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January

Wed, Jan 18

• The first differential equation. Let h(t) be height of a stone near surface of Earth.
Galileo: h′′(t) = −32 feet per second squared. Integrate twice to get h(t) = −16t2 +
v0t+ h0. Use this to predict when the stone will land.

• Solutions to differential equations are built from a small number of basic functions. Most
important: dy/dx = y has solution y(x) = ex. d2y/dx2 = y has solution y(x) =“sin(x)”.
Actually, not quite. Equation d2y/dx2 = −y has solution sin(x). Equation d2y/dx2 =
−k2y has solution y(x) = sin(kx). Put −k2 = 1 (i.e., k=i) to get the solution of
d2y/dx2 = y. This shows that imaginary numbers sometimes show up in the solutions
to real problem. More later.

Fri, Jan 20

• Recall x(t) = ekt satisfies x′(t) = kx(t) and x(t) = sin(kt) satisfies x′′(t) = −k2x(t).

• General first order differential equation dy/dx = f(x, y) always has a one parameter
family of solutions. E.g. general solution of dy/dx = x is y(x) = x2/2 + C. General
solution of dy/dx = y is y(x) = Cekx.

• One initial condition y(a) = b determines the value of the parameter C.

• Geometry: Think of dy/dx = f(x, y) as a slope field. Solution curves fit the slope.

• Remark: The equation d2y/dx2 = −k2y is second order. It has a two parameter family
of solutions: y(x) = C1 sin(kx) + C2 cos(kx). More later.
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Mon, Jan 23

• Recall: First order equations dy/dx = f(x, y) and slope fields.

• Online slope field generator:

https://homepages.bluffton.edu/~nesterd/apps/slopefields.html

• Easiest kind dy/dx = f(x) solved by direct integration: y(x) =
∫
f(x) dx+ C.

• Exponential growth dy/dx = y. Solution y(x) = ex.

• Explosive growth dy/dx = y2. Solution y(x) = 1/(1− x) has a vertical asymptote.

• Separable equations have the form dy/dx = g(x)h(y). We can solve by separation of
variables: dy/h(y) = g(x)dx and then∫

1

h(y)
dy =

∫
g(x) dx+ C.

At the end, try to solve for y. It’s not always possible.

• Example: dy/dx = xy. Solution y(x) = Aex
2/2.

Wed, Jan 25

• We have seen exponential growth dx/dt = x and explosive growth dx/dt = x2.

• More realistic: Logistic growth dx/dt = x(1 − x). Starts exponential but then settles
down to carrying capacity. Use partial fractions:∫

1

x(1− x)
dx =

∫
dt+ C∫ [

1

x
− 1

1− x

]
dx = t+ C

ln(x)− ln(1− x) = t+ C

ln

(
x

1− x

)
= t+ C

x

1− x
= et+C = eCet = Det (clean up: D = eC)

x(t) =
Det

1 +Det
.

Sketch. Note: x(t)→ D as t→∞. Given initial population size x(0) = x0 we get

x0 =
De0

1 +De0
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x0 =
D

1 +D

D =
x0

1− x0
,

so that

x(t) =

(
x0

1−x0

)
et

1 +
(

x0
1−x0

)
et
.

There are other ways to write this. For example, multiply top and bottom by 1− x0:

x(t) =
x0e

t

1− x0 + x0et
.

Check: x(0) = x0/(1− x0 + x0) = x0.

Fri, Jan 27

• General first order equation dy/dx = f(x, y). Simplest examples of f(x, y) are x, x2, y,
y2, x+ y, x2 + y, x2 + y2. These last ones are not separable.

• The examples x2 + y and x2 + y2 can’t be solved with elementary functions. Someone
invented “Bessel functions” to solve them.

• We will solve the simplest non-separable equation x′(t) = x + t. This is part of the
general theory of “linear” differential equations and we will see several methods.

• The first method is “integrating factors”. Multiply both sides by some suitable function
of t. Let’s call it ρ(t):

x′(t) = x+ t

ρ(t)x′(t) = ρ(t)(x+ t)

ρ(t)x′(t) = ρ(t)x+ ρ(t)t

ρ(t)x′(t)− ρ(t)x(t) = ρ(t)t.

• This trick is to choose ρ(t) so the left side looks like the product rule. We want

ρ(t)x′(t)− ρ(t)x(t) = ϕ(t)x′(t) + ϕ′(t)x(t) = (ϕ(t)x(t))′

for some function ϕ(t). Thus we must have −ρ(t) = ρ′(t) and hence ρ(t) = e−t.

• So let ρ(t) = e−t. Finish the computation:

x′(t) = x+ t

e−tx′(t) = e−t(x+ t)
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e−tx′(t)− e−tx(t) = te−t

(e−tx(t))′ = te−t

e−tx(t) =

∫
te−t dt+ C

Off to the side we compute
∫
te−t dt = (−t− 1)e−t using integration by parts. Then

e−tx(t) = (−t− 1)e−t + C

x(t) = −t− 1 + Ce−t.

That looks rather nice. Maybe there is an easier way to do it.

Mon, Jan 30

• Most differential equations are impossible to solve exactly. Instead we linearize them
and apply linear algebra to run a numerical simulation. Today we take the first step
into “linear differential equations”.

• A first order linear ODE has the form dy/dx+ P (x)y = Q(x). We have seen several of
these, e.g., dy/dx = y and dy/dx = f(x) for any function f(x). We have also seen some
non-linear equations such as dy/dx = y2 and dy/dx = y(1− y) = y − y2. Linear means
only y and dy/dx appear. No terms such as y2, (dy/dx)2 or y · dy/dx.

• The general n-th order linear ODE is

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x),

where y(n) is the nth derivative of y with respect to x and f(x), p1(x), . . . , pn(x) are any
functions of x.

• Method of integrating factors. Multiply both sides by a suitable function ρ(x):

dy

dx
+ P (x)y = Q(x)

ρ(x)

(
dy

dx
+ P (x)y

)
= ρ(x)Q(x).

The clever choice is ρ(x) = e
∫
P (x) dx where

∫
P (x) dx is any antiderivative of P (x).

This makes the left hand side look like the product rule. To be specific, the choice
ρ(x) = e

∫
P (x) dx is clever because it satisfies ρ′(x) = ρ(x)P (x). Thus we get

ρ(x)

(
dy

dx
+ P (x)y

)
= ρ(x)

dy

dx
+ ρ(x)P (x)y

= ρ(x)
dy

dx
+ ρ′(x)y

=
d

dx
[ρ(x) · y] .
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• Example: x2 · dy/dx+ x · y = sin(x). First divide by x2 to put in standard form:

y′′ +
1

x
y =

sin(x)

x2
.

Thus P (x) = x and Q(x) = sin(x). The integrating factor is

ρ(x) = e
∫
P (x) dx = e

∫
dx/x = eln(x) = x.

Multiply both sides by x then integrate:

y′′ + y/x = sin(x)/x2

xy′′ + y = sin(x)/x multiply both sides by x

(xy)′ = sin(x)/x product rule

xy =

∫
sin(x)

x
dx+ C integrate

y =
1

x

[∫
sin(x)

x
dx+ C

]
More later.

February

Wed, Feb 1

• Remark about the homework: The integral
∫
e−x

2
dx can’t be simplified. But it’s really

important in statistics so we give it a name. It is typically called the error function:

erf(x) =
2√
π

∫ x

0
e−s

2
ds.

The constant multiple 2/
√
π is not important for us but it is part of the standard

notation. Thus for any limits of integration a < b we can write∫ b

a
e−x

2
dx =

√
π

2
[erf(b)− erf(b)] .

You do not need to use this notation. Just be aware that computers use it.

• Recall integrating factors for first order ODEs. To solve dy/dx+P (x)y = Q(x), multiply
both sides by the integrating factor

ρ(x) = e
∫
P (x) dx = exp

(∫
P (x) dx

)
.
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Then the left hand side simplifies to (d/dx)[ρ(x)y], via the product rule. (This is the
trick!) So the general solution is

dy

dx
+ P (x)y = Q(x)

ρ(x)

(
dy

dx
+ P (x)y

)
= ρ(x)Q(x)

d

dx
[ρ(x)y] = ρ(x)Q(x)

ρ(x)y =

∫
ρ(x)Q(x) dx+ C

y =
1

ρ(x)

[∫
ρ(x)Q(x) + C

]
.

• Textbook example, page 51. Last time we showed that the linear ODE x2 ·dy/dx+x·y =
sin(x) has integrating factor x and general solution

y =
1

x

[∫
sinx

x
dx+ C

]
To find a specific solution, suppose we have initial condition y(1) = y1. (It doesn’t
make sense to put x = 0 because the solution has 1/x in it, so we will always assume
that x > 0.) Now in order to solve for C in terms of y1 we need to turn the indefinite
integral as a definite integral. We do this by choosing an arbitrary lower limit a:

y(x) =
1

x

[∫ x

a

sin s

s
ds+ C

]
.

Now put x = 1 to get

y1 = y(1) =
1

1

[∫ 1

a

sin s

s
ds+ C

]
=

∫ 1

a

sin s

s
ds+ C,

and hence

C = y1 −
∫ 1

a

sin s

s
ds.

Again, the lower limit a is completely arbitrary. We see from this formula for C that
the most clever choice is a = 1, so that

C = y1 −
∫ 1

1

sin s

s
ds = y1 − 0 = y1,

and the specific solution with y(1) = y1 is

y(x) =
1

x

[∫ x

1

sin s

s
ds+ y1

]
.
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The integral does not simplify. Your computer will probably say

y(x) =
1

x
[Si(x)− Si(1) + y1] ,

where the Sine integral is defined as follows:

Si(x) =

∫ x

0

sin(s)

s
ds.

• We did textbook Example 2 on page 49. The first order linear ODE

(x2 + 1)
dy

dx
+ 3xy = 6x

has general solution

y(x) =
1

(x2 + 1)3/2

[∫
6x(x2 + 1)1/2 dx+ C

]
= 2(x2 + 1)3/2 + C.

We didn’t mess around with initial conditions.

Fri, Feb 3

• We discussed Homework 1. Please read the homework solutions!

• VERY IMPORTANT REMINDER:

et →∞ as t→∞,
e−t → 0 as t→∞.

This is the difference between exponential growth and exponential decay. Many solutions
to ODEs contain the term e−t, which tells us something important about the behavior
as t→∞.

• For example, the logistic equation x(t) = x(1− x) has the following solution:

x(t) =
Cet

1 + Cet
=

1

1 + e−t/C
.

So that

x(t)→ 1

1 + 0
= 1 as t→∞.
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Mon, Feb 6

• Finished a problem from last Friday. Room temperature A(t) = t, coffee temperature
u(t). Newton says u′(t) = A(t)− u(t). [Check: If coffee is colder than room then coffee
heats up, u′(t) > 0. If coffee is hotter than room then coffee cools down, u′(t) < 0.]
Method of integrating factors:

u′(t) = t− u(t)

u′(t) + u(t) = t

u′(t) + P (t)u(t) = Q(t)

et(u′(t) + u(t)) = tet integrating factor exp(

∫
P (t) dt) = et

etu′(t) + etu(t) = tet

(etu(t))′ = tet yes, the method worked

etu(t) =

∫
tet dt+ C

etu(t) = (t− 1)et + C integration by parts omitted

u(t) = t− 1 + Ce−t.

• Qualitative: For large t we have e−t ≈ 0, so u(t) ≈ t−1, which is one degree colder than
the room. See homework 1 solutions for a picture.

• Qualitative: Suppose the coffee is in an insulated container. Then we have u′(t) = k(t−u)
for some insulation constant k > 0. Carry out the same method to get

u(t) = t− 1

k
+ Ce−kt.

This time u(t) ≈ t − 1
k for large t, so the coffee becomes 1/k degrees colder than the

room. We drew some pictures.

• Introduction to Chapter 2. A first order equation dy/dx = f(x, y) has a “one parameter
family of solutions”. For example dy/dx = y has general solution y = Cex or y = ex+D

(with D = eC). Second order equations have a “two parameter family of solutions”.

• The most basic second order equation is y′′ = −y. We have seen that y = sin(x) and
y = cos(x) are solutions. I claim that the general solution is

y(x) = C1 cos(x) + C2 sin(x)

for any constants C1 and C2. Check that this is, indeed, a solution. It is much more
difficult to show that there are no other solutions; you can just trust me on this.

• Values of the parameters C1 and C2 are determined by two initial conditions; tradition-
ally, y(0) and y′(0) (called initial position and initial velocity). In our case check that
C1 = y(0) and C2 = y′(0):

y(x) = y(0) cos(x) + y′(0) sin(x).

9



Sketch the solutions y(x) with y(0) = 0, y′(0) = 1 and y(0) = 1, y′(0) = 0. Observe that
they have the correct initial position and initial slope.

Wed, Feb 8

• Hooke’s Law says that

Spring Force ∝ Negative Displacement

mx′′(t) = −kx(t),

where m > 0 is the mass of the moving object and k > 0 is the stiffness of the spring.
Here x(t) is the displacement of the object from equilibrium. So the spring always wants
to move x(t) towards 0. Unlike a first order equation (such as heat), the spring equation
causes overshoot and oscillation.

• For simplicity take m = k = 1. Then we saw that the solution is

x(t) = x(0) cos t+ x′(0) sin t.

But trig functions are chameleons and there are many different ways to express the
solution.

• It is more meaningful to write

x(t) = C cos(t− α),

where C is the amplitude and α is the phase shift of the oscillation.

• Problem: Given
A cos t+B sin t = C cos(t− α),

find the “change of parameters” equations between A,B and C,α.

• Option 1: Memorize the formulas A = C cosα and B = C sinα. Then draw a right
triangle and use it to get C =

√
A2 +B2 and α = tan−1(B/A).

• Option 2: Memorize the “angle difference formula”:

cos(t− α) = cosα cos t+ sinα sin t.

Then multiply both sides by C and compare to get A = C cosα and B = C sinα:

cos(t− α) = cosα cos t+ sinα sin t

C cos(t− α) = (C cosα) cos t+ (C sinα) sin t.

• Option 3: Memorize Euler’s identity:

eit = cos t+ i sin t.

Use this to get the angle difference formula, then the formulas for A and B.
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Fri, Feb 10

• The spring equation: mx′′(t) = −kx(t). If we write ω =
√
k/m then we find the general

solution
x(t) = A cos(ωt) +B sin(ωt) = C cos(ω(t− α)).

Here ω =
√
k/m is the circular frequency, the number of full rotations per second. Stiffer

spring makes faster oscillations. Heavier object makes slower oscillations. Since a full
rotation is 2π radians, the period (number of oscillations per second) is T = 2π/ω.

• There is a homework problem about Euler’s Identity: eit = cos t + i sin t. You will use
it to derive the angle sum/difference identities.

• Euler’s identity is very important to the study of linear ODEs. For example, the general
method we will learn for solving second order linear ODEs will take the equation x′′(t) =
−x(t) and spit out the solution

x(t) = C1e
it + C2e

−it.

This is equivalent to the solution x(t) = A cos t + B sin t, but you need Euler’s identity
to see this.

• The general method to solve the second order linear ODE

x′′(t)− 5x′(t) + 6x(t) = 0

is to substitute the test function x(t) = eλt. Doing this gives

x′′(t)− 5x′(t) + 6x(t) = 0

λ2eλt + 5λeλt + 6eλt = 0

eλt(λ2 − 5λ+ 6) = 0

λ2 − 5λ+ 6 = 0.

This quadratic equation has solutions λ = 2 and 3. Hence e2t and e3t are basic solutions,
and combining them gives the general solution

x(t) = C1e
2t + C2e

3t.

Check that this works.

• Use the method on the spring equation:

mx′′(t) + kx(t) = 0.

Guess the basic solution x(t) = eλt to get mλ2 +k = 0 and hence λ = ±
√
−k/m. Hence

the general solution is

x(t) = C1 exp(
√
−k/m · t) + C2 exp(−

√
−k/m · t).

This is correct but it requires some interpretation because physically real solutions cor-
respond to k > 0 and m > 0, so that

√
−k/m is an imaginary number. This is where

Euler’s identity comes in.
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Mon, Feb 13

• The spring equation without friction is mx′′(t) = −kx(t). The general solution is

x(t) = A cos(ωt) +B sin(ωt),

where ω =
√
k/m is the frequency of oscillation.

• Now suppose there is some friction that is proportional to the velocity x′(t). Then the
spring equation becomes x′′(t) = −kx(t)− cx′(t), or

mx′′(t) + cx′(t) + kx(t) = 0

for some friction (also called damping) constant c > 0. (Section 2.4 of the textbook.)
This equation becomes much easier to solve if we use complex numbers.

• Review of (or introduction to) complex numbers: Let i be a square root of −1 so that
i2 = −1. A complex number has the form

a+ ib for some real numbers a, b.

The product of complex numbers is

(a+ ib)(c+ id) = FOIL details = (ac− bd) + i(ad+ bc).

• In order to divide, we multiply numerator and denominator by the complex conjugate:

1

a+ ib
=

1

a+ ib
· a− ib
a− ib

= FOIL details =

(
a

a2 + b2

)
+ i

(
−b

a2 + b2

)
.

• These formulas look complicated. Everything simplifies when we express complex num-
bers in polar form. Draw a+ ib as the point (a, b) in the Cartesian plane. Let r be the
distance from (0, 0) to (a, b) and let θ be the angle from the “x-axis” to (a, b), so that
a = r cos θ and b = r sin θ. Then from Euler’s identity we have

a+ ib = (r cos θ) + i(r sin θ) = r(cos θ + i sin θ) = reiθ.

• Multiplication is now much easier. Consider any two complex numbers r1e
iθ1 and r2e

iθ2

expressed in polar form. Then

r1e
iθ1r2e

iθ2 = r1r2e
iθ1+iθ2 = (r1r2)e

i(θ1+θ2).

That is, to multiply complex numbers we multiply their lengths and add their angles.

• Application. Solve the equation x3 = 1. We are looking for complex solutions x = a+ib.
If you expand (a+ ib)3 then after a lot of trial and error you will find three solutions:

x = 1 or − 1

2
+ i

√
3

2
or − 1

2
− i
√

3

2
.

12



These solutions are much easier to find if we express x = reiθ in polar form. First of all,
since x3 = 1 we see that x3 has length 1 so x must have length 1, i.e., r = 1. Then

x3 = 1

(eiθ)3 = 1

ei(3θ) = 1

cos(3θ) + i sin(3θ) = 1

cos(3θ) + i sin(3θ) = 1 + i0,

so that cos(3θ) = 1 and sin(3θ) = 0. The first equation says that 3θ = 2πk for some k
and the second says that 3θ = πn for some n. There are three solutions for θ:

θ = 0 or
2π

3
or

4π

3
.

Hence there are three solutions for x = eiθ:

x = ei0 or ei2π/3 or e4π/3

= 1 or cos(2π/3) + i sin(2π/3) or cos(4π/3) + i sin(4π/3)

= 1 or −1
2 + i

√
3
2 or −1

2 − i
√
3
2 .

So it was really a problem of trigonometry.

• The same method shows that the equation xn = 1 has n distinct complex solutions:

x = 1, ei2π/n, ei4π/n, . . . , ei2πik/n, . . . , ei2π(n−1)/n.

In the “complex plane” these are n points equidistributed around the unit circle. In
cartesian coordinates, the kth solution is

x = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
.

Unlike with n = 3, for most values of n these numbers cannot be simplified.

• I apologize for this detour but it’s necessary because complex numbers are essential to
differential equations. In principle this is all in the pre-calculus curriculum but in my
experience most students don’t see it. It will make more sense as we use it in applications.

Wed, Feb 15

• Reminder: The solution to x′′(t) = −x(t) can be expressed in at least three ways:

x(t) = A cos t+B sin t

= C cos(t− α)

= Deit + Ee−it.

The relationship between (A,B) and (C,α) is{
A = C cosα,
B = C sinα,

}
!

{
C = (homework),
α = (homework).

}
13



• The relationship between (A,B) and (D,E) comes from Euler’s identity eit = cos t +
i sin t. You will investigate this on Homework 2.

• Why do we bother with complex numbers in this course? Because they are necessary
for understanding second order ODEs. Here is the general method: To solve

ax′′(t) + bx′(t) + cx(t) = 0,

we guess the solution x(t) = eλ=t. Then substitute and solve for λ:

ax′′(t) + bx′(t) + cx(t) = 0

aλ2eλt + bλeλt + ceλt = 0

eλt(aλ2 + bλ+ c) = 0.

Since eλt is never zero, this implies that aλ2 + bλ+ c = 0. This quadratic equation for
λ has two solutions, which we can obtain from the quadratic formula:

λ1, λ2 =
−b±

√
b2 − 4ac

2a
.

Then the general solution to the ODE is

x(t) = C1e
λ1t + C2e

λ2t.

• Example: To solve x′′(t) + x(t) = 0 we substitute x(t) = eλt to get

x′′(t) + x(t) = 0

λ2eλt + eλt = 0

eλt(λ2 + 1) = 0

λ2 + 1 = 0

λ2 = −1

λ = ±i.

Hence the general solution is

x(t) = C1e
it + C2e

−it = C3 cos t+ C4 sin t,

as we already knew.

• Using the same method, the undamped oscillator mx′′(t) + kx(t) has solution

x(t) = C1e
iωt + C2e

−iωt = C3 cos(ωt) + C4 sin(ωt),

where ω =
√
k/m is the frequency of oscillation, which we also knew.

14



• Here is something new. The damped oscillator has equation mx′′(t) = −kx(t)−cx(t),
where m is the inertia (which resists acceleration), k is the stiffness (which accelerates
toward equilibrium) and c is the friction (which resists velocity).

• Example: To solve x′′(t) = −x(t)− x′(t) we substitute x(t) = eλt:

x′′(t) + x′(t) + x(t) = 0

λ2eλt + λeλt + eλt = 0

eλt(λ2 + λ+ 1) = 0

λ2 + λ+ 1 = 0

λ =
−1±

√
−3

2
quadratic formula

λ = −1

2
± i
√

3

2
.

Hence the general solution is

x(t) = C1e
(−1/2+i

√
3/2)t + C2e

(−1/2−i
√
3/2)t

= C1e
−t/2ei(

√
3/2)t + C2e

−t/2e−i(
√
3/2)t

= e−t/2
[
C1e

i(
√
3/2)t + C2e

−i(
√
3/2)t

]
= e−t/2

[
C3 cos

(√
3

2
· t

)
+ C4 sin

(√
3

2
· t

)]
.

Note that the imaginary numbers played an important role in the solution. Interpre-
tation: The spring oscillates with frequency

√
32, while the amplitude quickly decays

to zero because the whole thing is multiplied by e−t/2. The decay part makes sense
because there is friction. The exact value of the frequency is a bit of a surprise. Notice
that

√
3/2 ≈ 0.87, which is smaller than the frequency of the undamped oscillator

x′′(t) + x(t) = 0, which has frequency 1. Damping reduces the frequency.

• Too much damping: Plugging eλt into the equation x′′(t) + 5x′(t) + 6x(t) = 0 gives
λ = −2 and λ = −3, so the general solution is

x(t) = C1e
−3t + C2e

−3t.

In this case the values of λ are real so there is no oscillation. And the values are
negative so the solution decays. This happened because the friction was large.

• Qualitative Interpretation:

imaginary part of λ  oscillation,

real part of λ  growth or decay.

15



• Quantitative: mx′′(t) + cx′(t) + kx(t) = 0 has solution x(t) = C1e
λ1t + C2e

λ2t where

λ1, λ2 =
−c±

√
c2 − 4mk

2m
.

If c2 − 4mk < 0 then the square root is imaginary, so there is oscillation. Otherwise
there is no oscillation. If m, c, k are positive then the real parts of λ1, λ2 are always
< 0 so the solution will decay. To make the solution grow you need one of m, c, k to be
negative, which is non-physical.

Fri, Feb 17

• We discussed the Homework 2 solutions. Please read them: https://www.math.miami.
edu/~armstrong/311sp23/311sp23hw2sol.pdf

Mon, Feb 20

• We have seen that second order linear ODEs correspond to oscillations with damping.
This week instead of physics we will just blast through some textbook-style problems to
develop calculation skills.

• Solve the equation x′′(t) + 2x′(t) + 2x(t) = 0 with initial conditions x(0) = 1 and
x′(0) =

√
3 − 1. (This strange condition was chosen to make the answer work out

nicely.) The general method for this type of equation is to substitute x(t) = eλt and
solve for λ. Note that x(t) = eλt implies x′(t) = λeλt and x′′(t) = λ2eλt. Thus we want
to solve

x′′(t) + 2x′(t) + 2x(t) = 0

λ2eλt + 2λeλt + 2eλt = 0

eλt(λ2 + 2λ+ 2) = 0

λ2 + 2λ+ 2 = 0. because eλt is never zero

This is called the characteristic equation of x′′(t) + 2x′(t) + 2x(t) = 0. According to the
quadratic formula, the roots are

λ1, λ2 =
−2±

√
(−2)2 − 4(1)(2)

2(1)
=
−2±

√
−4

2
=
−2± 2i

2
= −1± i.

Hence the general solution of x′′(t) + 2x′(t) + 2x(t) = 0 is

x(t) = c1e
λ1t + c2e

λ2t = c1e
(−1+i)t + c2e

(−1−i)t,

for some constants c1 and c2.
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• To express this in terms of real numbers, we note that

e(−1+i)t = e−t+it = e−teit and e(−1−i)t = e−t−it = e−te−it,

so that

x(t) = c1e
−teit + c2e

−te−it

= e−t
(
c1e

it + c2e
−it) .

Then substituting eit = cos t+ i sin t and e−it = cos t− i sin t gives

x(t) = e−t (c3 cos t+ c4 sin t)

for some new constants c3 and c4. (We could express c3, c4 in terms of c1, c2 but there
is no reason to do this.)

• Finally, we will use the initial conditions x(0) = 1 and x′(0) =
√

3 − 1 to solve for c3
and c4. First we have

1 = x(0) = e0(c3 cos(0) + c3 sin(0)) = c3.

To input x′(0) we first need to compute x′(t) using the product rule:

x′(t) =
d

dt
e−t (c3 cos t+ c4 sin t)

= e−t(−c3 sin t+ c4 cos t)− e−t(c3 cos t+ c4 sin t).

Then we substitute x′(0) =
√

3− 1:

√
3− 1 = x′(0) = e0(−c3 sin 0 + c4 cos 0)− e0(c3 cos 0 + c4 sin 0)

= c4 − c3.

Since c3 = 1 this gives c4 =
√

3, so the final solution is

x(t) = e−t
(

cos t+
√

3 sin t
)
.

• Why did I choose the initial conditions x(0) = 1 and x′(0) =
√

3 − 1? Because this
makes the amplitude and phase have nice formulas:

x(t) = e−t · 2 cos
(
t− π

3

)
.

Remark: The amplitude goes to zero as t → ∞ because e−t goes to zero. In terms of
physics, we can think of this as a damped oscillator.

17



• In this example we worked out all of the steps, but in practice you will learn how to
skip through them. If the characteristic equation has roots λ1, λ2 = a± ib then you will
immediately know that the general solution is

x(t) = eat(c1 cos(bt) + c2 sin(bt)).

We get growth or decay from the real part a and we get oscillation from the imaginary
part ib.

• Here’s an example with no oscillation. Textbook Problem 2.3.21:

y′′ − 4y′ + 3y = 0; y(0) = 7, y′(0) = 11.

I assume that the independent variable is called x. Substitute y(x) = eλx to get charac-
teristic equation

λ2 − 4λ+ 3 = 0

(λ− 1)(λ− 3) = 0.

The characteristic roots are 1 and 3 so the general solution is

y(x) = c1e
1x + c2e

3x.

To find c1 and c2 we first compute y′(x) = c1e
x + 3c2e

3x to get{
y(x) = c1e

1x + c2e
3x,

y′(x) = c1e
1x + 3c2e

3x.

Substituting y(0) = 7 and y′(0) = 11 gives a system of two equations in two unknowns:{
7 = c1 + c2,

11 = c1 + 3c2.

Subtract these equations to get 4 = 2c2 so that c2 = 2 and then back-substitute to
obtain c1 = 5. The final solution is

y(x) = 5ex + 2e3x.

• Next time we will discuss what happens when the characteristic equation has a repeated
root. Preview: The equation y′′−4y′+4 = 0 has characteristic equation λ2−4λ+4 = 0
which factors as (λ − 2)2 = 0. Thus there is only one characteristic root λ1 = 2. We
know that y1(x) = e2x is a solution, but we need two basic solutions! The trick is
to observe that y2(x) = xe2x also works.

18



Wed, Feb 22

• The general story: Consider the second order, linear, homogeneous ODE with constant
coefficients:

mx′′ + γx′ + kx = 0.

To find the general solution we first look for basic solutions of the form x(t) = eλt.
Substituting this into the equation and simplifying gives the characteristic equation:

mλ2 + γλ+ k = 0,

which in general has two solutions:

λ1, λ2 =
−γ ±

√
γ2 − 4mk

2m
.

There are three cases.

• If γ2 − 4mk > 0 then
√
γ2 − 4mk is real and there are two distinct real roots. The

general solution is
x(t) = c1e

λ1t + c2e
λ2t.

• If γ2−4m < 0 then there are two distinct complex roots, which we can write as λ1, λ2 =
a± ib for some real numbers a, b. Then the general solution is

x(t) = eat(c1 cos(bt) + c2 sin(bt)).

Note that a causes growth/decay and b causes oscillation.

• If γ2 − 4mk = 0 then then are two equal real roots λ1 = λ2 = −γ/2m. In this case the
general solution is

x(t) = c1e
λt + c2te

λ1t.

• Where did the extra solution teλt come from? I would like to explain this, but for
now let’s just check that it works in a special case. Consider the ODE x′′ + 2x′ + x = 0
with characteristic equation

λ2 + 2λ+ 1 = 0

(λ+ 1)2 = 0.

This equation has a repeated root λ = −1, so I claim that the general solution is

x(t) = c1e
−t + c2te

−t.

We already know that e−t satisfies the equation. (That’s the whole point of the charac-
teristic equation.) Let’s check that x(t) = te−t also works. First we note that

x(t) = te−t

x′(t) = −te−t + e−t = (−t+ 1)e−t
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x′′(t) = [(−t+ 1)e−t]′

= −(−t+ 1)e−t − 1e−t = (t− 2)e−t.

It follows that

x′′ + 2x′ + x = (t− 2)e−t + 2(−t+ 1)e−t + te−t

= e−t [(t− 2) + 2(−t+ 1) + t]

= e−t · 0
= 0,

as desired. So it works.

• We’ll see why it works later. For now we’ll just memorize the rule. (When people feel
ashamed about memorizing tricks without understanding, they call it an ansatz, which
makes it sound more impressive.)

• Then we did a couple of problems from the homework.

Fri, Feb 24

• Next week:

– Mon: Discuss Homework 3

– Wed: Review

– Fri: Exam

• Today I will give a preview of what comes after the exam. Recall that mx′′ + kx = 0
is an undamped oscillator and mx′′ + γx′ + kx = 0 is a damped oscillator. I should say
that this is a free oscillator with no external forces acting on it.

• If an external force f(t) acts on the system then the equation becomes

(mass)(acceleration) = (force)

(mass)(acceleration) = (internal forces) + (external forces)

(mass)(acceleration) = (stiffness and friction) + (external forces)

mx′′(t) = −kx(t)− γx′(t) + (external forces)

mx′′(t) + γx′(t) + kx(t) = (external forces)

mx′′(t) + γx′(t) + kx(t) = f(t).

The free oscillator corresponds to f(t) = 0, i.e., no external forces.

• First example: Maybe the spring is hanging vertically, with x(t) corresponding to “up”.
Then the mass at the end of the spring experiences a constant gravitational force −gm:

mx′′(t) + γx′(t) + kx(t) = −gm.
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To emphasize the math, let’s make the constants simple:

x′′ + x = 7.

Later we will see that the general solution has the form

x(t) = xh(t) + xp(t),

where xp(t) is any one particular solution and xh(t) is the general solution of the
associated “homogeneous equation” x′′ + x = 0. We are very familiar with the homoge-
neous solution:

xh(t) = c1 cos t+ c2 sin t.

How can we find a particular solution xp(t)? We will learn general methods. The first
is the method of undetermined coefficients, which really just means “make an educated
guess”. When the right hand side is a constant, the educated guess is a constant.
Suppose that xp(t) = c for some constant c, so x′p(t) = 0 and x′′p(t) = 0. If xp(t) satisfies
the equation then we have

x′′p(t) + xp(t) = 7

0 + c = 7

c = 7.

And, indeed, we can check that xp(t) = 7 is a solution. So the general solution is

x(t) = xh(t) + xp(t) = c1 cos t+ c2 sin t+ 7.

This just describes oscillations around the new equilibrium x = 7.

• Similarly, a hanging spring just oscillates around a new equilibrium, which is lower than
it would be without gravity.

• Way more interesting: Periodic forcing. Suppose now that the spring is subject to a
periodic force f(t) = cos(ωt), so that

x′′ + x = cos(ωt).

Again, the solution is x(t) = xh(t) + xp(t) = c1 cos t + c2 sin t + xp(t). There are a few
different ways to find a particular solution xp(t):

– method of undetermined coefficients,

– variation of parameters,

– Laplace transforms.

We’ll discuss this later. For lack of time I’ll just tell you the solution:

x(t) = c1 cos t+ c2 sin t+

(
1

1− ω2

)
cos(ωt).

Note that the solution explodes when ω approaches 1. This is called resonance. The
natural frequency of the unforced oscillator x′′ + x = 0 is 1. If we shake the spring at a
frequency close to 1 then the amplitude will grow. If ω is too close to 1 then the spring
will break. Engineers must learn to avoid this.
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Mon, Feb 27

• We discussed the Homework 3 solutions. Please read the solutions:

https://www.math.miami.edu/~armstrong/311sp23/311sp23hw3sol.pdf

March

Wed, Mar 1

• We discussed the practice problems for the exam. Please read the solutions:

https://www.math.miami.edu/~armstrong/311sp23/311sp23exam1practice_

solutions.pdf

Fri, Mar 3

Exam day.

Mon, Mar 6

• Moving on. The simplest kind of equation that we don’t know how to solve is

ax′′(t) + bx′(t) + cx(t) = f(t),

for some constants a, b, c and some nonzero function f(t). We will learn at least three
methods to solve this equation.

• Let me take this opportunity to introduce some general theory. An operator L is a rule
that sends functions to functions:

L : functions→ functions

Notation: The operator L sends the function y(x) to L[y(x)]. We call L a linear operator
if it satisfies the following two properties:

– for any function y(x) and constant C we have

L[Cy(x)] = CL[y(x)].

– for any two functions y1(x) and y2(x) we have

L[y1(x) + y2(x)] = L[y1(x)] + L[y2(x)].

• You have already been working with linear operators without realizing it. For example,
the derivative operator L[y(x)] = y′(x) is linear. Indeed, you learned in Calc I that

L[Cy(x)] = (Cy(x))′ = Cy′(x) = CL[y(x)]
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and

L[y1(x) + y2(x)] = (y1(x) + y2(x))′ = y′1(x) + y′2(x) = L[y1(x)] + L[y2(x)].

For the same reasons, the n-th derivative operator L[y(x)] = y(n)(x) is linear.

• For any constants a, b, c the operator L[y(x)] = ay′′(x) + by′(x) + cy(x) is linear.

• For any function P (x) the operator L[y(x)] = P (x)y(x) that multiplies y(x) by P (x)
linear. Indeed, we have

L[Cy(x)] = P (x)Cy(x) = CP (x)y(x) = CL[y(x)]

and

L[y1(x) + y2(x)] = P (x)(y1(x) + y2(x))

= P (x)y1(x) + P (x)y2(x)

= L[y1(x)] + L[y2(x)].

• Putting all of these together, the most general linear operator has the form

L[y(x)] = P0(x)y(n)(x) + P1(x)y(n−1)(x) + · · ·+ Pn−1(x)y′(x) + Pn(x)y(x)

for some functions P0(x), P1(x), . . . , Pn(x).

• Examples of non-linear operators:

L[y(x)] = 5,

L[y(x)] = y(x)2,

L[y(x)] = y′(x)y(x).

Constant terms and products of derivatives of y(x) are not linear.

• A linear ODE has the form
L[y(x)] = f(x)

for some linear operator L and some function f(x). We have good methods to solve
linear ODEs. Non-linear ODEs are impossible to solve exactly, except for some small
examples such as y′(x) − y(x)2 = 0, which you saw on exam. The general method to
deal with non-linear equations is to “linearize” them. So the theory of linear ODEs is
of central importance.

• The general method. To solve the linear equation L[y(x)] = f(x).

(1) Let yc(x) be the general solution of the associated homogeneous equation

L[y(x)] = 0.

The letter c stands for “complementary”, which is the word our textbook uses for
homogeneous solutions. I don’t like that word, but oh well.
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(2) Let yp(x) be any one particular solution of L[y(x)] = f(x).

(3) Then the general solution of L[y(x)] = f(x) is

y(x) = yc(x)︸ ︷︷ ︸
general homogeneous solution

+ yp(x)︸ ︷︷ ︸
one particular solution

.

• Let’s see an example. On the exam you solved the equation y′(x) = x + y(x) using
the method of integrating factors. We can rewrite this equation as L[y(x)] = x, for the
linear operator L[y(x)] = y′(x)− y(x).

(1) The associated homogeneous equation is L[y(x)] = 0, i.e., y′(x) − y(x) = 0, which
has general solution

yc(x) = Cex.

as you well know.

(2) Now we just need to find one particular solution of L[y(x)] = x. The quickest
method is an inspired guess called the method of undetermined coefficients. Since
the right hand side is a polynomial of degree 1, we look for a polynomial solution
of degree 1: yp(x) = Ax+B. And this does work:

y′p(x)− yp(x) = x

(Ax+B)′ − (Ax+B) = x

A− (Ax+B) = x

−Ax+ (A−B) = 1x+ 0.

Thus we can take A = −1 and B = −1 to get particular solution yp(x) = −x− 1.

(3) The general solution of L[y(x)] = x is

y(x) = yc(x) + yp(x) = Cex + (−x− 1).

• For first order linear equations y′(x) + P (x)y(x) = f(x) (such as the previous example)
we already had the method of integrating factors. But for second order equations y′′(x)+
P (x)y′(x) +Q(x)y(x) = f(x) we do not yet have any method.

• Example. Consider the second order linear equation y′′(x) + y(x) = x.

(1) The associated homogeneous equation y′′(x) + y(x) = 0 has general solution

yc(x) = A cosx+B sinx,

as you well know.

(2) Now we need a particular solution yp(x). Since the right side x is a polynomial of
degree 1, the method of undetermined coefficients suggest yp(x) = Cx + D. And
this does work:

y′′p(x) + yp(x) = x
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(Cx+D)′′ + (Cx+D) = x

0 + Cx+D = x.

Taking C = 1 and D = 0 gives the solution yp(x) = x.

(3) Hence the general solution of y′′(x) + y(x) = x is

y(x) = yc(x) + yp(x) = A cosx+B sinx+ x.

That’s something new.

Wed, Mar 8

• Review: We only know how to solve linear ODEs. A linear ODE has the form

L[y(x)] = f(x),

where L is a linear operator. A linear operator must satisfy L[Cy(x)] = CL[y(x)] and
L[y1(x) + y2(x)] = L[y1(x)] + L[y2(x)]. The most general linear operator looks like

L[y(x)] = P0(x)y(x) + P1(x)y′(x) + · · ·+ Pn(x)y(n)(x),

for some functions P0(x), . . . , Pn(x).

• The general solution of a linear equation L[y(x)] = f(x) is y(x) = yc(x) + yp(x), where
yc(x) is the general solution of the homogeneous equation L[y(x)] = 0 and yp(x) is any
one particular solution of L[y(x)] = f(x).

• Example from last time: y′ − y = x. The general solution of the homogeneous equation
y′ − y = 0 is y(x) = Cex. To find a particular solution to y′ − y = x we guess that
yp(x) = Ax + B is a solution for some constants A and B. (This guess is called the
“method of undetermined coefficients”.) Substituting this guess into the equation gives
A = −1 and B = −1, so the guess worked. The general solution is

y(x) = yc(x) + yp(x) = Cex + (−x− 1).

• The “method of undetermined coefficients” is not really a method; it is just some rules
for guessing, and it only works for certain functions f(x). You can find these rules on
pages 155 and 156 of the textbook. I won’t make you memorize these rules. If I want
you to use the method I will just tell you what to guess.

• Example from page 152:
y′′ + 4y = 3x3.

The homogeneous equation y′′+4y = 0 has general solution y(x) = c1 cos(2x)+c2 sin(2x),
obtained using previous methods. To find one particular solution, we note that the right
hand side 3x3 is a polynomial of degree 3, so we guess a polynomial of degree 3:

Guess: yp(x) = Ax3 +Bx2 + Cx+D.
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Substituting this guess into y′′+4y = 3x2 allows us to solve for A,B,C,D. The solution
is A = 3/4, B = 0, C = −9/8 and D = 0, so that yp(x) = 3

4x
3 − 9

8x is a solution. The
general solution of y′′ + 4y = 3x2 is

y(x) = yc(x) + yp(x) = c1 cos(2x) + c2 sin(2x) +
3

4
x3 − 9

8
x.

• The last example was just a textbook problem. Now an actually interesting example:

x′′(t) + x(t) = cos(ωt).

The homogeneous equation is an undamped oscillator: x′′(t) + x(t) = 0 with solution

xc(t) = c1 cos t+ c2 sin t.

In the non-homogeneous equation x′′(t) + x(t) = cos(ωt), we are applying a periodic
external force with frequency ω. Idea: The system wants to vibrate at its “natural
frequency” 1. We are trying to force it to vibrate at frequency ω. What will happen?

The right hand side has the form A cos(ωt) +B sin(ωt), so the method of undetermined
coefficients guesses a solution of the same form:

xp(t) = A cos(ωt) +B sin(ωt).

We compute

x′p(t) = −Aω sin(ωt) +Bω cos(ωt),

x′′p(t) = −Aω2 cos(ωt)−Bω2 sin(ωt).

Note that x′′p(x) = −ω2xp(t). That’s a lucky simplification. Plug this guess into x′′(t) +
x(t) = cos(ωt) to get

x′′p(t) + xp(t) = cos(ωt)

−ω2xp(t) + xp(t) = cos(ωt)

xp(t)(1− ω2) = cos(ωt)

xp(t) =
1

1− ω2
· cos(ωt).

The lucky simplification allowed us to jump right to the solution without solving for A
and B directly. You can also do it the slow way.

The general solution of x′′(t) + x(t) = cos(ωt) is

x(t) = c1 cos t+ c2 sin t+
1

1− ω2
· cos(ωt).

If the forcing frequency ω is very far from the natural frequency 1 then 1/(1 − ω2) is
close to 0 and the solution is close to the unforced solution:

x(t) ≈ c1 cos t+ c2 sin t.

If the forcing frequency ω is close to the natural frequency 1 then 1/(1−ω2) is huge and
the forcing term dominates. If ω is too close to 1 then the system will explode. This is
called “resonance”.
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Fri, Mar 10

• Consider a linear ODE:
L[y(x)] = f(x).

The general solution is y(x) = yc(x) + yp(x) where yp(x) is any one particular solu-
tion and yc(x) is the general solution of the associated homogeneous equation
L[y(x)] = 0.

• We already know how to solve the homogeneous equation L[y(x)] = 0. (At least when
L has constant coefficients; non-constant coefficients lead to new kinds of functions such
as Bessel functions.) Thus our new problem is to find one particular solution yp(x).

• We will learn three methods:

(1) Undetermined Coefficients. If f(x) has a simple form then we can make an ed-
ucated guess for yp(x) then solve a system of linear equations to get the parameters.
Upside: When it works it is often fast. Downside: Guessing involves memorization
and sometimes it doesn’t work.

(2) Variation of Parameters. See below. This method always works but it requires
us to solve some possibly difficult integrals. Fine for computers, but bad for humans.

(3) Laplace Transforms. This is a powerful method for hand computation. With
practice it is more powerful than the method of undetermined coefficients and the
computations are not so bad. Downside: You will need a table to look up the
transforms. (There is no free lunch.)

• Method of Undetermined Coefficients. Consider L[y(x)] = f(x) where L has
constant coefficients. Here are the good guesses:

– If f(x) is a polynomial of degree n let yp(x) be a polynomial of degree n.

– If f(x) = A cos(ωx) +B sin(ωx) let yp(x) = C cos(ωx) +D cos(ωx).

– If f(x) = erx let yp(x) = Cerx.

“Rule 2” on page 155 summarizes these guesses.

• Example: y′′ + 16y = e3x. The general solution to y′′ + 16y = 0 is

yc(x) = c1 cos(4x) + c2 sin(4x).

To find a particular solution we guess yp(x) = Ce3x and substitute to get

y′′p(x) + 16yp(x) = e3x

9Ce3x + 16Ce3x = e3x

25Ce3x = eex

25C = 1

C = 1/25.
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Hence yp(x) = 1
25e

3x is a solution. The guess worked because all the derivatives of e3x

have the form (constant)e3x, so e3x is a common factor of both sides. Hence the general
solution of y′′ + 16y = e3x is

y(x) = yc(x) + yp(x) = c1 cos(4x) + c2 sin(4x) +
1

25
e3x.

There are two parameters because the ODE has second order.

• Example: x′′(t) + 9x(t) = 80 cos(5t). The general solution of x′′(t) + 9x(t) = 0 is

xc(t) = c1 cos(3t) + c2 sin(3t).

Since the right hand side has the form cos(5t) we make the guess

xp(t) = A cos(5t) +B sin(5t).

We know the guess will work because every derivative of xp(t) still has the same form.
(In fact, since x′(t) does not appear on the left, we could just take xp(t) = A cos(5t),
but I’ll show the general method.) Compute

x′p(t) = −5A sin(5t) + 5B cos(5t),

x′′p(t) = −25A cos(5t)− 25B sin(5t),

then substitute:

80 cos(5t) = x′′p(t) + 9xp(t)

= (−25A cos(5t)− 25B sin(5t)) + 9(A cos(5t) +B sin(5t))

= (−16A) cos(5t) + (−16B) sin(5t).

Comparing coefficients gives −16A = 80 and −16B = 0, hence A = −5 and B = 0. The
general solution of x′′(t) + 9x(t) = 30 cos(5t) is

x(t) = xc(t) + xp(t) = c1 cos(3t) + c2 sin(3t)− 5 cos(5t).

Now suppose initial conditions x(0) = 0 and x′(0) = 0. Substituting x(0) = 0 gives
c1 = 5 and substituting x′(0) = 0 gives (after a bit of work) c2 = 0, hence the solution is

x(t) = xc(t) + xp(t) = 5 cos(3t)− 5 cos(5t).

Interpretation: A spring with natural frequency 3 is being forced to vibrate with fre-
quency 5. The solution is a superposition of these two frequencies.

• Intro to Variation of Parameters. To solve L[y(x)] = f(x), first find the general
homogeneous solution

yc(x) = c1y1(x) + c2y2(x).
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(For simplicity, we assume that L has second order.) Then we can always find a
particular solution of the form

yp(x) = u1(x)y1(x) + u2(x)y2(x)

for some functions u1(x) and u2(x). (That is, we let the parameters vary.) In fact, there
are general formulas for u1(x) and u2(x):

u1(x) = −
∫
y2(x)f(x)

W (x)
dx,

u2(x) = +

∫
y1(x)f(x)

W (x)
dx,

where W (x) is the “Wronskian function”

W (x) = y1(x)y′2(x)− y′1(x)y2(x).

So the general solution of L[y(x)] = f(x) is

y(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)

W (x)
dx.

• Example: The basic solutions of x′′(t)+9x(t) = 0 are x1(t) = cos(3t) and x2(t) = sin(3t).
The Wronskian function is

W (t) = x1(t)x
′
2(t)− x′1(t)x2(t)

= 3 cos2(3t) + 3 sin2(3t)

= 3.

Hence the general solution of x′′(t) + 9x(t) = 80 sin(5t) is

x(t) = − cos(3t)

∫
sin(3t) · 80 cos(5t)

3
dt+ sin(3t)

∫
cos(3t) · 80 cos(5t)

3
dt.

The parameters c1 and c2 will come from the two integrals. Is this equivalent to our
previous solution? Yes, but it’s pretty hard to see that. This method is good for
computers; not so good for humans.

• Because this method is not good for humans, I won’t dwell on it for long. We will quickly
move on to the method of Laplace transforms, which is good for humans.

Mon, Mar 20

• Welcome back from spring break. (Does this need an exclamation point?)

• Today: One example of undetermined coefficients; then some variation of parameters.
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• Solve x′′(t) + 1600x(t) = −336 sin(44t) with x(0) = 0 and x′(0) = 84. (I reverse-
engineered this problem so the solution look nice.)

– The homogeneous equation x′′(t) + 1600x(t) = 0 has general solution

xc(t) = c1 cos(40t) + c2 sin(40t).

– To find a non-homogeneous solution we guess

xp(t) = A cos(44t) +B sin(44t).

Substitute this into x′′(t) + 1600x(t) = −336 sin(44t) and simplify to obtain A = 0
and B = 1, hence

xp(t) = sin(44t).

(This worked out because −442 + 1600 = −336.)

– Hence the general solution is

x(t) = xc(t) + xp(t) = c1 cos(40t) + c2 sin(40t) + sin(44t).

– Substitute the initial conditions x(0) = 0 and x′(0) = 84 to get c1 = 0 and c2 = 1.
(This works out because 84 = 40 + 44.) Hence the solution is

x(t) = sin(40t) + sin(44t).

• Interpretation of the solution. A simple oscillator with natural frequency 40 is
subjected to a periodic force with frequency 44. Here is the graph of the solution:

What’s going on here? To understand this we must consider the trig identities:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,
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sin(u+ v) + sin(u− v) = 2 sinu cos v.

Substitute α = u+ v and β = u− v to get

sinα+ sinβ = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
.

This identity explains our solution. Substitute α = 44t and β = 40t to get

x(t) = sin(44t) + sin(40t) = 2 sin(42t) cos(2t).

Since 42 is much bigger than 2, this looks like a sine wave oscillating quickly between
the values 2 cos(2t) and −2 cos(2t). Example: If two musical notes of frequencies 400 Hz
and 440 Hz are played together, you will hear a note with frequency 420 Hz switching
on and off with frequency 20 Hz. This is the phenomenon of “beats”.

• The method of undetermined coefficients is just an educated guess. It only works
when the non-homogeneous term has a nice form.

• The method of variation of coefficients always works, but the computations are more
difficult.

• Simple Example: Solve y′(x) + y(x) = ex using variation of parameters.

– The homogeneous equation y′(x) + y(x) = 0 has general solution

yc(x) = Ce−x.

– To find a particular solution, turn the parameter into a function:1

yp(x) = u(x)e−x.

– Substitute into the equation and use the product rule to get

y′′p(x) + yp(x) = ex

[u′(x)e−x −�����u′(x)e−x] +�����
u(x)e−x = ex

u′(x)e−x = ex

u′(x) = e2x

u(x) =

∫
e2x dx

u(x) =
1

2
e2x.

(Any antiderivative of e2x is fine.) Hence we obtain

yp(x) = u(x)e−x =
1

2
e2xe−x =

1

2
ex,

and the general solution of the linear equation y′(x) + y(x) = ex is

y(x) = yc(x) + yp(x) = Ce−x +
1

2
ex.

1I would call the function C(x), but the notation u(x) seems standard.
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• Remark: The method of variation of parameters for first order equations is secretly the
same as the method of integrating factors. For second order equations, variation of
parameters gives us something new.

• Solve x′′(t) + 1600x(t) = −336 sin(44t) using variation of parameters:

– The general homogeneous solution is xc(t) = c1 cos(40t) + c2 sin(40t).

– To find a particular solution, turn the parameters into functions:

xp(t) = u1(t) cos(40t) + u2(t) sin(40t).

– The rest you do not want to do by hand! After substituting and making the
simplifying assumption that u′1(t) cos(40t) + u′2(t) sin(40t) = 0 we will obtain

−40u′1(t) sin(40t) + 40u′2(t) cos(40t) = −336 sin(44t).

Solve these two simultaneous equations to obtain u′1(t) and u′2(t) then integrate to
get u1(t) and u2(t). The answer will look like a big mess.

– But we already found the particular solution xp(t) = sin(44t) using the method
of undetermined coefficients, which is a much better method to solve this prob-
lem. (Variation of parameters is usually used when the method of undetermined
coefficients doesn’t work.)

• Next time I’ll show you a toy example of a second order equation for which the method
of variation of parameters can be done by hand.

Wed, Mar 22

• Variation of Parameters. Consider a general second order linear equation:

L[y(x)] = f(x)

y′′(x) + P (x)y′(x) +Q(x)q(x) = f(x),

for some functions P (x), Q(x), f(x). Suppose the general solution of L[y(x)] = 0 is

yc(x) = c1y1(x) + c2y2(x).

Then we can find a particular solution of L[y(x)] = f(x) of the form

yp(x) = u1(x)y1(x) + u2(x)y2(x),

for some functions u1(x), u2(x). Our goal is to solve for u1(x) and u2(x). In order to do
this we will need two equations. Substituting yp(x) into L[y(x)] = f(x) only gives
one equation, therefore we are free to impose any second equation that we choose. It is
most convenient to assume

u′1(x)y1(x) + u′2(x)y2(x) = 0.
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(This is just a good trick.) Then we have

y′p(x) = [u1y1 + u2y2]
′

= u′1y1 + u1y
′ + u′2y2 + u′2y2

= u1y
′
1 + u2y

′
2 + (u′1y1 + u′2y2)

= u1y
′
1 + u2y

′
2 + 0 trick

= u1y
′
1 + u2y

′′
2

and

y′′p(x) = [u1y
′ + u2y

′
2]
′

= u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2

= (u′1y
′
1 + u′2y

′
2) + (u1y

′′
1 + u2y

′′
2).

Recall that each of y1(x) and y2(x) is a solution of y′′(x) +P (x)y′(x) +Q(x) = 0. After
substituting our expressions for y′′p(x) and y′p(x) into the equation y′′p + Py′p +Qyp = f
and simplifying, we obtain

u′1(x)y′1(x) + u′2(x)y′2(x) = f(x).

Thus we have two equations for the two unknown functions u′1 and u′2:{
u′1y1 + u′2y2 = 0,
u′1y
′
1 + u′2y

′
2 = f.

As long as y1 and y2 are independent2 then this system of equations has a unique solution
for u′1 and u′2: {

u′1 = y2f/(y1y
′
2 − y′1y2),

u′2 = −y1f/(y1y′2 − y′1y2).

(Don’t memorize these formulas. It’s easier just to solve the equations in each particular
example.) Then we simply (maybe not so simply) integrate to get u1 and u2.

• This method is quite general but the computations can be difficult. Here is a very simple
example:

y′′(x)− 3y′(x) + 2y(x) = 1,

so P (x) = −3, Q(x) = 2 and f(x) = 1. Since λ2 − 3λ+ 2 = (λ− 1)(λ− 2), the general
homogeneous solution is

yc(x) = c1e
x + c2e

2x.

Hence there exists a particular solution of the form

yp(x) = u1(x)ex + u2(x)e2x,

2Technically, we require y1y
′
2 − y′1y2 6= 0. This is guaranteed when c1y1 + c2y2 is the general solution of

the homogeneous equation L[y(x)] = 0.
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where the functions u1(x) and u2(x) satisfy the equations{
u′1y1 + u′2y2 = 0,
u′1y
′
1 + u′2y

′
2 = f.

With y1 = ex, y2 = e2x and f = 1, these become{
u′1e

x + u′2e
2x = 0,

u′1e
x + 2u′2e

2x = 1.

Subtracting the equations gives u′2e
2x = 1, hence u′2 = e−2x and u2 = −e2x/2. Then

back-substituting gives u′1e
x = −u′2e2x = −e−2xe2x = −1, hence u′1 = −e−x and u1 =

e−x. (Since we are looking for one particular solution we can pick any antiderivatives of
u′1 and u′2.) Finally, we obtain a particular solution:

yp(x) = u1(x)ex + u2(x)e2x = e−xex − 1

2
e−2xe2x = 1− 1

2
=

1

2
.

• That solution is so simple, there must have been an easier way to get it. Indeed, since
f(x) = 1 is constant, the method of undetermined coefficients tells us to guess yp(x) = A
constant. Then y′p(x) = 0 and y′′p(x) = 0 and substituting gives

y′′p(x)− 3y′p(x) + 2yp(x) = 1

0− 3 · 0 + 2 ·A = 1

A = 1/2.

The method of variation of coefficients is not that valuable when we already have a good
guess; it is valuable in cases when we don’t have a good guess, i.e., when the method
of undetermined coefficients fails. But those cases are generally too complicated to do
by hand, and you won’t see them on an exam.

• Laplace Transforms. Finally. I have teased the method of Laplace transforms and
now we begin to discuss it. This is the content of Chapter 4.

• The Laplace transform is a linear operator L defined as follows:

L [f(t)] =

∫ ∞
0

e−stf(t) dt.

This looks bad but it is quite useful and convenient to work with. The integral goes
back to Euler and Laplace in the late 1700s but the general method was developed by
practicing engineers such as Oliver Heaviside in the early 1900s.

• We will spend several lectures learning this method. Today I want to go far enough to
show you one example. I’ll skip some details and we’ll go over them next time.
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• First we note that

L [eat] =

∫ ∞
0

e−steat dt = · · · details · · · = 1

s− a
.

Then we note that

L [f ′(t)] =

∫ ∞
0

e−stf ′(t) dt = · · · details · · · = sL [f(t)]− f(0)

L [f ′′(t)] =

∫ ∞
0

e−stf ′′(t) dt = · · · details · · · = s2L [f(t)]− sf(0)− f ′(0).

• Now we know enough to solve our first problem. Consider the equation

x′′(t)− 3x′(t) + 2x(t) = 1 with initial conditions x(0) = x′(0) = 0.

Let X(s) = L [x(t)] denote the Laplace transform of x(t). Applying L gives

L [x′′(t)− 3x′(t) + 2x(t)] = L [1]

L [x′′(t)]− 3L [x′(t)] + 2L [x(t)] = L [e0t]

s2X(s)− 3sX(s) + 2X(s) =
1

s

X(s) =
1

s(s2 − 3s+ 2)

=
1

s(s− 1)(s− 2)

=
1

2
· 1

s
− 1 · 1

s− 1
+

1

2
· 1

s− 2
. partial fractions

We recognize these summands as Laplace transforms:

L [1] =
1

s
, L [et] =

1

s− 1
, L [e2t] =

1

s− 2
.

Hence we obtain

X(s) =
1

2
· 1

s
− 1 · 1

s− 1
+

1

2
· 1

s− 2

L [x(t)] =
1

2
L [1]−L [et] +

1

2
L [e2t]

L [x(t)] = L

[
1

2
− et +

1

2
e2t
]

x(t) =
1

2
− et +

1

2
e2t.

by applying the inverse transform L −1 to both sides. That’s a pretty typical calcula-
tion. It’s slower than the easy guess x(t) = constant, but it’s faster than variation of
parameters.
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Fri, Mar 24

• The Laplace transform is a certain linear operator with miraculous properties. Given
any (reasonably nice) function f(t), the Laplace transform is defined by

L [f(t)] =

∫ ∞
0

e−stf(t) dt.

– Note that L [f(t)] is a function of s. It is common to write F (s) = L [f(t)].

– The letters s is not important. However, we usually think of t as time since the
integral goes from t = 0 to t =∞. (That is, we don’t consider t < 0.)

• “The calculus” is really just a bag of tricks for computing derivatives, developed by
Newton and Leibniz in the mid 1600s. “The method of Laplace transforms” is a bag of
tricks for solving ODEs, developed by Heaviside in the late 1800s. So we could also call
it “the Heaviside calculus”.

• The Newton-Leibniz calculus is based on a few rules, such as (c1f1(t) + c2f2(t))
′ =

c1f
′
1(t) + c2f

′
2(t) and (xn)′ = nxn−1 and (f(t)g(t))′ = f ′(t)g(t) + f(t)g′(t). Our goal is

to find the basic rules of Heaviside calculus.

• The most important rule is that L is linear, which follows from the fact that integration
is linear:

L [c1f1(t) + c2f2(t)] =

∫ ∞
0

e−st[c1f1(t) + c2f2(t)] dt

= c1

∫ ∞
0

e−stf1(t) dt+ c2

∫ ∞
0

e−stf2(t) dt

= c1L [f1(t)] + c2L [f2(t)].

• The second most important rule is L [eat] = 1/(s− a). Proof:

L [eat] =

∫ ∞
0

e−steat dt

=

∫ ∞
0

e(a−s)t dt

=
1

a− s

[
e(a−s)t

]∞
0

=
1

a− s
[0− 1]

=
1

s− a
.

This includes the special case L [1] = L [e0t] = 1/(s− 0) = 1/s.

• The third most important rule is L [f ′(t)] = sL [f(t)]− f(0). Proof:

L [f ′(t)] =

∫ ∞
0

e−stf ′(t) dt
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=

∫
udv u = e−st and v = f(t)

= uv −
∫
vdu

= e−stf(t)
∣∣∞
0
−
∫ ∞
0
−se−stf(t) dt

= e−∞f(∞)− f(0) + s

∫
e−stf(t) dt

= 0− f(0) + sL [f(t)].

In this calculation we assumed that s > 0 so e−st → 0 as t → ∞ and we assumed that
f(t) grows slower than an exponential so that e−stf(t)→ 0 as t→∞.

• These three rules are already enough to solve some simple ODEs. Example:

x′(t)− x(t) = 0.

Let X(s) = L [x(t)]. Apply L to both sides:

L [x′(t)− x(t)] = L [0]

L [x′(t)]−L [x(t)] = 0 (L [0] = 0)

sX(s)− x(0)−X(s) = 0

(s− 1)X(s) = x(0)

X(s) = x(0)
1

s− 1

x(t) = L −1
[
x(0)

1

s− 1

]
= x(0)L −1

[
1

s− 1

]
= x(0)et.

Remark: Here we assumed that the inverse transform L −1 exists. This is true but it is
very difficult to calculate from scratch. Instead we will rely on reverse table lookup. In
this case we recognized 1/(s− 1) as the transform of et.

• Next rule: If L [f(t)] = F (s) then L [f ′′(t)] = s2F (s) − sf(0) − f ′(0). Proof: Let
g(t) = f ′(t). Then

L [f ′′(t)] = L [g′(t)]

= sL [g(t)]− g(0)

= sL [f ′(t)]− f ′(0)

= s (sF (s)− sf(0))− f ′(0)

= s2F (s)− sf(0)− f ′(0).
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• Example: x′′(t)− 3x(t) + 2x(t) = 1. Let X(s) = L [x(t)] and apply L :

L [x′′(t)− 3x(t) + 2x(t)] = L [1]

L [x′′(t)]− 3L [x(t)] + 2L [x(t)] = 1/s

s2X(s)− sx(0)− x′(0)− 3(sX(s)− x(0)) + 2X(s) = 1/s.

For simplicity, assume x(0) = x′(0) = 0, so

s2X(s)− 3(sX(s) + 2X(s) = 1/s

(s2 − 3s+ 2)X(s) = 1/s

X(s) =
1

s(s2 − 3s+ 2)

X(s) =
1

s(s− 1)(s− 2)

x(t) = L −1
[

1

s(s− 1)(s− 2)

]
.

To use reverse table lookup we must first simplify the right hand side using partial
fractions:

1

s(s− 1)(s− 2)
=
A

s
+

B

s− 1
+

C

s− 2

1

s(s− 1)(s− 2)
=
A(s− 1)(s− 2) +Bs(s− 2) + Cs(s− 1)

s(s− 1)(s− 2)

1 = A(s− 1)(s− 2) +Bs(s− 2) + Cs(s− 1).

Put s = 0 to get 1 = 2A, put s = 1 to get 1 = −B and put s = 2 to get 1 = 2C. Hence

1

s(s− 1)(s− 2)
=

1

2

1

s
− 1

s− 1
+

1

2

1

s− 2

L −1
[

1

s(s− 1)(s− 2)

]
=

1

2
L −1

[
1

s

]
−L −1

[
1

s− 1

]
+

1

2
L −1

[
1

s− 2

]
=

1

2
· 1− e1t +

1

2
e2t.

• The “Heaviside coverup method” is a shortcut for partial fractions. The coefficient of
1/(s−a) in the expansion of 1

(s−a)g(t) (where g(t) is a polynomial not having a as a root)

is 1/g(a). Check that it works in the previous example.

• Here’s one we couldn’t do before: x′(t)− x(t) = et. The method of undetermined coeffi-
cients guesses xp(t) = Aet, but then substitution gives 0 = et, which is a contradiction.
Laplace transforms will work:

L [x′(t)]−L [x(t)] = L [et]

sX(s)− x(0)−X(s) = 1/(s− 1)
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(s− 1)X(s) = x(0) + 1/(s− 1)

X(s) =
x(0)

s− 1
+

1

(s− 1)2

x(t) = x(0)et + L −1
[

1

(s− 1)2

]
.

But we still need to calculate L −1[1/(s− 1)2].

• There is another rule for this: If F (s) = L [f(t)] then

L [t · f(t)] = −F ′(s).

Skip the proof for now. Applying this rule to f(t) = eat gives

L [t · eat] = − d

ds
L [eat] = − d

ds

(
1

s− a

)
=

1

(s− a)2
.

Hence the equation x′(t)− x(t) = et has solution

x(t) = x(0)et + L −1
[

1

(s− 1)2

]
= x(0)et + t · et.

This rule appears whenever there is a repeated factor in the denominator.

Mon, Mar 27

• Differentiation and integration are linear operators. That is, for any functions y1, y2 and
constants c1, c2 we have

(c1y1 + c2y2)
′ = c1y

′
1 + c2y

′
2 and

∫
(c1y1 + c2y2) = c1

∫
y1 + c2

∫
y2.

• Remark: Problem 1 on Homework 4 is potentially confusing. Would I deliberately
confuse you? Absolutely, yes. If you pass a course but you never felt confused then you
probably didn’t learn anything. If you get stuck on a problem and then later get unstuck
then you are much more likely to remember this problem.

• The Laplace transform is a very special linear operator:

L [f(t)] =

∫ ∞
0

e−stf(t) dt

L [c1f1(t) + c2f2(t)] =

∫ ∞
0

e−st(c1f1(t) + c2f2(t)) dt

= c1

∫ ∞
0

e−stf1(t) dt+ c2

∫ ∞
0

e−stf2(t) dt

= c1L [f1(t)] + c2L [f2(t)].
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It is a close relative of the Fourier transform:

F [f(t)] =

∫ ∞
−∞

e−i2πstf(t) dt,

which is very common in applied mathematics. When we learn how to work with Laplace
transforms we are also learning how to work with Fourier transforms.

• Recall the basic rules:

L [eat] = 1/(s− a),

L [f ′(t)] = sL [f(t)]− f(0),

L [f ′′(t)] = s2L [f(t)]− sf(0)− f ′(0).

• Here is another rule:

L [tf(t)] = − d

ds
L [f(t)].

Proof:

− d

ds
L [f(t)] = − d

ds

∫ ∞
0

e−stf(t) dt

= −
∫ ∞
0

d

ds
e−stf(t) dt

= −
∫ ∞
0
−te−stf(t) dt

=

∫ ∞
0

e−sttf(t) dt

= L [tf(t)].

From this we get

L [t] = L [t · 1] = − d

ds

1

s
=

1

s2

L [t2] = L [t · t] = − d

ds

1

s2
=

2

s3

...

L [tn] =
n!

sn+1
.

• Example: Solve dy/dx = x+ y. Let Y (s) = L [y(x)] and apply L to both sides:

L [dy/dx] = L [x] + L [y]

sY (s)− y(0) =
1

s2
+ Y (s)

sY (s)− Y (s) =
1

s2
+ y(0)
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(s− 1)Y (s) =
1

s2
+ y(0)

Y (s) =
1

s2(s− 1)
+

y(0)

s− 1
.

Then apply L −1 to both sides:

L −1[Y (s)] = L −1
[

1

s2(s− 1)

]
+ y(0)L −1

[
1

s− 1

]
y(x) = L −1

[
1

s2(s− 1)

]
+ y(0)ex.

Now we have a partial fractions problem. Since there is a repeated factor the Heaviside
cover up method doesn’t work, so we have to do it the long way:

1

s2(s− 1)
=
A

s
+
B

s2
+

C

s− 1

1

s2(s− 1)
=
As(s− 1) +B(s− 1) + Cs2

s2(s− 1)

1 = As(s− 1) +B(s− 1) + Cs2

0s2 + 0s+ 1 = (A+ C)s2 + (B −A)s+ (−B).

Comparing coefficients gives −B = 1, hence B = −1. Then B −A = 0, hence A = B =
−1. Then A+ C = 0, hence C = −A = −(−1) = 1. We conclude that

1

s2(s− 1)
=
−1

s
+
−1

s2
+

1

s− 1

L −1
[

1

s2(s− 1)

]
= −L −1

[
1

s

]
−L −1

[
1

s2

]
+ L −1

[
1

s− 1

]
= −1− x+ ex.

In summary, the equation dy/dx = x+ y has solution

y(x) = −1− x+ ex + y(0)ex,

as we have seen several times before. Previously we used the method of integrating
factors. This time it came down to a partial fractions computation.

Wed, Mar 29

• We discussed the Homework 5 solutions. Please read the solutions:

https://www.math.miami.edu/~armstrong/311sp23/311sp23hw4sol.pdf
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Fri, Mar 31

• Reminder: The Laplace transform of a function f(t) is defined as

F (s) = L [f(t)] =

∫ ∞
0

e−stf(t) dt.

The operator L is linear because integration is linear.

• We should memorize the following formulas:

– L [0] = 0

– L [1] = 1/s

– L [eat] = 1/(s− a)

– L [f ′(t)] = sF (s)− f(0)

– L [f ′′(t)] = s2F (s)− sf(0)− f ′(0).

• Last time we saw a new general formula:

L [t · f(t)] = −F ′(s).

This can be used to compute

– L [t] = L [t · 1] = −(d/ds)L [1] = −(d/ds)(1/s) = 1/s2

– L [t2] = L [t · t] = −(d/ds)L [t] = −(d/ds)(1/s2) = 2/s3

– L [t3] = L [t · t2] = −(d/ds)L [t2] = −(d/ds)(2/s3) = 6/s4, etc.

We can also use it to compute

L [teat]− d

ds
L [eat] = − d

ds
· 1

s− a
=

1

(s− a)2
, etc.

• We have now seen the Laplace transform of most of the “elementary functions”. The
only functions missing are the trig functions:

L [cos t] = ? L [sin t] = ?

It is tedious to evaluate the integral:

L [cos t] =

∫ ∞
0

e−st cos t dt = blah.

But we don’t have to. Because of Euler’s formula, trig functions are really just expo-
nential functions in disguise. Recall that

eit = cos t+ i sin t,

e−it = cos t− i sin t,
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cos t = (eit + e−it)/2,

sin t = (eit − e−it/2i.

Hence we have

L [cos t] =
1

2

(
L [eit] + L [e−it]

)
=

1

2

(
1

s− i
+

1

s− i

)
=

1

2

(s+ i) + (s− i)
(s− i)(s+ i)

=
1

2

2s

s2 + 1

=
s

s2 + 1

and

L [sin t] =
1

2i

(
L [eit]−L [e−it]

)
=

1

2i

(
1

s− i
− 1

s− i

)
=

1

2i

(s+ i)− (s− i)
(s− i)(s+ i)

=
1

2i

2i

s2 + 1

=
1

s2 + 1
.

• Let’s test these formulas on an easy problem. We know that the equation x′′(t)+x(t) = 0
has solution x(t) = x(0) cos t+ x′(0) sin t. Let’s apply the Laplace transform:

x′′(t) + x(t) = 0

s2X − sx(0)− x′(0) +X = 0

(s2 + 1)X = sx(0) + x′(0)

X = x(0)
s

s2 + 1
+ x′(0)

1

s2 + 1
.

Now apply the inverse transform:

x(t) = L −1
[
x(0)

s

s2 + 1
+ x′(0)

1

s2 + 1

]
= x(0)L −1

[
s

s2 + 1

]
+ x′(0)L −1

[
1

s2 + 1

]
= x(0) cos t+ x′(0) sin t.

Good, our formulas gave the correct answer.
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• The same method of proof shows that

L [cos(ωt)] =
s

s2 + ω2
and L [sin(ωt)] =

ω

s2 + ω2
.

• Math should be useful or beautiful. There is no room in the world for ugly and useless
mathematics. Since the Laplace transform is not beautiful, it must be useful. That is, it
must help us solve a problem that we couldn’t solve before. I see two main applications:

– The Laplace transform naturally handles resonance.

– The Laplace transform allows discontinuous inputs. (For example, hitting an object
with a hammer or turning on a light switch.)

• Resonance. Consider the equation x′′ + x = cos(ωt) with x(0) = x′(0) = 0. Then

s2X +X =
s

s2 + ω2

X =
s

(s2 + 1)(s2 + ω2)

x(t) = L −1
[

s

(s2 + 1)(s2 + ω2)

]
.

As with every Laplace transform problem, this comes down to partial fractions. Our
textbook rudely says (page 294) that “we can find without difficulty that”

s

(s2 + 1)(s2 + ω2)
=

1

ω2 − 1

[
s

s2 + 1
− s

s2 + ω2

]
.

That depends on your point of view. If you’re not fluent with partial fractions it ac-
tually is a bit difficult. With quadratic factors in the denominator, the partial fraction
expansion has the form

s

(s2 + 1)(s2 + ω2)
=
As+B

s2 + 1
+
Cs+D

s2 + ω2
.

Get a common denominator, expand, then solve for A,B,C,D. Skip the details for now.
Hence we obtain

x(t) =
1

ω2 − 1

(
s

s2 + 1
− s

s2 + ω2

)
=

1

ω2 − 1
(cos t− cos(ωt)) .

We can also write this as

x(t) =
2

ω2 − 1
· sin

(
ω + 1

2
· t
)

sin

(
ω − 1

2
· t
)
.

Note that the solution blows up when ω ≈ 1.
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• What happens when ω = 1? Then

x(t) = L −1
[

s

(s2 + 1)(s2 + 1)

]
= L −1

[
s

(s2 + 1)2

]
.

The expression s/(s2 + 1)2 cannot be simplified with partial fractions. But we recognize
it as a derivative:

d

ds

(
1

s2 + 1

)
= − 2s

(s2 + 1)2
.

Since L [sin t] = 1/(s2 + 1) we see that

L [t · sin t] = − d

ds
L [sin t] = − d

ds

(
1

s2 + 1

)
=

2s

(s2 + 1)2
= 2 · s

(s2 + 1)2
.

We conclude that

x(t) = L −1
[

s

(s2 + 1)2

]
=
t

2
· sin t.

• Your washing machine has a natural vibrational frequency of 1. The drum rotates with
variable frequency ω. As ω approaches 1 the washing machine starts to jump across the
floor with amplitude 2/(ω2 − 1):

If ω = 1 then the amplitude t/2 increases linearly until something bad happens:
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April

Mon, Apr 3

• Method of Laplace Transforms:

ODE
L−→ Algebra

partial fractions−−−−−−−−−−→ Algebra
L−1

−−−→ ODE

• Partial Fractions. Let p(s) be a polynomial of degree 1 let q(s) be a polynomial of
degree 2, where p(s) and q(s) do not share any common factors. Then

1

p(s)3q(s)2
=

A

p(s)
+

B

p(s)2
+

C

p(s)3
+
Ds+ E

q(s)
+
Fs+G

q(s)2

for some constants A,B,C,D,E, F,G. For example, let p(s) = s− 7 and q(s) = s2 + 1.
Then

1

(s− 7)3(s2 + 1)2
=

A

s− 7
+

B

(s− 7)2
+

C

(s− 7)3
+
Ds+ E

s2 + 1
+

Fs+G

(s2 + 1)2
.

Get a common denominator, expand, and compare coefficients to get 7 equations in the
7 unknowns A,B,C,D,E, F,G. This is far too horrible to do by hand. My computer
says

61

781250(s− 7)
− 7

31250 (s− 7)2
+

1

2500 (s− 7)3
+
−61 s− 252

781250(s2 + 1)
+
−73 s− 161

62500 (s2 + 1)2

• Here’s a medium example we can do by hand:

1

s2(s2 + 1)
=
A

s
+
B

s2
+
Cs+D

s2 + 1

1

s2(s2 + 1)
=
As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

s2(s2 + 1)
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1 = As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

0s3 + 0s2 + 0s+ 1 = (A+ C)s3 + (B +D)s2 + (A+B)s+B.

Comparing coefficients gives A + C = 0, B + D = 0, A + B = 0 and B = 1, so that
A = 0, B = 1, C = 0 and D = −1, hence

1

s2(s2 + 1)
=

1

s2
− 1

s2 + 1
.

• Alternative Method: Since the equation

1 = As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

is true for al values of s, we should substitute convenient values of s. Setting s = 0 gives
1 = 0+B+0, hence B = 1. Setting s = i makes s2 +1 so that 1 = 0+0+(Ci+D)(−1).
Similarly, setting s = −i gives 1 = 0 + 0 + (−Ci + D)(−1). Then combining these two
equations gives C = 0 and D = −1. At this point we have

1 = As(s2 + 1) + (s2 + 1)− s2.

Substitute any value of s other than s = 0 or s = ±i to solve for A. This method is
basically the Heaviside coverup method.

• By the way:

L −1
[

1

s2(s2 + 1)

]
= L −1

[
1

s2
− 1

s2 + 1

]
= L −1

[
1

s2

]
−L −1

[
1

s2 + 1

]
= t− sin t.

• Recall the general formulas:

L [tn] =
n!

sn+1
L [cos(bt)] =

s

s2 + b2
L [sin(bt)] =

b

s2 + b2
.

• Old Problem: Consider the equation x′′(t) − 2x′(t) + 5x(t) = 0 with characteristic
polynomial λ2 − 2λ+ 5. The roots are

λ1, λ2 =
2±
√

4− 20

2
= 1± 2i.

So the general solution is

x(t) = c1e
(1+2i)t + c2e

(1−2i)t = et
(
c1e

i2t + c2e
−i2t) = et (c3 cos(2t) + c4 sin(2t)) .

With initial conditions x(0) = 0 and x′(0) = 1 we get x(t) = et sin(2t)/2.
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• Let’s check that Laplace Transforms give the same answer:

L [x′′(t)]− 2L [x′(t)] + 5L [x(t)] = 0

s2X − sx(0)− x′(0)− 2(sX − x(0)) + 5X = 0

(s2 − 2s+ 5)X = sx(0) + x′(0).

For simplicity let x(0) = 0 and x′(0) = 1 as in the previous example. Then

(s2 − 2s+ 5)X = 1

X =
1

s2 − 2s+ 5
.

So I guess we must have

L −1
[

1

s2 − 2s+ 5

]
=

1

2
· et · sin(2t).

But why?

• Method 1:

1

s2 − 2s+ 5
=

1

(s− (1 + 2i))(s− (1− 2i))
= · · · = −i/4

s− (1 + 2i)
+

i/4

s− (1− 2i)
.

The inverse transform is

− i
4
·L −1

[
1

s− (1 + 2i)

]
+
i

4
·L −1

[
1

s− (1− 2i)

]
= − i

4
e(1+2i)t +

i

4
e(1−2i)t,

which simplifies via Euler’s formula.

• Method 2 avoids complex numbers: Complete the square in s2 − 2s+ 5 to get

s2 − 2s+ 5 = s2 − 2s+ 1− 1 + 5 = (s2 − 2s+ 1) + 4 = (s− 1)2 + 4.

Then

L −1
[

1

s2 − 2s+ 5

]
= L −1

[
1

(s− 1)2 + 22

]
=

1

2
·L −1

[
2

(s− 1)2 + 22

]
= ?

This looks a lot like sin(2t)/2, but instead of s2 we have (s− 1)2. There is a general rule
for this:

If F (s) = L [f(t)] then L [eat · f(t)] = F (s− a).

In our case, we have L [sin(2t)] = 2/(s2 + 22) = F (s), so

L [et · sin(2t)] = F (s− 1) =
2

(s− 1)2 + 22
.

Finally,

x(t) = L −1
[

1

s2 − 2s+ 5

]
=

1

2
·L −1

[
2

(s− 1)2 + 22

]
=

1

2
· et · sin(2t).
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Wed Apr 5

• Let F (s) = L [f(t)]. Recall:

L [f ′(t)] = sF (s)− f(0),

L [t · f(t)] = −F ′(s),
L [eat · f(t) = F (s− a).

Also recall:

L [cos(kt)] =
s

s2 + k2
and L [sin(kt)] =

k

s2 + k2
.

Combining these formulas gives, e.g.,

L [eat · sin(kt)] = L [sin(kt)]s→s−a =
k

s2 + k2

∣∣∣∣
s→s−a

=
k

(s− a)2 + k2

and

L [t sin(kt)] = −d
s

(
k

s2 + k2

)
− k d

ds
(s2 + k2)−1

− k(−1)(s2 + k2)−2(2s)

=
2ks

(s2 + k2)2

• This last formula shows up in resonance problems. For example:

x′′(t) + x(t) = cos t

s2X − sx(0)− x′(0) +X =
s

s2 + 1

(s2 + 1)X = sx(0) + x′(0) +
s

s2 + 1

X = x(0)
s

s2 + 1
+ x′(0)

1

s2 + 1
+

s

(s2 + 1)2

x(t) = x(0) cos t+ x′(0) sin t+ L −1
[

s

(s2 + 1)2

]
.

But we just saw that

L [t · sin t] =
2s

(s2 + 1)
, hence L −1

[
s

(s2 + 1)2

]
=

1

2
· t · sin t.

• The very similar equation x′′(t) + x(t) = sin t has solution

x(t) = x(0) cos t+ x′(0) sin t+ L −1
[

1

(s2 + 1)2

]
.
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But we have not yet seen a function f(t) with L [f(t)] = 1/(s2 + 1)2. This is much more
annoying than it looks, so I will just quote the formula from the table:

L −1
[

1

(s2 + k2)

]
=

1

2k3
(sin(kt)− kt cos(kt)) .

• Discussion: In the 1200s Fibonacci introduced the decimal system to Europe. This was
seen as a business technology that sped up financial computations. Businesses hired
human “computers” to just add and multiply large numbers. Since multiplication is
much more time consuming than addition, Napier invented logarithms in the 1600s to
convert multiplication problems into addition. Take a and b. Look up the numbers
log(a) and log(b) in a table. Add to get log(a) + log(b). Then do a reverse look up to
find ab. This works because

log−1 (log(a) + log(b)) = ab.

Napier made a profit by selling a table of logarithms. Heaviside’s method of Laplace
transforms follows the same idea. Use a table to convert a differential equation into an
algebraic equation. Solve the algebra. Use the table to convert back to the differential
equation.

• Usually there are multiple ways a differential equation. Laplace transform methods can
be fast for the experienced user but they are not always the best method. However, there
is one type of problem that is perfectly suited to Laplace transforms: discontinuous
inputs, such as a hammer hitting an object or a light switch being turned on.

• The Heaviside step function is defined as follows:

H(t) =

{
0 t < 0,

1 t > 0,
hence H(t− a) =

{
0 t < a,

1 t > a.

Think of H(t− a) as a light switch that turns on at time t = a. Let F (s) = L [f(t)] for
some function f(t) and let a ≥ 0. Then we have

L [H(t− a) · f(t− a)] = e−asF (s).

Proof: Note that

H(t− a) · f(t− a) =

{
0 t < a,

f(t− a) t > a.

Hence

L [H(t− a) · f(t− a)] =

∫ ∞
0

e−stH(t− a) · f(t− a) dt

=

∫ a

0
0 dt+

∫ t

a
e−stf(t− a) dt
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=

∫ ∞
0

e−a(τ+a)f(τ) dτ τ = t− a

= e−as
∫ ∞
0

e−s(τ+a)f(τ) dτ

= e−asF (s).

• The Dirac delta function is the “derivative” of the step function.3 It has the following
strange properties:

δ(t) =

{
0 t 6= 0,

undefined t = 0,
and

∫ b

a
δ(t) dt =

{
1 a ≤ 0 ≤ b,
0 otherwise.

The graph of δ(t) is an infinitely thin rectangle of area 1 sitting above t = 0. We use it
to model an “impulse”, or an instantaneous transfer of energy. For a ≥ 0, we have

L [δ(t− a)] = e−as.

• Quick example: A spring is hit by a hammer at time a:

x′′(t) + x(t) = δ(t− a)

s2X − sx(0)− x′(0) +X = e−as

(s2 + 1)X = sx(0) + x′(0) + e−as

X = x(0)
s

s2 + 1
+ x′(0)

1

s2 + 1
+ e−as

1

s2 + 1

x(t) = x(0) cos t+ x′(0) sin t+H(t− a) sin(t− a).

You will finish analyzing this problem on the homework.

Fri, Apr 7

• The Heaviside step function

H(t) =

{
0 t < 0,

1 t > 1

allow us to model piecewise-defined and discontinuous functions. For example, consider
the function

f(t) =

{
−t t < 2,

t2 − 5 t > 2.

Then we have
f(t) = −t+H(t− 2)(t2 − 5 + t).

3Dirac introduced δ(t) in his study of quantum mechanics. Mathematics are always careful to note that δ(t)
isn’t really a function, because any actually function that is zero almost everywhere should have integral zero.
However, δ(t) is a very convenient notation and it gives perfectly good results. So don’t worry.
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• The derivative of the step function is a slightly fictional function, called the Dirac delta
function:

H ′(t) = δ(t) and H ′(t− a) = δ(t− a).

As a function it is just

δ(t− a) =

{
0 t 6= a,

+∞ t = a.

But it has the strange property that
∫
δ(t− a) dt = 1. Intuition: The graph of δ(t− a)

is an infinitely tall and infinitely skinny rectangle of area 1 sitting above t = a.

• The delta function is also called the unit impulse. We can use it to model instantaneous
transfer of energy in a physical system, such as a hammer blow or the closing of an
electrical switch.

• The step function H(t) is named after Heaviside because he realized that it plays well
with Laplace transforms. Last time we proved:

If F (s) = L [f(t)] and a ≥ 0 then L [e−asF (s)] = H(t− a)f(t− a).

In particular, since L [1] = 1/s we have

L [H(t− a)] = L [H(t− a) · 1] = e−asL [1] = e−as/s.

And since δ(t− a) = H ′(t− a) we have

L [δ(t− a)] = L [H ′(t− a)] = sL [H(t− a)]−H(0− a) = s · e−as/s = e−as.

Interesting special case:4

L [δ(t)] = 1.

• Application: A hockey puck sits on the ice at position x = 0. At time t = 0 a hockey
player hits the puck with an instantaneous force of F0. The equation of motion is

mx′′(t) + γx′(t) = F0δ(t),

wherem is the mass of the puck and γ is the friction of the ice. Apply Laplace transforms:

mL [x′′(t)] + γL [x′(t)] = F0L [δ(1)]

m(s2X − s0− 0) + γ(sX − 0) = F0 · 1
(ms2 + γs)X = F0

X =
F0

s(ms+ γ)

x(t) = F0 ·L −1
[

1

s(ms+ γ)

]
.

How far does the hockey puck travel before it is stopped by friction? Homework.

4Actually, there is something funny here because H(0) is not defined. Don’t worry about it. Just don’t
worry about anything when it comes to delta functions.
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• Application: RLC circuits. Let R,L,C be the resistance, inductance and capacitance
of an electric circuit. Let e(t) be the applied voltage at time t. Then the current i(t)
satisfies

Li′′(t) +Ri′(t) +
1

C
i(t) = e′(t).

This is analogous to the spring equation where L is the inertia, R is the friction and
1/C is the stiffness of the spring. Suppose that e(t) comes from a V volt battery that is
switched on at time a, so that

e(t) =

{
0 t < a,

V t > a,
and e′(t) = V δ(t− a).

• Textbook problem, page 309: Let L = 110, L = 1, C = 0.001, V = 90, a = 1, so

i′′(t) + 110i′(t) + 1000i(t) = 90δ(t− 1).

Suppose the circuit starts in equilibrium, so i(0) = i′(0) = 0. Then

s2I + 110sI + 1000I = 90e−s

(s2 + 110s+ 1000)I = 90e−s

I = e−s
90

s2 + 100s+ 1000

I = e−s
90

(s+ 10)(s+ 100)

I = e−s
(

1

s+ 10
− 1

s+ 100

)
.

This is how you know it’s a textbook problem. Note that

L −1
[

1

s+ 10
− 1

s+ 100

]
= e−10t − e−100t.

Now we apply the rule L [e−asf(t)] = H(t− a)F (t− a) to get

i(t) = H(t− 1)
(
e−10(t−1) − e−100(t−1)

)
=

{
0 t < 0,

e−10(t−1) − e−100(t−1) t > 1.

I certainly can’t see the graph of i(t) in my head. We could use Calc I curve sketching
techniques, but I just used my computer:
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The current spikes when the switch is closed but returns quickly to zero. Interpretation:
The battery causes current that charges the capacitor. When the capacitor is fully
charged the current stops. In our case we had R2 − 4L/C > 0. If R2 − 4L/C < 0 then
the polynomial Ls2 +Rs+ 1/C has imaginary roots and the current will oscillate as it
goes to zero.

Mon, Apr 10

• Recall: L [δ(t)] = 1. Hockey puck on ice:

(force) = (friction) + (unit impulse at t = 0)

mx′′(t) = −γx′(t) + δ(t)

ms2X = −γsX + 1 assume x(0) = x′(0) = 0

s(ms+ γ)X = 1

X =
1

s(ms+ γ)
.

Homework: Find the inverse transform. How far does the puck go before stopping?

• Continued from last time: problem from page 309. An RLC circuit has equation

i′′(t) + 110i′(t) + 1000i(t) = e′(t),

where the applied voltage is

e(t) =

{
90 0 < t < 1,

0 t > 1.

(A 90 volt battery is switched on at t = 0 and switched off at t = 1.) In terms of the
Heaviside function:

e(t) = 90(H(t)−H(t− 1)).

The derivative is

e′(t) = 90(H ′(t)−H ′(t− 1)) = 90(δ(t)− δ(t− 1)).
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The term 90δ(t) says that e(t) jumps from 0 to 90 at t = 0. The term −90δ(t − 1)
says that e(t) jumps from 90 to 0 at t = 1. Assume that i(0) = i′(0) = 0 then apply
transforms:

i′′(t) + 110i′(t) + 1000i(t) = 90(δ(t)− δ(t− 1))

s2I + 110sI + 1000I = 90(1− e−s).

(Recall: L [δ(t− a)] = e−as.) Solve for I:

s2I + 110sI + 1000I = 90(1− e−s)
(s2 + 110s+ 1000)I = 90(1− e−s)

I =
90

(s2 + 110s+ 1000)
(1− e−s)

=
90

(s+ 10)(s+ 100)
(1− e−s).

(The denominator has a nice factorization because this is a textbook problem.) Now
compute the partial fractions:

90

(s+ 10)(s+ 100)
=

A

s+ 10
+

B

s+ 100

90

(s+ 10)(s+ 100)
=
A(s+ 100) +B(s+ 10)

(s+ 10)(s+ 100)

90 = A(s+ 100) +B(s+ 10).

Substitute s = −10 to get 90 = 90A and substitute s = −100 to get 90 = −90B, hence

90

(s+ 10)(s+ 100)
=

1

s+ 10
− 1

s+ 100
.

Continuing from above:

I(s) =

(
1

s+ 10
− 1

s+ 100

)
(1− e−s)

=
1

s+ 10
− 1

s+ 100
− e−s

s+ 10
+

e−s

s+ 100

i(t) = e−10t − e−100t −L −1
[
e−s

s+ 10

]
+ L −1

[
e−s

s+ 100

]
.

Recall the general rule: If F (s) = L [f(t)] then

L −1 [e−asF (s)
]

= H(t− a)f(t− a) =

{
0 t < a,

f(t− a) t > a,

where H(t) is the Heaviside step function:

H(t) =

{
0 t < 0,

1 t > 0.
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We conclude that

i(t) = e−10t − e−100t −L −1
[
e−s

s+ 10

]
+ L −1

[
e−s

s+ 100

]
= e−10t − e−100t −H(t− 1)e−10(t−1) +H(t− 1)e−100(t−1)

=


0 t < 0,

e−10t − e−100t 0 < t < 1,

e−10t − e−100t − e−10(t−1) + e−100(t−1) t > 1.

Here is a graph:

When the switch is closed at t = 0 the current spikes (clockwise) while the capacitor
charges. When the switch is open at t = 1 the current spikes (anticlockwise) while the
capacitor discharges.

• Coupled Oscillators. See the picture on page 281. Two masses m1 and m2 are
attached by springs. At time t the first spring is stretched by x(t) and the second is
stretched by y(t)− x(t). The first mass fees two spring forces and the second mass feels
one spring force: {

m1x
′′(t) = −k1x(t) + k2(y(t)− x(t)),

m2y
′′(t) = −k2(y(t)− x(t)).

This is our first example of a system of differential equations. We will solve this
system using Laplace transforms. For simplicity, the textbook uses m1 = 2, m2 = 1,
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k1 = 4 and k2 = 2 and assumes that the springs start at rest: x(0) = x′(0) = y(0) =
y′(0) = 0. Let’s also hit the second mass with a unit impulse (to the left) at time t = 0:{

2x′′ = −4x+ 2(y − x),
y′′ = −2(y − x)− δ(t),{
x′′ = −3x+ y,
y′′ = 2x− 2y − δ(t).

Apply Laplace transforms to get{
s2X = −3X + Y,
s2Y = 2X − 2Y − 1.

Now we can use algebra to solve for X and Y . Finally, we will compute the inverse
transforms of X and Y to get x(t) and y(t). Details next time.

Wed, Apr 12

• Continued from last time: We have a system of two second order linear ODEs with
constant coefficients: {

x′′ = −3x+ y,
y′′ = 2x− 2y − δ(t).

These equations are coupled because the equation for x′′ involves y and the equation for
y′′ involves x. We derived these equations from a pair of masses connected by springs.

• For the rest of this course my goal is to examine similar “systems” of differential equa-
tions. Linear algebra provides a powerful method for dealing with such systems. Since
linear algebra is not a pre-requisite for this course I will keep the discussion very explicit
and example-based.

• Remark: I was educated in Canada, where every student of science and engineering is
required to take two semesters of linear algebra in the first year, in parallel with two
semesters of calculus. I don’t know why the Canadian and American systems are so
different. Do you have any ideas?

• Before diving into linear algebra, let me show you that the method of Laplace transforms
is strong enough to solve the above system. The computations are a bit tedious, but it
can be done. We assume that the masses start at rest:

x(0) = x′(0) = y(0) = y′(0) = 0.

Apply Laplace transforms to get{
s2X = −3X + Y,
s2Y = 2X − 2Y − 1,

 

{
(s2 + 3)X − Y = 0,

−2X + (s2 + 2)Y = −1.
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(Recall that L [δ(t)] = 1.) To eliminate Y we can multiply the first equation by s2 + 2
then add the equations:

(s2 + 2)(s2 + 3)X −�����
(s2 + 2)Y = 0,

−2X +�����
(s2 + 2)Y = −1,

[(s2 + 2)(s2 + 3)− 2]X + 0 = −1.

This becomes

[(s2 + 2)(s2 + 3)− 2]X = −1

(s4 + 5s2 + 6− 2)X = −1

(s4 + 5s2 + 4)X = −1

(s2 + 1)(s2 + 4)X = −1

X =
−1

(s2 + 1)(s2 + 4)
.

The denominator factored because this is a carefully chosen textbook problem. Now we
apply partial fractions to get

X = −1

3
· 1

s2 + 1
+

1

6
· 2

s2 + 4

x(t) = L −1
[
−1

3
· 1

s2 + 1
+

1

6
· 2

s2 + 4

]
= −1

3
·L −1

[
1

s2 + 1

]
+

1

6
·L −1

[
2

s2 + 4

]
= −1

3
· sin(t) +

1

6
· sin(2t).

A similar method gives

Y =
s2 + 3

(s2 + 1)(s2 + 4)
= −2

3
· 1

s2 + 1
− 1

6
· 2

s2 + 4

and hence

y(t) = −2

3
· sin(t)− 1

6
· sin(2t).

Thus we have explicitly solved a coupled system of two differential equations. Here is
an animated gif of the solution

https://www.math.miami.edu/~armstrong/311sp23/coupled_oscillators.gif

• For the rest of today I will give an advertisement for using linear algebra to solve
differential equations. I will not explain the details right away. Consider the following
system of coupled first order equations from page 369 of the text:{

x′(t) = 4x(t) + 2y(t),
y′(t) = 3x(t)− y(t).

(∗)
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This can be solved with Laplace transforms but we’re not going to do that. Instead, we
will write these two equations as a single matrix equation:(

x′(t)
y′(t)

)
=

(
4 2
3 −1

)(
x(t)
y(t)

)
.

To make this look better, we will rewrite the vector (x, y) with the single single boldface
letter x, so that

x(t) =

(
x(t)
y(t)

)
and x′(t) =

(
x′(t)
y′(t)

)
We will also express the matrix of coefficients with a singe letter:

A =

(
4 2
3 −1

)
Thus we can express the complicated system (∗) very succinctly:

x′(t) = Ax(t).

• Why bother? There is a deep analogy here. Recall that the single equation

x(t) = ax′(t) has solution x(t) = x(0)eat.

Amazingly, the vector equation

x(t) = Ax′(t) has solution x(t) = eAtx(0),

where x(0) = (x(0), y(0)) is the vector of initial conditions and eAt = exp(At) is the
“exponential matrix”. Exponential matrices are difficult to compute by hand, but my
computer tells me that

A =

(
4 2
3 −1

)
 exp(At) =

(
1
7 · e

−2t + 6
7 · e

5t −1
7 · e

−2t + 2
7 · e

5t

−1
7 · e

−2t + 3
7 · e

5t 6
7 · e

−2t + 1
7 · e

5t

)
.

Hence the solution to our system of equations is(
x′(t)
y′(t)

)
=

(
1
7 · e

−2t + 6
7 · e

5t −1
7 · e

−2t + 2
7 · e

5t

−1
7 · e

−2t + 3
7 · e

5t 6
7 · e

−2t + 1
7 · e

5t

)(
x(0)
y(0)

)
.

• That’s a bit hard to read. If I want to solve the system by hand I will use the method
of eigenvalues. The preliminary work consists of discovering the eigenvectors and eigen-
vectors of the matrix A. The result of these computations will be two vector equations:(

4 2
3 −1

)(
1
−3

)
= −2

(
1
−3

)
,(

4 2
3 −1

)(
2
1

)
= 5

(
2
1

)
.
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From these two equations I can read off the general solution:(
x(t)
y(t)

)
= c1e

−2t
(

1
−3

)
+ c2e

5t

(
2
1

)
=

(
c1e
−2t + 2c2e

5t

−3c1e
−2t + c2e

5t

)
,

for some constants c1 and c2, which can be determined from the initial conditions.

• As I said, this is just an advertisement. I will explain the details soon. My plan is to
teach you how to compute eigenvectors and eigenvalues of small matrices, then read off
the solution to a small system of ODEs. Sadly, there is not much time to explain the
ideas behind the computations.

Fri, Apr 14

• We discussed the Homework 5 solutions. Please read the solutions:

https://www.math.miami.edu/~armstrong/311sp23/311sp23hw5sol.pdf

Mon, Apr 17

• This week we will discuss what we can from Chapter 5. Next week we will review for
Exam 2.

• Chapter 5 is about systems of linear differential equations. The most important pre-
requisite for this chapter is the definition of matrix multiplication. In particular, we need
to know how to multiply a matrix and a vector to obtain a vector:

(matrix)·(vector) = (vector)(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

It is common to denote matrices with uppercase letters and vectors with boldface low-
ercase letters. For example, if we write

x =

(
x
y

)
and A =

(
a b
c d

)
then we have

Ax =

(
ax+ by
cx+ dy

)
.

• Using this notation we can express a system of linear differential equations as a single
matrix differential equation: {

x′(t) = ax(t) + by(t)
y′(t) = cx(t) + dy(t),
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(
x′(t)
y′(t)

)
=

(
a b
c d

)(
x(t)
y(t)

)
 x′(t) = Ax(t).

• Remark: If x(t) is a vector of functions, the vector of derivatives x′(t) is defined by
taking the derivative of each entry.

• Every system of linear differential equations, no matter how general, can be expressed
in the form

x′(t) = Ax(t).

• At this level of generality, the solution is easy to write down:

x(t) = eAtx(0),

where x(0) is the vector of initial conditions and eAt is the “matrix exponential”. The
matrix exponential is difficult to compute by hand. (A computer has no trouble.)

• Luckily we don’t need to compute the matrix exponential. When working by hand, we
will look for basic solutions of the form

x(t) = eλtc,

where λ is a number called an eigenvalue and c is a constant vector called an eigenvector.
Substituting this guess into the equation x′(t) = Ax(t) gives the eigenvalue equation:

x′(t) = Ax(t)

(eλtc)′ = A(eλt)c

λeλtc = eλtAc

λc = Ac.

Remark: In this computation we used the “linearity” of vector differentiation and matrix
multiplication. Basically, rules that look true remain true in this context.

• The main computation of Chapter 5 is to solve the eigenvector equation Ac = λc. I will
illustrate the method using the example from last time. We are looking for numbers
λ, x, y satisfying (

4 2
3 −1

)(
x
y

)
= λ

(
x
y

)
(

4x+ 2y
3x− y

)
=

(
λx
λy

)
(

4x+ 2y − λx
3x− y − λy

)
=

(
0
0

)
(

(4− λ)x+ 2y
3x+ (−1− λ)y

)
=

(
0
0

)
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(
4− λ 2

3 −1− λ

)(
x
y

)
=

(
0
0

)
.

For a random value of λ this system has only the boring solution x = y = 0. To get an
interesting solution, the coefficient matrix must have “determinant zero”:∣∣∣∣4− λ 2

3 −1− λ

∣∣∣∣ = 0

(4− λ)(−1− λ)− (2)(3) = 0

−4 + λ− 4λ+ λ2 − 6 = 0

λ2 − 3λ− 10 = 0

(λ+ 2)(λ− 5) = 0.

We conclude that this matrix has two eigenvalues: λ = −2 and λ = 5. In general, an
n × n matrix has n eigenvalues. (Repeated eigenvalues require special methods, as in
Chapter 2.)

• Remark: The determinant of a 2× 2 matrix is defined as follows:

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

It is a theorem from linear algebra that the vector equation Ax = 0 has a nonzero
solution x if and only if det(A) = 0.

• Now that we have the eigenvalues λ = −2 and λ = 5 we can compute the corresponding
eigenvectors.

• For λ = −2 we need to solve (
4− λ 2

3 −1− λ

)(
x
y

)
=

(
0
0

)
(

4− (−2) 2
3 −1− (−2)

)(
x
y

)
=

(
0
0

)
(

6 2
3 1

)(
x
y

)
=

(
0
0

)
(

6x+ 2y
3x+ y

)
=

(
0
0

)
.

Note that the two equations 6x + 2y = 0 and 3x + y = 0 are actually the same! This
is good news because it means that x = y = 0 is not the only solution. In fact, we get
infinitely many solutions:(

x
y

)
=

(
1
−3

)
or

(
2
−6

)
or

(
−1
3

)
or

(
1/2
−3/2

)
or · · ·
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It doesn’t matter which one we pick. Usually I try to minimize the size of the entries
without introducing fractions. In this case I’ll pick (1,−3). Thus we have the desired
eigenvector. Check:(

4 2
3 −1

)(
1
−3

)
=

(
4(1) + 2(−3)
3(1)− 1(−3)

)
=

(
−2
6

)
= −2

(
1
−3

)
.

Taking λ = −2 and c = (1,−3) gives a basic solution to the differential equation
x′(t) = Ax(t):

x(t) = eλtc

x(t) = e−2t
(

1
−3

)
(
x(t)
y(t)

)
=

(
e−2t

−3e−2t

)
.

• To find another basic solution we will find an eigenvector with eigenvalue λ = 5:(
4− λ 2

3 −1− λ

)(
x
y

)
=

(
0
0

)
(

4− (5) 2
3 −1− (5)

)(
x
y

)
=

(
0
0

)
(
−1 2
3 −6

)(
x
y

)
=

(
0
0

)
(
−x+ 2y
3x− 6y

)
=

(
0
0

)
.

Again, this system has infinitely many solutions:(
x
y

)
=

(
2
1

)
or

(
4
2

)
or

(
−6
−3

)
or

(
1

1/2

)
or · · ·

Taking c = (2, 1) gives the basic solution(
x(t)
y(t)

)
= x(t) = e5t

(
2
1

)
=

(
2e5t

e5t

)
.

• Putting everything together: The system{
x′(t) = 4x(t) + 2y(t),
y′(t) = 3y(t)− 1y(t)

has general solution (
x(t)
y(t)

)
= ae−2t

(
1
−3

)
+ be5t

(
2
1

)
=

(
ae−2t + 2be5t

−3ae−2t + be5t

)
for any constants a and b.
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• The specific values of a and b depend on the initial conditions x(0) and y(0). For
example, let’s take x(0) = 7 and y(0) = 0. Substituting t = 0 in the general solution
gives a system of two equations for a and b:(

x(0)
y(0)

)
=

(
ae0 + 2be0

−3ae0 + be0

)
(

7
0

)
=

(
a+ 2b
−3a+ b

)
.

After a bit of work we find a = 1 and b = 3. Finally, the solution of the linear system
x′(t) = Ax(t) with initial conditions x(0) = 7 and y(0) = 0 is(

x(t)
y(t)

)
= 1e−2t

(
1
−3

)
+ 3e5t

(
2
1

)
=

(
e−2t + 6e5t

−3e−2t + 3e5t

)
,

i.e.,
x(t) = e−2t + 6e5t and y(t) = −3e−2t + 3e5t.

• This same basic method applies to any system of linear differential equations. There
just two issues:

– It is hard to find the eigenvalues when the system involves many equations. In
practice, the eigenvalues of large matrices can only be approximated.

– Repeated eigenvalues introduce complications. In general, if the eigenvalue λ ap-
pears twice then the corresponding basic solution has the form

x(t) = (c1 + tc2)e
λt,

for some constant vectors c1 and c2. The vectors c1 and c2 are not quite eigenvectors
and they are a bit more difficult to find.

Wed, Apr 19

• A system of two linear first order differential equations has the form{
x′(t) = ax(t) + by(t)
y′(t) = cx(t) + dy(t)

 

(
x′(t)
y′(t)

)
=

(
a b
c d

)(
x(t)
y(t)

)
 x′(t) = Ax(t)

• The solution can be easily stated:(
x(t)
y(t)

)
= exp(At)

(
x(0)
y(0)

)
,

where exp(At) is the “matrix exponential”, which your computer knows how to find.
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• For example, my computer says that

exp

(
0 −t
t 0

)
=

(
cos t − sin t
cos t sin t

)
.

Hence the linear system{
x′(t) = −y(t)
y′(t) = x(t)

 

(
x′(t)
y′(t)

)
=

(
0 −1
1 0

)(
x(t)
y(t)

)
has solution (

x(t)
y(t)

)
= exp

(
0 −t
t 0

)(
x(0)
y(0)

)
=

(
cos t − sin t
sin t cos t

)(
x(0)
y(0)

)
=

(
x(0) cos t− y(0) sin t
x(0) sin t+ y(0) cos t

)
.

• This is the quickest way to solve the problem using a computer. When working by
hand we will instead by the eigenvalues and eigenvectors of the matrix A. The matrix
equation

Av = λv(
a b
c d

)(
u
v

)
= λ

(
u
v

)
(
au+ by
cu+ dy

)
=

(
λu
λv

)

becomes {
au+ by = λu
cu+ dv = λv{
(a− λ)u+ by = 0
cu+ (d− λ)v = 0

If λ is randomly chosen then the only solution for u and v is u = v = 0. To get an
interesting solution the number λ must satisfy the characteristic equation:∣∣∣∣a− λ b

c d− λ

∣∣∣∣ = 0

(a− λ)(d− λ)− bc = 0

λ2 − (a+ d)λ+ (ad− bc) = 0
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λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

These two numbers are called the eigenvalues of the matrix A. Having found the eigen-
values we back substitute to find the corresponding eigenvectors v = (u, v).

• Example: The eigenvector equation(
−3 1
2 −2

)(
u
v

)
= λ

(
u
v

)
leads to the characteristic equation∣∣∣∣−3− λ 1

2 −2− λ

∣∣∣∣ = 0

(−3− λ)(−2− λ)− 1 · 2 = 0

λ2 + 5λ+ 4 = 0

(λ+ 1)(λ+ 4) = 0

λ = −1,−4.

• The eigenvectors corresponding to λ = −1 are{
(−3− λ)u− v = 0

2u+ (−2− λ)v = 0{
(−3− (−1))u+ v = 0

2u+ (−2− (−1))v = 0{
−2u+ v = 0

2u− v = 0

There are infinitely many solutions. Let’s choose (u, v) = (1, 2). We verify that(
−3 1
2 −2

)(
1
2

)
=

(
−1
−2

)
= −1

(
1
2

)
.

• The eigenvectors corresponding to λ = −4 are{
(−3− λ)u− v = 0

2u+ (−2− λ)v = 0{
(−3− (−4))u+ v = 0

2u+ (−2− (−4))v = 0{
u+ v = 0

2u+ 2v = 0

There are infinitely many solutions. Let’s choose (u, v) = (1,−1). We verify that(
−3 1
2 −2

)(
1
−1

)
=

(
−4
4

)
= −4

(
1
−1

)
.
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• Once we have found the eigenvalues and eigenvectors of a matrix, we can solve any linear
system of ODEs involving this matrix. Suppose that Av1 = λ1v1 and Av2 = λ2v2 with
λ1 6= λ2. Then the first order linear system x′(t) = Ax(t) has general solution(

x(t)
y(t)

)
= aeλ1tv1 + beλ2tv2.

For the matrix in the previous example, the first order linear system x′(t) = Ax(t) has
general solution(

x(t)
y(t)

)
= ae−t

(
1
2

)
+ be−4t

(
1
−1

)
=

(
ae−t + be−4t

2ae−t − be−4t
)
.

The parameters a, b are determined by the initial conditions x(0), y(0).

• We can solve second order linear systems using the same method. Consider a second
order system{

x′′(t) = ax(t) + by(t)
y′′(t) = cx(t) + dy(t)

 

(
x′′(t)
y′′(t)

)
=

(
a b
c d

)(
x(t)
y(t)

)
 x′′(t) = Ax(t).

This represents a pair of coupled oscillators. In a physically realistic problem the two
eigenvalues of A will be negative, so we can write them as λ1 = −ω2

1 and λ2 = −ω2
2 for

some positive real numbers ω1 > 0 and ω2 > 0. If Av1 = −ω2
1v1 and Av2 = −ω2

2v2 then
the general solution is

x(t) = (a1 cos(ω1t) + b1 sin(ω1t)v1 + (a2 cos(ω2t) + b2 sin(ω2t)v2.

The matrix in our previous example, happens to have negative eigenvalues λ1, λ2 =
−1,−4 so we can take ω1 = 1, ω2 = 2. Thus the second order system{

x′′(t) = −3x(t) + y(t)
y′′(t) = 2x(t)− 2y(t)

has general solution(
x(t)
y(t)

)
= (a1 cos(t) + b1 sin(t))

(
1
2

)
+ (a2 cos(2t) + b2 sin(2t))

(
1
−1

)
.

The four parameters a1, b1, a2, b2 are determined by four initial conditions x(0), x′(0),
y(0), y′(0). See the homework for another example.

• Warning: Repeated eigenvalues lead to complications that we don’t have time to discuss.
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Fri, Apr 21

• General Story: A first order linear system x′(t) = Ax(t) has basic solutions of the form
veλt where v is a constant vector and λ is a constant satisfying Av = λv. The general
solution is a linear combination of basic solutions:5

x(t) = c1v1e
λ1t + c2v2e

λ2t + · · ·+ cnvne
λnt.

The n constants c1, . . . , cn are determined by the n initial conditions x1(0), . . . , xn(0).
In our case we only looked at 2× 2 systems, which have general solution

x(t) = c1v1e
λ1t + c2v2e

λ2t.

• We also considered second order systems x′′(t) = Kx(t), where K is a matrix whose
eigenvalues are negative. Suppose the eigenvalues are λ1, . . . , λn where Avk = λkvk
and λk = −ω2

k. Then the system has 2n basic solutions:

v1 cos(ω1t), v1 sin(ω1t), · · · , vn cos(ωnt), vn sin(ωnt).

And the general solution is a combination of these:

x(t) =
n∑
k=1

(akvk cos(ωkt) + bkvk sin(ωkt)).

The 2n constants a1, b1, . . . , an, bn are determined by the 2n initial conditions x1(0), . . . , xn(0)
and x′1(0), . . . , x′n(0).

• Recall the example from last time:{
x′′(t) = −3x(t) + y(t)
y′′(t) = 2x(t)− 2y(t)

 

(
x′′(t)
y′′(t)

)
=

(
−3 1
2 −2

)(
x(t)
y(t)

)
 x′′(t) = Ax(t).

We found the eigenvalues λ1, λ2 = −1,−4 and the eigenvectors v1 = (1, 2), v2 = (1,−1).
Check: (

−3 1
2 −2

)(
1
2

)
=

(
−3 + 2
2− 4

)
=

(
−1
−2

)
= −1

(
1
2

)
(
−3 1
2 −2

)(
1
−1

)
=

(
−3− 1
2 + 2

)
=

(
−4
4

)
= −4

(
1
−1

)
.

Note that the eigenvalues are negative: −1 = −12 and −4 = −22. Thus we have four
basic solutions:(

1
2

)
cos(t),

(
1
2

)
sin(t),

(
1
−1

)
cos(2t),

(
1
−1

)
sin(2t).

And the general solution is

x(t) = a1

(
1
2

)
cos(t) + b1

(
1
2

)
sin(t) + a2

(
1
−1

)
cos(2t) + b2

(
1
−1

)
sin(2t).

5We assume that the eigenvalues are distinct. Repeated eigenvalues lead to slight complications.
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• The four constants a1, b1, a2, b2 will be determined by the four initial conditions x(0),
x′(0), y(0), y′(0). For example, let’s take

x(0) =

(
x(0)
y(0)

)
=

(
0
1

)
and x′(0) =

(
x′(0)
y′(0)

)
=

(
0
1

)
.

Substituting t = 0 into the solution gives the system(
0
1

)
= a1

(
1
2

)
+ a2

(
1
−1

)
 

{
0 = a1 + a2,
1 = 2a1 − a2,

which has solution a1 = 1/3 and a2 = −1/3. Substituting t = 0 into x′(t) gives system

x′(t) = −a1
(

1
2

)
sin(t) + b1

(
1
2

)
cos(t)− 2a2

(
1
−1

)
sin(2t) + 2b2

(
1
−1

)
cos(2t),

x′(0) = −a1
(

1
2

)
0 + b1

(
1
2

)
1− 2a2

(
1
−1

)
0 + 2b2

(
1
−1

)
1,(

0
1

)
= b1

(
1
2

)
+ 2b2

(
1
−1

)
,

 

{
0 = b1 + 2b2,
1 = 2b1 − 2b2,

which has solution b1 = 1/3 and b2 = −1/6. We conclude that

x(t) =
1

3

(
1
2

)
cos(t) +

1

3

(
1
2

)
sin(t)− 1

3

(
1
−1

)
cos(2t)− 1

6

(
1
−1

)
sin(2t).

Equivalently, we have

x(t) =
1

3
cos(t) +

1

3
sin(t)− 1

3
cos(2t)− 1

6
sin(2t)

and

y(t) =
2

3
cos(t) +

2

3
sin(t) +

1

3
cos(2t) +

1

6
sin(2t).

• The big picture: The most general (interesting) linear system is

Mx′′(t) +Gx′(t) +Kx(t) = f(t).

This represents a system of interacting components with inertia (mass) matrix M , dif-
fusion (friction) matrix G, stiffness (spring) matrix K, and input functions (external
forces) f(t). The method for solving this is based on the same ideas that we just dis-
cussed. However, it must be solved with a computer.

• This theory is the basis of most scientific computation. Continuous processes are dis-
cretized and nonlinear systems are linearized.
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Mon, Apr 24

• We discussed the Homework 6 solutions. Please read them: https://www.math.miami.
edu/~armstrong/311sp23/311sp23hw6sol.pdf

• We also reviewed for Exam 2. Here are the practice problems: https://www.math.

miami.edu/~armstrong/311sp23/311sp23exam2practice.pdf
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