The Laplace transform $F(s)$ of a function $f(t)$ is defined as follows:

$$
F(s)=\mathscr{L}[f(t)]=\int_{0}^{\infty} e^{-s t} d t .
$$

One can use this definition to derive the following general rules:
(1) $\mathscr{L}[t \cdot f(t)]=-F^{\prime}(s)$
(2) $\mathscr{L}\left[e^{a t} \cdot f(t)\right]=F(s-a)$
(3) $\mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$
(4) $\mathscr{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
(5) $\mathscr{L}[H(t-a) \cdot f(t-a)]=e^{-a s} F(s)$, where $H(t)$ is the Heaviside step function:

$$
H(t)= \begin{cases}0 & t<0 \\ 1 & t>1\end{cases}
$$

Here are the transforms of some basic functions:

- $\mathscr{L}[0]=0$
- $\mathscr{L}[1]=1 / s$
- $\mathscr{L}\left[e^{a t}\right]=1 /(s-a)$
- $\mathscr{L}[t]=1 / s^{2}$
- $\mathscr{L}\left[t^{n}\right]=n!/ s^{n+1}$
- $\mathscr{L}[\cos (k t)]=s /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\sin (k t)]=k /\left(s^{2}+k^{2}\right)$

The Dirac delta function $\delta(t)$ satisfies $\mathscr{L}[\delta(t-a)]=e^{-a s}$.

1. Using the Rules.
(a) Use rule (1) to compute

$$
\mathscr{L}[t \cdot \sin (k t)] \quad \text { and } \quad \mathscr{L}[t \cdot \cos (k t)] .
$$

(b) Use rule (2) to compute

$$
\mathscr{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right] \quad \text { and } \quad \mathscr{L}^{-1}\left[\frac{2}{(s-3)^{2}+4}\right] .
$$

(c) Use rule (5) to compute

$$
\mathscr{L}^{-1}\left[\frac{e^{-s}}{s}\right] \quad \text { and } \quad \mathscr{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+1}\right] .
$$

2. Some Small Problems. Solve using Laplace transforms:
(a) $x^{\prime}(t)=x(t) ; x(0)=1$
(b) $x^{\prime}(t)=x(t)+1 ; x(0)=1$
(c) $x^{\prime}(t)=x(t)+e^{t} ; x(0)=1$
3. A Bigger Problem.
(a) Find the partial fraction expansion of $\frac{1}{(s-2)(s-3)}$.
(b) Find the partial fraction expansion of $\frac{s}{(s-2)(s-3)}$.
(c) Find the partial fraction expansion of $\frac{1}{s(s-2)(s-3)}$.
(d) Use Laplace transforms together with (a), (b), (c) to solve the initial value problem:

$$
x^{\prime \prime}(t)-5 x^{\prime}(t)+6 x(t)=1 ; \quad x(0)=5, \quad x^{\prime}(0)=7 .
$$

4. Resonance. Consider the following initial value problem:

$$
x^{\prime \prime}(t)+4 x(t)=\cos (\omega t) ; \quad x(0)=x^{\prime}(0)=0 .
$$

(a) First suppose that $\omega \neq 2$. In this case solve for A, B, C, D in the expansion:

$$
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)}=\frac{A s+B}{s^{2}+4}+\frac{C s+D}{s^{2}+\omega^{2}} .
$$

(b) Use part (a) and Laplace transforms to solve the initial value problem when $\omega \neq 2$.
(c) Use Problem 1(a) and Laplace transforms to solve the initial value problem when $\omega=2$.
5. Hitting a Spring with a Hammer. The undamped oscillator $x^{\prime \prime}(t)+x(t)=0$ with initial conditions $x(0)=0$ and $x^{\prime}(0)=1$ has solution $x(t)=\sin t$. If we hit this spring with a hammer at time $t=a>0$, then the equation becomes

$$
x^{\prime \prime}(t)+x(t)=\delta(t-a) ; \quad x(0)=0, x^{\prime}(0)=1 .
$$

(a) Solve the new equation. [Hint: Use rule (5). Your answer will involve $H(t-a)$.]
(b) Use a computer to graph your solution for the following three values of a :

$$
a=\frac{9 \pi}{10}, \quad a=\pi, \quad a=\frac{11 \pi}{10} .
$$

6. Hockey Puck on Ice. A hockey puck of mass $m=1$ sits on a flat sheet of ice with friction $\gamma>0$. At time $t=0$ a hockey stick instantaneously transfers 1 Newton of force to the puck. Let $x(t)$ be the horizontal distance of the puck from the hockey player, so that

$$
x^{\prime \prime}(t)+\gamma \cdot x^{\prime}(t)=\delta(t) ; \quad x(0)=x^{\prime}(0)=0 .
$$

(a) Find the partial fraction expansion of $\frac{1}{s(s+\gamma)}$.
(b) Solve for $x(t)$ in terms of γ. [Hint: Your answer will involve $H(t)$.]
(c) How far does the puck go before it is stopped by friction? [Hint: $\lim _{t \rightarrow \infty} x(t)$.]

