Math 311 Spring 2023
Homework 5 Drew Armstrong

The Laplace transform F(s) of a function f(t) is defined as follows:

F(s) = ZL[f(t)] = /0 T e,

One can use this definition to derive the following general rules:

(1) .f[t-f( )| =—F'(s)

(2) Ll - f(t)] = F(s —a)
3) Z[f ()]—SF( ) — f(0)
(4) Z[f"(t)] = s*F(s) — s£(0) — f"(0)
(5) Z[H(t—a)- f(t—a)] =e *F(s), where H(t) is the Heaviside step function:
0 t<0,
H{E) = {1 t>1.

Here are the transforms of some basic functions:
e Z[0]=0
o Z[1]=1/s
o L] =1/(s—a)
o Zt] = 1/82
o Z[t"] = n!/s"H
o Zcos(kt)] = s/(s% + k?)
o Z[sin(kt)] = k/(s> + k?)
The Dirac delta function §(t) satisfies Z[0(t — a)] = e~ 5.

1. Using the Rules.
(a) Use rule (1) to compute

Zt-sin(kt)] and Z|[t-cos(kt)].
(b) Use rule (2) to compute

v I [

(c) Use rule (5) to compute

—s —2s
1 € and Z7! ¢ )
s s2+1

(a): We have

Lt - sin(kt)] = —dii.z fsin(kt)]
d Kk
ds s? + k2
_d o o
= dsk(s + k)

= k(—1)(s2 + k2)"2(25)
1



B 2ks
T (82 + k2)2
and
Lt - cos(kt)] —d%.z fcos(kt)]
__ 4 s
T ds 2+ k2
(52 + k2)(1) — 5(2s)
(52 + K2)2
82 _ ]{72
TR

(b): We note that 1/(s — 1)? is a shifted form of 1/s2, hence
L7 /(s =1 =¢ - 27 1)) =€t -t

‘We note that ﬁ is a shifted form of ﬁ. Hence

2 2
-1 3 -1 3t
<z [(8_3)2+4]—et-$ [82+4}—et'sm(2t).

(c): Since £ ![1/s] = 1 we have

Since .Z~1[1/(s* + 1)] = sint we have

<$1[€%]::H@—2fsm@—2):{

0 t <2,
sin(t—2) t>2.

s24+1

2. Some Small Problems. Solve using Laplace transforms:
(a) 2'(t) = 2(t); #(0) = 1
(b) 2'(t) = z(t) + 1; z(0) =1
(c) 2'(t) = x(t) + €5 2(0) =1

(a): Applying Laplace transforms gives

2/ (t) = z(t)
sX —z(0)=X
sX —1=X 2(0) = 1
sX—-X=1
(s—1H)X =1
X=1/(s—1)
w(t) =27 1/(s — 1)]

This answer is not a surprise. We are just solving it with a new method.



(b): Applying Laplace transforms gives
2(t)=z(t) +1
sX —1=X+1/s
sX —X=1+1/s
(s—1HX=1+4+1/s
1 1

X:
s—1+s(s—1)

z(t) =271 [1] + 771 [ !

xwza+$4L@£D}

Now we use partial fractions:

1 A B
5(5—1):§+5—1

1 A(s—1)+Bs
s(s—1) s(s—1)

1=A(s—1)+ Bs.
Substituting s =0 and s = 1 gives A = —1 and B = 1, hence

o(t) = et + 27 [—1+ 1 ]

S s—1

1 1
—el - g7t H +.$1{

s s—1
=e'—1+¢
=2 —1.

Again, this is not a surprise.

(c): Applying Laplace transforms gives
2(t) =x(t) +t
sX —1=X+1/s?
sX - X =1+1/s*
(s—1)X =1+1/s*
1 1

X =
8—1+82(8—1)

|



1 _ As(s—1)+ B(s— 1)+ Cs?
s2(s—1) s2(s—1)
1= As(s—1)+ B(s — 1) + Cs%
We can substitute three values of s to get three equations for A, B, C or we can expand and
compare coefficients:

0s°+0s+1=(A+C)s>+(B—A)s— B
The equation 1 = —B gives B = —1. Then the equation B — A = 0 gives A = —1. Then the
equation A + C' = 0 gives C' = 1. We conclude that
[ 1
t) = t 3—1 -
o) =€+ | s2(s — 1)]
(-1 -1 1
t -1
= 1| Tt T
e+ s + 52 1]

S
oo B [

s s—1

=e'—1—t+e

=2 —1-t.
Previously we solved this equation using integrating factors and the method of undetermined
coefficients. Undetermined coefficients is the fastest method, but it requires a good guess.

Integrating factors involves integration by parts. Laplace transforms involves partial fractions.
Which method is best?

3. A Bigger Problem.
(a) Find the partial fraction expansion of m
(b) Find the partial fraction expansion of (== 2) (S 3
(c¢) Find the partial fraction expansion of eI ) =k
(d) Use Laplace transforms together with (a), (b), (c) to solve the initial value problem:

2"(t) — 52/ (t) + 6z(t) = 1; x(0) =5, 2'(0)=7.

(a): We are looking for A, B such that

1 A4 B
(8—2)(8—3)_8—2+5—3
1 _ A(s—3)+B(s—2)

(s—2)(s—3)  (s—2)(s—3)
1=A(s—3)+ B(s—2).
Putting s =2 and s = 3 gives A = —1 and B =1, hence
1 -1 1

(8*2)(8*3)28*2—’_8*3.

(b): We are looking for A, B such that

s A B
(s—2)(s—3) _s—2+s—3
s _ A(s—3)+B(s—2)

(s—2)(s—3) (s—2)(s—3)



s=A(s—3)+ B(s—2).
Putting s = 2 and s = 3 gives A = —2 and B = 3, hence
s =2 3
(5—2)(s—3) s—-2 s-—3

(c): We are looking for A, B, C such that

1 A B C
s(s —2)(s—3) :§+s—2+s—3

1 _ A(s—2)(s —3) 4+ Bs(s — 3) + Cs(s — 2)
s(s—2)(s—3) s(s—2)(s—3)

1=A(s—2)(s—3)+ Bs(s—3)+Cs(s—2).
Putting s =0, s =2 and s = 3 gives A=1/6, B= —1/2 and C = 1/3, hence
L ye e s
s(s —2)(s—3) s s—2 s-—3

(d): Apply Laplace transforms to get
2" (t) — 52/ (t) + 6z(t) = 1
(s°X — s2(0) — 2/(0)) — 5(sX — z(0)) +6X = 1/s
(X — 55 —T7) —5(sX —5)+6X =1/s z(0) = 5 and 2/(0) = 7
s —5s—T7—5sX +25+6X =1/s
(2 =55 +6)X = —18 + 55+ 1/s
(s—2)(s—3)X =—-18+5s+1/s.
Dividing both sides by (s — 2)(s — 3) gives

X =-18 : 5 ° L
(+) T G 6-3) T -2 -3) s-2(s-3)
From parts (a), (b), (c) we have
. 1 [ 1
Zz {(5—2)(5—3)] z [5—24_5—3}
2y Bt
and
1 S _ -1 -2 3
Z |:($—2)(8—3):| < [s—2+s—3}
= —2¢% 4 33
and
~ 1 e 12 13
31[3(3—2)(3—3)]_31[5+s—2+s—3]
11, 1.4
=5 3% T3¢

Thus, applying .Z~! to () gives

1 1 1
x(t) = —18(—e?" + 3t) + 5(—2e! 4 3e3t) + (6 - 56275 + 3€3t>



1 15 8
T 2002t O3t

6 2 3
That was a lot of computation. The method of eigenvalues would have been faster.

4. Resonance. Consider the following initial value problem:
2" (t) + 4x(t) = cos(wt); 2(0) = 2/(0) = 0.
(a) First suppose that w # 2. In this case solve for A, B,C, D in the expansion:
s As+B Cs+ D
(Z+4) (2 +w?) 244 @ s2+w?
(b) Use part (a) and Laplace transforms to solve the initial value problem when w # 2.
(c¢) Use Problem 1(a) and Laplace transforms to solve the initial value problem when w = 2.

(a): Assume that w # 2. We are looking for A, B, C, D so that

s _As+B  Cs+D
(s2+4)(s2 +w?)  s2+4 T w

s _ (As+ B)(s* 4+ w?) + (Cs+ D)(s* + 4)
(52 +4)(s2 +w?) (s2 +4)(s2 + w?)

s = (As + B)(s* + w?) + (Cs + D)(s* + 4)
0s% +0s? +1s +0 = (A+ C)s® + (B + D)s* + (Aw? +4C)s + (Bw? + 4D).

Comparing coeflicients gives four equations:

A+C =0,
B+D =0,
Aw? +4C =1,

Bw?+4D =0.

The first two equations give C' = —A4 and D = —B. Since w # 2 we have w? — 4 # 0E| hence
the fourth equation gives

Bw?+4D =0
Bw? —4B =0
(W —4)B=0
B =0.
Finally, the third equation gives
Aw? +4C =1
Aw? — 44 =1
(W —4)A=1
A=1/(w?—4).
We conclude that
s Cs/(w?—4)  —s/(w?—4)
(s24+4)(s%2 + w?) s2+4 s2 + w?

B 1 s s
w24\ s244  s24w2)/)°

Het’s assume that w > 0.



(b): Assume that w # 2. Apply Laplace transforms to get

2" + 4z = cos(wt)

$2X 14X = ﬁ 2(0) = 2/(0) = 0
2 o S
(DX =Fr 0
X— S

EEFEE)
Now apply part (a) to get

2 )

_ 1 1 5 s
w2 —4\s2+4 524 w2

1 1 s o1 s
_w2—4<$ LQ—FZJ Zz |:52+0.)2:|>

= ﬁ (cos(2t) — cos(wt)) .

(c): If w = 2 then the previous solution is wrong. We could find the solution by taking the
limit as w — 2:

. cos(2t) — cos(wt)
=1 .
w0 =
Instead we will use Laplace transforms:

2" + 4z = cos(2t)

2 S /
X4+4X = —— = =
s°X + R z(0) =2'(0) =0
9 S
4HX =
(S + ) 52 + 4
B S
- (82 + 4)2 :
Recall from Problem 1(a) that
. 4s

Hence

|

-t - sin(2t).

N I N

5. Hitting a Spring with a Hammer. The undamped oscillator z”(t) + z(t) = 0 with
initial conditions z(0) = 0 and 2/(0) = 1 has solution x(t) = sint. If we hit this spring with a
hammer at time ¢t = a > 0, then the equation becomes

2"(t) + z(t) = 6(t —a); =(0) =0,2'(0) = 1.



(a) Solve the new equation. [Hint: Use rule (5). Your answer will involve H(t — a).]

(b) Use a computer to graph your solution for the following three values of a:
9 117
=7 a=—-:
10

GZE,

(a): Applying Laplace transforms gives
2" +x=46(t—a)
$2X —sz(0) — 2/ (0)+ X = e
—1+X=e¢"
($+1)X =1+
1 e
Tl st

—as

e—(zs

T
=sin(t) + H(t — a) sin(t — a)
B {sin(t) t<a,

sin(t) +sin(t —a) ¢ > a.

(b): Here is the graph of z(t) when a = 97/10:

T 3™ 2n S 3n AL 4
2 2 2

INYERE

Here is the graph of x(t) when a = :

3n 2n S 3w T
2

2
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Here is the graph of z(¢) when a = 117/10:
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Remark: We can simplify the formula for z(t) by using the trig identity
sin(a + ) + sin(a — ) = 2sin a cos .
Putting a =t — a/2 and § = a/2 gives

2(t) = {sin(t) t <a,

2cos(a/2)sin(t —a/2) t> a.

When ¢t < a the solution is a sine wave with amplitude 1. When ¢ > a the solution is a shifted
sine wave with amplitude 2 cos(a/2).

6. Hockey Puck on Ice. A hockey puck of mass m = 1 sits on a flat sheet of ice with
friction v > 0. At time £ = 0 a hockey stick instantaneously transfers 1 Newton of force to
the puck. Let z(t) be the horizontal distance of the puck from the hockey player, so that

Z'(t)+~-2'(t) =6(t); =(0) =2'(0) =0.

(a) Find the partial fraction expansion of m

(b) Solve for x(t) in terms of . [Hint: Your answer will involve H(t).]
(c) How far does the puck go before it is stopped by friction? [Hint: lim; oo z(t).]

(a): We are looking for A, B such that

1 A B
- =4
s(s+7v) s s+7v

1 A(s+7)+Bs
s(s+9)  s(s+7)

1=A(s+~)+ Bs.
Substituting s = 0 and s = —v gives A =1/y and B = —1/~, hence

1 :1/’y+—1/7_1<1 1>'

s(s+7) s s+ vy s s+~

(b): Applying Laplace transforms and part (a) gives
"+ 2’ = 6(t)
§°X — sx(0) — 2/(0) + v(sX — z(0)) = 1
X +s7X =1 z(0) = 2/(0) =0
s(s+v)X =1



10

1
s(s+7)

HEE)]

[
N

1 1 1
= . 1|z
S
= ([ [)
Y s s+
:}y(l_evt)
(c): Since v > 0 we have
1 1 1
lim —(1—-e ) =—(1-0)=-.
Jim (1= ) = 2(1-0) =

That is, the puck will travel 1/ units of distance before stopping. (Actually, it never com-
pletely stops, but the velocity decays rapidly to zero.)



