The Laplace transform $F(s)$ of a function $f(t)$ is defined as follows:

$$
F(s)=\mathscr{L}[f(t)]=\int_{0}^{\infty} e^{-s t} d t
$$

One can use this definition to derive the following general rules:
(1) $\mathscr{L}[t \cdot f(t)]=-F^{\prime}(s)$
(2) $\mathscr{L}\left[e^{a t} \cdot f(t)\right]=F(s-a)$
(3) $\mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$
(4) $\mathscr{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
(5) $\mathscr{L}[H(t-a) \cdot f(t-a)]=e^{-a s} F(s)$, where $H(t)$ is the Heaviside step function:

$$
H(t)= \begin{cases}0 & t<0 \\ 1 & t>1\end{cases}
$$

Here are the transforms of some basic functions:

- $\mathscr{L}[0]=0$
- $\mathscr{L}[1]=1 / s$
- $\mathscr{L}\left[e^{a t}\right]=1 /(s-a)$
- $\mathscr{L}[t]=1 / s^{2}$
- $\mathscr{L}\left[t^{n}\right]=n!/ s^{n+1}$
- $\mathscr{L}[\cos (k t)]=s /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\sin (k t)]=k /\left(s^{2}+k^{2}\right)$

The Dirac delta function $\delta(t)$ satisfies $\mathscr{L}[\delta(t-a)]=e^{-a s}$.

1. Using the Rules.

(a) Use rule (1) to compute

$$
\mathscr{L}[t \cdot \sin (k t)] \quad \text { and } \quad \mathscr{L}[t \cdot \cos (k t)] .
$$

(b) Use rule (2) to compute

$$
\mathscr{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right] \quad \text { and } \quad \mathscr{L}^{-1}\left[\frac{2}{(s-3)^{2}+4}\right] .
$$

(c) Use rule (5) to compute

$$
\mathscr{L}^{-1}\left[\frac{e^{-s}}{s}\right] \quad \text { and } \quad \mathscr{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+1}\right] .
$$

(a): We have

$$
\begin{aligned}
\mathscr{L}[t \cdot \sin (k t)] & =-\frac{d}{d s} \mathscr{L}[\sin (k t)] \\
& =-\frac{d}{d s} \frac{k}{s^{2}+k^{2}} \\
& =-\frac{d}{d s} k\left(s^{2}+k^{2}\right)^{-1} \\
& =-k(-1)\left(s^{2}+k^{2}\right)^{-2}(2 s) \\
& 1
\end{aligned}
$$

$$
=\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}
$$

and

$$
\begin{aligned}
\mathscr{L}[t \cdot \cos (k t)] & =-\frac{d}{d s} \mathscr{L}[\cos (k t)] \\
& =-\frac{d}{d s} \frac{s}{s^{2}+k^{2}} \\
& =-\frac{\left(s^{2}+k^{2}\right)(1)-s(2 s)}{\left(s^{2}+k^{2}\right)^{2}} \\
& =\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}} .
\end{aligned}
$$

(b): We note that $1 /(s-1)^{2}$ is a shifted form of $1 / s^{2}$, hence

$$
\mathscr{L}^{-1}\left[1 /(s-1)^{2}\right]=e^{t} \cdot \mathscr{L}^{-1}\left[1 / s^{2}\right]=e^{t} \cdot t .
$$

We note that $\frac{2}{(s-3)^{2}+4}$ is a shifted form of $\frac{2}{s^{2}+4}$. Hence

$$
\mathscr{L}^{-1}\left[\frac{2}{(s-3)^{2}+4}\right]=e^{3 t} \cdot \mathscr{L}^{-1}\left[\frac{2}{s^{2}+4}\right]=e^{3 t} \cdot \sin (2 t) .
$$

(c): Since $\mathscr{L}^{-1}[1 / s]=1$ we have

$$
\mathscr{L}^{-1}\left[\frac{e^{-s}}{s}\right]=H(t-1) \cdot 1= \begin{cases}0 & t<1 \\ 1 & t>1 .\end{cases}
$$

Since $\mathscr{L}^{-1}\left[1 /\left(s^{2}+1\right)\right]=\sin t$ we have

$$
\mathscr{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+1}\right]=H(t-2) \cdot \sin (t-2)= \begin{cases}0 & t<2 \\ \sin (t-2) & t>2\end{cases}
$$

2. Some Small Problems. Solve using Laplace transforms:
(a) $x^{\prime}(t)=x(t) ; x(0)=1$
(b) $x^{\prime}(t)=x(t)+1 ; x(0)=1$
(c) $x^{\prime}(t)=x(t)+e^{t} ; x(0)=1$
(a): Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime}(t) & =x(t) \\
s X-x(0) & =X \\
s X-1 & =X \\
s X-X & =1 \\
(s-1) X & =1 \\
X & =1 /(s-1) \\
x(t) & =\mathscr{L}^{-1}[1 /(s-1)] \\
& =e^{t} .
\end{aligned}
$$

This answer is not a surprise. We are just solving it with a new method.
(b): Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+1 \\
s X-1 & =X+1 / s \\
s X-X & =1+1 / s \\
(s-1) X & =1+1 / s \\
X & =\frac{1}{s-1}+\frac{1}{s(s-1)} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s-1}\right]+\mathscr{L}^{-1}\left[\frac{1}{s(s-1)}\right] \\
x(t) & =e^{t}+\mathscr{L}^{-1}\left[\frac{1}{s(s-1)}\right] .
\end{aligned}
$$

Now we use partial fractions:

$$
\begin{aligned}
\frac{1}{s(s-1)} & =\frac{A}{s}+\frac{B}{s-1} \\
\frac{1}{s(s-1)} & =\frac{A(s-1)+B s}{s(s-1)} \\
1 & =A(s-1)+B s .
\end{aligned}
$$

Substituting $s=0$ and $s=1$ gives $A=-1$ and $B=1$, hence

$$
\begin{aligned}
x(t) & =e^{t}+\mathscr{L}^{-1}\left[\frac{-1}{s}+\frac{1}{s-1}\right] \\
& =e^{t}-\mathscr{L}^{-1}\left[\frac{1}{s}\right]+\mathscr{L}^{-1}\left[\frac{1}{s-1}\right] \\
& =e^{t}-1+e^{t} \\
& =2 e^{t}-1 .
\end{aligned}
$$

Again, this is not a surprise.
(c): Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+t \\
s X-1 & =X+1 / s^{2} \\
s X-X & =1+1 / s^{2} \\
(s-1) X & =1+1 / s^{2} \\
X & =\frac{1}{s-1}+\frac{1}{s^{2}(s-1)} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s-1}\right]+\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)}\right] \\
x(t) & =e^{t}+\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)}\right] .
\end{aligned}
$$

Now we use partial fractions:

$$
\frac{1}{s^{2}(s-1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-1}
$$

$$
\begin{aligned}
\frac{1}{s^{2}(s-1)} & =\frac{A s(s-1)+B(s-1)+C s^{2}}{s^{2}(s-1)} \\
1 & =A s(s-1)+B(s-1)+C s^{2}
\end{aligned}
$$

We can substitute three values of s to get three equations for A, B, C or we can expand and compare coefficients:

$$
0 s^{2}+0 s+1=(A+C) s^{2}+(B-A) s-B
$$

The equation $1=-B$ gives $B=-1$. Then the equation $B-A=0$ gives $A=-1$. Then the equation $A+C=0$ gives $C=1$. We conclude that

$$
\begin{aligned}
x(t) & =e^{t}+\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)}\right] \\
& =e^{t}+\mathscr{L}^{-1}\left[\frac{-1}{s}+\frac{-1}{s^{2}}+\frac{1}{s-1}\right] \\
& =e^{t}-\mathscr{L}^{-1}\left[\frac{1}{s}\right]-\mathscr{L}^{-1}\left[\frac{1}{s^{2}}\right]+\mathscr{L}^{-1}\left[\frac{1}{s-1}\right] \\
& =e^{t}-1-t+e^{t} \\
& =2 e^{t}-1-t
\end{aligned}
$$

Previously we solved this equation using integrating factors and the method of undetermined coefficients. Undetermined coefficients is the fastest method, but it requires a good guess. Integrating factors involves integration by parts. Laplace transforms involves partial fractions. Which method is best?

3. A Bigger Problem.

(a) Find the partial fraction expansion of $\frac{1}{(s-2)(s-3)}$.
(b) Find the partial fraction expansion of $\frac{s}{(s-2)(s-3)}$.
(c) Find the partial fraction expansion of $\frac{1}{s(s-2)(s-3)}$.
(d) Use Laplace transforms together with (a), (b), (c) to solve the initial value problem:

$$
x^{\prime \prime}(t)-5 x^{\prime}(t)+6 x(t)=1 ; \quad x(0)=5, \quad x^{\prime}(0)=7
$$

(a): We are looking for A, B such that

$$
\begin{aligned}
\frac{1}{(s-2)(s-3)} & =\frac{A}{s-2}+\frac{B}{s-3} \\
\frac{1}{(s-2)(s-3)} & =\frac{A(s-3)+B(s-2)}{(s-2)(s-3)} \\
1 & =A(s-3)+B(s-2)
\end{aligned}
$$

Putting $s=2$ and $s=3$ gives $A=-1$ and $B=1$, hence

$$
\frac{1}{(s-2)(s-3)}=\frac{-1}{s-2}+\frac{1}{s-3}
$$

(b): We are looking for A, B such that

$$
\begin{aligned}
& \frac{s}{(s-2)(s-3)}=\frac{A}{s-2}+\frac{B}{s-3} \\
& \frac{s}{(s-2)(s-3)}=\frac{A(s-3)+B(s-2)}{(s-2)(s-3)}
\end{aligned}
$$

$$
s=A(s-3)+B(s-2) .
$$

Putting $s=2$ and $s=3$ gives $A=-2$ and $B=3$, hence

$$
\frac{s}{(s-2)(s-3)}=\frac{-2}{s-2}+\frac{3}{s-3} .
$$

(c): We are looking for A, B, C such that

$$
\begin{aligned}
\frac{1}{s(s-2)(s-3)} & =\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s-3} \\
\frac{1}{s(s-2)(s-3)} & =\frac{A(s-2)(s-3)+B s(s-3)+C s(s-2)}{s(s-2)(s-3)} \\
1 & =A(s-2)(s-3)+B s(s-3)+C s(s-2) .
\end{aligned}
$$

Putting $s=0, s=2$ and $s=3$ gives $A=1 / 6, B=-1 / 2$ and $C=1 / 3$, hence

$$
\frac{1}{s(s-2)(s-3)}=\frac{1 / 6}{s}+\frac{-1 / 2}{s-2}+\frac{1 / 3}{s-3} .
$$

(d): Apply Laplace transforms to get

$$
\begin{array}{rlrl}
x^{\prime \prime}(t)-5 x^{\prime}(t)+6 x(t) & =1 & \\
\left(s^{2} X-s x(0)-x^{\prime}(0)\right)-5(s X-x(0))+6 X & =1 / s & & \\
\left(s^{2} X-5 s-7\right)-5(s X-5)+6 X & =1 / s & \\
s^{2}-5 s-7-5 s X+25+6 X & =1 / s & \text { and } x^{\prime}(0)=7 \\
\left(s^{2}-5 s+6\right) X & =-18+5 s+1 / s & \\
(s-2)(s-3) X & =-18+5 s+1 / s . &
\end{array}
$$

Dividing both sides by $(s-2)(s-3)$ gives

$$
\begin{equation*}
X=-18 \cdot \frac{1}{(s-2)(s-3)}+5 \cdot \frac{s}{(s-2)(s-3)}+\frac{1}{s(s-2)(s-3)} . \tag{*}
\end{equation*}
$$

From parts (a), (b), (c) we have

$$
\begin{aligned}
\mathscr{L}^{-1}\left[\frac{1}{(s-2)(s-3)}\right] & =\mathscr{L}^{-1}\left[\frac{-1}{s-2}+\frac{1}{s-3}\right] \\
& =-e^{2 t}+e^{3 t}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}^{-1}\left[\frac{s}{(s-2)(s-3)}\right] & =\mathscr{L}^{-1}\left[\frac{-2}{s-2}+\frac{3}{s-3}\right] \\
& =-2 e^{2 t}+3 e^{3 t}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}^{-1}\left[\frac{1}{s(s-2)(s-3)}\right] & =\mathscr{L}^{-1}\left[\frac{1 / 6}{s}+\frac{-1 / 2}{s-2}+\frac{1 / 3}{s-3}\right] \\
& =\frac{1}{6}-\frac{1}{2} e^{2 t}+\frac{1}{3} e^{3 t} .
\end{aligned}
$$

Thus, applying \mathscr{L}^{-1} to (*) gives

$$
x(t)=-18\left(-e^{2 t}+e^{3 t}\right)+5\left(-2 e^{2 t}+3 e^{3 t}\right)+\left(\frac{1}{6}-\frac{1}{2} e^{2 t}+\frac{1}{3} e^{3 t}\right)
$$

$$
=\frac{1}{6}+\frac{15}{2} e^{2 t}-\frac{8}{3} e^{3 t}
$$

That was a lot of computation. The method of eigenvalues would have been faster.
4. Resonance. Consider the following initial value problem:

$$
x^{\prime \prime}(t)+4 x(t)=\cos (\omega t) ; \quad x(0)=x^{\prime}(0)=0
$$

(a) First suppose that $\omega \neq 2$. In this case solve for A, B, C, D in the expansion:

$$
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)}=\frac{A s+B}{s^{2}+4}+\frac{C s+D}{s^{2}+\omega^{2}}
$$

(b) Use part (a) and Laplace transforms to solve the initial value problem when $\omega \neq 2$.
(c) Use Problem 1(a) and Laplace transforms to solve the initial value problem when $\omega=2$.
(a): Assume that $\omega \neq 2$. We are looking for A, B, C, D so that

$$
\begin{aligned}
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)} & =\frac{A s+B}{s^{2}+4}+\frac{C s+D}{s^{2}+\omega^{2}} \\
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)} & =\frac{(A s+B)\left(s^{2}+\omega^{2}\right)+(C s+D)\left(s^{2}+4\right)}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)} \\
s & =(A s+B)\left(s^{2}+\omega^{2}\right)+(C s+D)\left(s^{2}+4\right) \\
0 s^{3}+0 s^{2}+1 s+0 & =(A+C) s^{3}+(B+D) s^{2}+\left(A \omega^{2}+4 C\right) s+\left(B \omega^{2}+4 D\right)
\end{aligned}
$$

Comparing coefficients gives four equations:

$$
\left\{\begin{aligned}
A+C & =0 \\
B+D & =0 \\
A \omega^{2}+4 C & =1 \\
B \omega^{2}+4 D & =0
\end{aligned}\right.
$$

The first two equations give $C=-A$ and $D=-B$. Since $\omega \neq 2$ we have $\omega^{2}-4 \neq 0 \cdot 1$ hence the fourth equation gives

$$
\begin{aligned}
B \omega^{2}+4 D & =0 \\
B \omega^{2}-4 B & =0 \\
\left(\omega^{2}-4\right) B & =0 \\
B & =0
\end{aligned}
$$

Finally, the third equation gives

$$
\begin{aligned}
A \omega^{2}+4 C & =1 \\
A \omega^{2}-4 A & =1 \\
\left(\omega^{2}-4\right) A & =1 \\
A & =1 /\left(\omega^{2}-4\right)
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)} & =\frac{s /\left(\omega^{2}-4\right)}{s^{2}+4}+\frac{-s /\left(\omega^{2}-4\right)}{s^{2}+\omega^{2}} \\
& =\frac{1}{\omega^{2}-4}\left(\frac{s}{s^{2}+4}-\frac{s}{s^{2}+\omega^{2}}\right)
\end{aligned}
$$

[^0](b): Assume that $\omega \neq 2$. Apply Laplace transforms to get
\[

$$
\begin{aligned}
x^{\prime \prime}+4 x & =\cos (\omega t) \\
s^{2} X+4 X & =\frac{s}{s^{2}+\omega^{2}} \\
\left(s^{2}+4\right) X & =\frac{s}{s^{2}+\omega^{2}} \\
X & =\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)} .
\end{aligned}
$$ \quad x(0)=x^{\prime}(0)=0
\]

Now apply part (a) to get

$$
\begin{aligned}
x(t) & =\mathscr{L}^{-1}\left[\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)}\right] \\
& =L^{-1}\left[\frac{1}{\omega^{2}-4}\left(\frac{s}{s^{2}+4}-\frac{s}{s^{2}+\omega^{2}}\right)\right] \\
& =\frac{1}{\omega^{2}-4}\left(\mathscr{L}^{-1}\left[\frac{s}{s^{2}+4}\right]-\mathscr{L}^{-1}\left[\frac{s}{s^{2}+\omega^{2}}\right]\right) \\
& =\frac{1}{\omega^{2}-4}(\cos (2 t)-\cos (\omega t))
\end{aligned}
$$

(c): If $\omega=2$ then the previous solution is wrong. We could find the solution by taking the limit as $\omega \rightarrow 2$:

$$
x(t)=\lim _{\omega \rightarrow 2} \frac{\cos (2 t)-\cos (\omega t)}{\omega^{2}-4} .
$$

Instead we will use Laplace transforms:

$$
\begin{aligned}
x^{\prime \prime}+4 x & =\cos (2 t) \\
s^{2} X+4 X & =\frac{s}{s^{2}+4} \\
\left(s^{2}+4\right) X & =\frac{s}{s^{2}+4} \\
X & =\frac{s}{\left(s^{2}+4\right)^{2}} .
\end{aligned}
$$

Recall from Problem 1(a) that

$$
\mathscr{L}[t \cdot \sin (2 t)]=\frac{4 s}{\left(s^{2}+4\right)^{2}} .
$$

Hence

$$
\begin{aligned}
x(t) & =\mathscr{L}^{-1}\left[\frac{s}{\left(s^{2}+4\right)^{2}}\right] \\
& =\frac{1}{4} \cdot \mathscr{L}^{-1}\left[\frac{4 s}{\left(s^{2}+4\right)^{2}}\right] \\
& =\frac{1}{4} \cdot t \cdot \sin (2 t) .
\end{aligned}
$$

5. Hitting a Spring with a Hammer. The undamped oscillator $x^{\prime \prime}(t)+x(t)=0$ with initial conditions $x(0)=0$ and $x^{\prime}(0)=1$ has solution $x(t)=\sin t$. If we hit this spring with a hammer at time $t=a>0$, then the equation becomes

$$
x^{\prime \prime}(t)+x(t)=\delta(t-a) ; \quad x(0)=0, x^{\prime}(0)=1 .
$$

(a) Solve the new equation. [Hint: Use rule (5). Your answer will involve $H(t-a)$.]
(b) Use a computer to graph your solution for the following three values of a :

$$
a=\frac{9 \pi}{10}, \quad a=\pi, \quad a=\frac{11 \pi}{10} .
$$

(a): Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime \prime}+x & =\delta(t-a) \\
s^{2} X-s x(0)-x^{\prime}(0)+X & =e^{-a s} \\
s^{2}-1+X & =e^{-a s} \\
\left(s^{2}+1\right) X & =1+e^{-a s} \\
X & =\frac{1}{s^{2}+1}+\frac{e^{-a s}}{s^{2}+1} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s^{2}+1}\right]+\mathscr{L}^{-1}\left[\frac{e^{-a s}}{s^{2}+1}\right] \\
& =\sin (t)+H(t-a) \sin (t-a) \\
& = \begin{cases}\sin (t) & t<a, \\
\sin (t)+\sin (t-a) & t>a .\end{cases}
\end{aligned}
$$

(b): Here is the graph of $x(t)$ when $a=9 \pi / 10$:

Here is the graph of $x(t)$ when $a=\pi$:

Here is the graph of $x(t)$ when $a=11 \pi / 10$:

Remark: We can simplify the formula for $x(t)$ by using the trig identity

$$
\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta
$$

Putting $\alpha=t-a / 2$ and $\beta=a / 2$ gives

$$
x(t)= \begin{cases}\sin (t) & t<a \\ 2 \cos (a / 2) \sin (t-a / 2) & t>a\end{cases}
$$

When $t<a$ the solution is a sine wave with amplitude 1 . When $t>a$ the solution is a shifted sine wave with amplitude $2 \cos (a / 2)$.
6. Hockey Puck on Ice. A hockey puck of mass $m=1$ sits on a flat sheet of ice with friction $\gamma>0$. At time $t=0$ a hockey stick instantaneously transfers 1 Newton of force to the puck. Let $x(t)$ be the horizontal distance of the puck from the hockey player, so that

$$
x^{\prime \prime}(t)+\gamma \cdot x^{\prime}(t)=\delta(t) ; \quad x(0)=x^{\prime}(0)=0 .
$$

(a) Find the partial fraction expansion of $\frac{1}{s(s+\gamma)}$.
(b) Solve for $x(t)$ in terms of γ. [Hint: Your answer will involve $H(t)$.]
(c) How far does the puck go before it is stopped by friction? [Hint: $\lim _{t \rightarrow \infty} x(t)$.]
(a): We are looking for A, B such that

$$
\begin{aligned}
\frac{1}{s(s+\gamma)} & =\frac{A}{s}+\frac{B}{s+\gamma} \\
\frac{1}{s(s+\gamma)} & =\frac{A(s+\gamma)+B s}{s(s+\gamma)} \\
1 & =A(s+\gamma)+B s .
\end{aligned}
$$

Substituting $s=0$ and $s=-\gamma$ gives $A=1 / \gamma$ and $B=-1 / \gamma$, hence

$$
\frac{1}{s(s+\gamma)}=\frac{1 / \gamma}{s}+\frac{-1 / \gamma}{s+\gamma}=\frac{1}{\gamma}\left(\frac{1}{s}-\frac{1}{s+\gamma}\right) .
$$

(b): Applying Laplace transforms and part (a) gives

$$
\begin{aligned}
x^{\prime \prime}+\gamma x^{\prime} & =\delta(t) \\
s^{2} X-s x(0)-x^{\prime}(0)+\gamma(s X-x(0)) & =1 \\
s^{2} X+s \gamma X & =1 \\
s(s+\gamma) X & =1
\end{aligned} \quad x(0)=x^{\prime}(0)=0
$$

$$
\begin{aligned}
X & =\frac{1}{s(s+\gamma)} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s(s+\gamma)}\right] \\
& =\mathscr{L}^{-1}\left[\frac{1}{\gamma}\left(\frac{1}{s}-\frac{1}{s+\gamma}\right)\right] \\
& =\frac{1}{\gamma} \cdot \mathscr{L}^{-1}\left[\frac{1}{s}-\frac{1}{s+\gamma}\right] \\
& =\frac{1}{\gamma}\left(\mathscr{L}^{-1}\left[\frac{1}{s}\right]-\mathscr{L}^{-1}\left[\frac{1}{s+\gamma}\right]\right) \\
& =\frac{1}{\gamma}\left(1-e^{-\gamma t}\right)
\end{aligned}
$$

(c): Since $\gamma>0$ we have

$$
\lim _{t \rightarrow \infty} \frac{1}{\gamma}\left(1-e^{-\gamma t}\right)=\frac{1}{\gamma}(1-0)=\frac{1}{\gamma} .
$$

That is, the puck will travel $1 / \gamma$ units of distance before stopping. (Actually, it never completely stops, but the velocity decays rapidly to zero.)

[^0]: ${ }^{1}$ Let's assume that $\omega>0$.

