rs = q. Hence

(r—s)% = (r+s)> —4rs = p*> — 4q.

(Recall: Newton’s theorem tells us that any symmetric function in r and s
can be expressed in terms of the sum r 4 s and product rs, although it may
take a bit of work to do this.) Now note that r and s will be equal if and
only if (r — 5)2 = 0. In other words, if and only if p? — 4¢q = 0.

A.3. Consider the following diagram from Descartes’ La Géométrie (1637).
Prove that the distances M@ and M R are solutions to the quadratic equa-
tion 32 = ay — b*.
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If we place the point M at the origin of a Cartesian (z,y)-plane, then
the circle has center (—b,a/2) and radius a/2. Recall (I know you all know
this) that the equation of a circle with radius R and center («, [3) is

(z—a)’ + (y— B)* = R%.
Hence the equation of our circle is
(x +0)* + (y — a/2)* = (a/2)*.
Now, the two distances M(Q and MR are just the y-coordinates of the points

of intersection of the circle with the y-axis. The equation of the y-axis is
x = 0, and thus the points of intersection satisfy

(0+0)* + (y +a/2)* = (a/2)?
b® +y* —ay + (a/2)* = (a/2)?
V+y?—ay=0
y* = ay — 0%,

as desired.



