
Math 311 Spring 2023
Homework 4 Drew Armstrong

A linear operator L sends each function y(x) to a function L[y(x)], and satisfies two properties:

• L[Cy(x)] = CL[y(x)] for all constants C and functions y(x),
• L[y1(x) + y2(x)] = L[y1(x)] + L[y2(x)] for all functions y1(x) and y2(x).

We can also phrase these two properties as one property:

• L[C1y1(x) +C2y2(x)] = C1L[y1(x)] +C2L[y2(x)] for all constants C1, C2 and functions
y1(x), y2(x).

A linear differential operator has the form

L[y(x)] = P0(x)y(x) + P1(x)y′(x) + P2(x)y′′(x) + · · · + Pny
(n)(x)

for some functions P0(x), . . . , Pn(x). A linear ODE has the form L[y(x)] = f(x), where L is a
linear differential operator and f(x) is any function. The general solution of the linear ODE
is y(x) = yc(x) + yp(x), where

• yc(x) is the general solution of the homogeneous equation L[y(x)] = 0,
• yp(x) is any one particular solution of the non-homogeneous equation L[y(x)] = f(x).

1. Linear Operators. Test whether each of the following operators is linear:

(a) L[y(x)] = y′(x)
(b) L[y(x)] = y(x)2

(c) L[y(x)] = y′(x) · y(x)
(d) L[y(x)] =

∫ x
0 y(s) ds

(a): Consider any constants C1, C2 and functions y1(x), y2(x). We note that

C1L[y1(x)] + C2L[y2(x)] = C1y
′
1(x) + C2y

′
2(x)

and

L[C1y1(x) + C2y2(x)] = [C1y1(x) + C2y2(x)]′

= C1y
′
1(x) + C2y

′
2(x). property of derivatives

Since these are the same, we conclude that L is linear.

(b): Consider any constants C1, C2 and functions y1(x), y2(x). We note that

C1L[y1(x)] + C2L[y2(x)] = C1y1(x)2 + C2y2(x)2

and

L[C1y1(x) + C2y2(x)] = [C1y1(x) + C2y2(x)]2

= C2
1y1(x)2 + C2

2y2(x)2 + 2C1C2y1(x)y2(x).

Since these are not the same, we conclude that L is not linear.

(b): Consider any constants C1, C2 and functions y1(x), y2(x). We note that

C1L[y1(x)] + C2L[y2(x)] = C1y
′
1(x)y1(x) + C2y

′
2(x)y2(x)

and

L[C1y1(x) + C2y2(x)] = [C1y1(x)] + C2y2(x)]′ · [C1y1(x) + C2y2(x)]

= [C1y
′
1(x) + C2y

′
2(x)] · [C1y1(x) + C2y2(x)]
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= C2
1y
′
1(x)y1(x) + C2

2y
′
2(x)y2(x) + C1C2y

′
1(x)y2(x) + C1C2y1(x)y′2(x).

Since these are not the same, we conclude that L is not linear.

(a): Consider any constants C1, C2 and functions y1(x), y2(x). We note that

C1L[y1(x)] + C2L[y2(x)] = C1

∫ x

0
y1(s) ds+ C2

∫ x

0
y2(s) ds

and

L[C1y1(x) + C2y2(x)] =

∫ x

0
[C1y1(s) + C2y2(s)] ds

= C1

∫ x

0
y1(s) ds+ C2

∫ x

0
y2(s) ds. property of integrals

Since these are the same, we conclude that L is linear.

Remark: In this problem we observed that differentiation and integration are linear operators.
This is the reason why linear operators are important in the study of differential equations.

2. Undetermined Coefficients I. The method of undetermined coefficients uses an educated
guess to find one particular solution of a non-homogeneous linear ODE:

(a) Find one solution to x′(t) + x(t) = 5. [Hint: Guess xp(t) = A.]
(b) Find one solution to x′(t) + x(t) = t2. [Hint: Guess xp(t) = At2 +Bt+ C.]
(c) Find one solution to x′(t) + x(t) = cos t. [Hint: Guess xp(t) = A cos t+B sin t.]

(a): We substitute the guess xp(t) = A to obtain

x′p(t) + xp(t) = 5

(A)′ +A = 5

0 +A = 5

A = 5.

Hence xp(t) = 5 is a solution.

(b): We substitute the guess xp(t) = At2 +Bt+ C to obtain

x′p(t) + xp(t) = t2

(At2 +Bt+ C)′ +At2 +Bt+ C = t2

(2At+B) +At2 +Bt+ C = t2

(A)t2 + (2A+B)t+ (B + C) = 1t2 + 0t+ 0.

Since we have 3 unknowns A,B,C we need 3 equations. Actually we have infinitely many
equations, one for each value of t. To get 3 equations we can substitute any 3 values of t.
Another method is just to compare coefficients in the polynomial expansions:1 A = 1

2A+B = 0
B + C = 0.

1Technically: The method of comparing coefficients is the same as (1) putting t = 0, (2) differentiating and
putting t = 0, (3) differentiating twice and putting t = 0.
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Solving this system gives A = 1, B = −2 and C = 2, hence

xp(t) = t2 − 2t+ 2.

(c): We substitute the guess xp(t) = A cos t+B sin t to obtain

x′p(t) + xp(t) = cos t

(A cos t+B sin t)′ +A cos t+B sin t = cos t

−A sin t+B cos t+A cos t+B sin t = cos t

(A+B) cos t+ (−A+B) sin t = 1 cos t+ 0 sin t.

Since we have two unknowns A,B we need two equations. Actually we have infinitely many
equations, one for each value of t. To get two equations we can substitute any two values of
t. Another method is just to compare coefficients:2{

A+B = 1
−A+B = 0.

Solving this system gives A = 1/2 and B = 1/2, hence

xp(t) =
1

2
cos t+

1

2
sin t.

3. Undetermined Coefficients II. Use your answers from Problem 2 to solve the following
initial value problems:

(a) x′(t) + x(t) = 5; x(0) = 0
(b) x′(t) + x(t) = t2; x(0) = 0
(c) x′(t) + x(t) = cos t; x(0) = 0

First we note that the homogeneous linear equation x′(t) + x(t) = 0 has general solution

xc(t) = Ce−t.

(a): The general solution of x′(t) + x(t) = 5 is

x(t) = xc(t) + xp(t)

= Ce−t + 5.

To find C we substitute x(0) = 0:

x(0) = 0

Ce0 + 5 = 0

C + 5 = 0

C = −5.

Hence the solution is

x(t) = −5e−t + 5.

(a): The general solution of x′(t) + x(t) = t2 is

x(t) = xc(t) + xp(t)

= Ce−t + t2 − 2t+ 2.

2Technically: The method of comparing coefficients is the same as substituting t = 0 and t = π/2.
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To find C we substitute x(0) = 0:

x(0) = 0

Ce0 + 0 − 0 + 2 = 0

C + 2 = 0

C = −2.

Hence the solution is

x(t) = −2e−t + t2 − 2t+ 2.

(a): The general solution of x′(t) + x(t) = cos t is

x(t) = xc(t) + xp(t)

= Ce−t +
1

2
cos t+

1

2
sin t.

To find C we substitute x(0) = 0:

x(0) = 0

Ce0 +
1

2
· 1 +

1

2
· 0 = 0

C +
1

2
= 0

C = −1

2
.

Hence the solution is

x(t) = −1

2
e−t +

1

2
cos t+

1

2
sin t.

4. The Hanging Spring. Consider a particle of mass m > 0 hanging from the ceiling by a
(massless, frictionless) spring with stiffness k > 0. Let y(t) be the height of the mass at time
t. Let y = 0 be the bottom of the spring when the mass is not attached, so the spring
force is −ky(t). Then y(t) satisfies the differential equation

(force) = (spring) + (gravity)

my′′(t) = −ky(t) − gm

my′′(t) + ky(t) = −gm,
where g > 0 is the gravitational constant. This is a linear ODE. Find the general solution.
[Hint: First find the general homogeneous solution yc(t). Then find a particular solution yp(t).
Since the non-homogeneous term −gm is constant, look for a constant solution yp(t) = A.]

This is a non-homogeneous linear equation. Consider the homogeneous equation:

my′′(t) + ky(t) = 0.

We have solved this equation before. Recall: It has general solution yc(t) = c1e
λ1t + c2e

λ2t,
where λ1, λ2 are the two roots of the characteristic equation mλ2 + k = 0. Let’s write ω =√
k/m > 0. Since the roots are λ1, λ2 = ±

√
−k/m = ±iω we conclude that

yc(t) = c1e
iωt + c2e

−iωt

= c3 cos(ωt) + c4 sin(ωt)
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for some constants c3, c4. Now we consider the non-homogeneous equation my′′(t) + ky(t) =
−gm. Since the right hand side is constant, we guess that there is a constant solution yp(t) =
A. Substituting gives

my′′p(t) + kyp(t) = −gm
m(A)′′ + kA = −gm

0 + kA = −gm
A = −gm/k.

Hence the general solution of my′′(t) + ky(t) = −gm is

y(t) = yc(t) + yp(t) = c3 cos(
√
k/m · t) + c4 sin(

√
k/m · t) − gm/k.

Interpretation: Without gravity, the equilibrium height is y = 0. With gravity, the new
equilibrium height is y = −gm/k. The frequency of oscillation doesn’t change. Of course, this
is an idealized situation where the spring is massless, there is no friction, and the oscillations
are small enough that −ky(t) is a realistic model of the spring force. Picture:

5. Variation of Parameters. The method of undetermined coefficients only works some-
times. The method of variation of parameters always works, but the computations are usually
more difficult.

(a) The homogeneous equation y′(x)+y(x) = 0 has general solution yc(x) = Ce−x. So the
non-homogeneous equation y′(x) + y(x) = x2 has a solution yp(x) = u(x)e−x for some
function u(x).3 Substitute this into the ODE and solve for u(x).

(b) The homogeneous equation y′(x)− y(x)/x = 0 has general solution yc(x) = Cx, so the
non-homogeneous equation y′(x)−y(x)/x = x has a solution yp(x) = u(x)x. Substitute
and solve for u(x).

(c) The homogeneous equation x′′(t) − 3x′(t) + 2x(t) = 0 has general solution xc(t) =
c1e

t+c2e
2t, so the non-homogeneous equation x′′(t)−3x′(t)+2x(t) = e3t has a solution

xp(t) = u1(t)e
t + u2(t)e

2t for some functions u1(t) and u2(t). Substitute and solve for
u1(t) and u2(t). [Hint: You may assume for simplicity that u′1(t)e

t + u′2(t)e
2t = 0.]

3The method is called “variation of paramters” because we turn the parameter into a function.
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(a): Substitute the guess yp(x) = u(x)e−x to obtain

y′p(x) + y(x) = x2

[u(x)e−x]′ + y(x) = x2

u′(x)e−x −���
��

u(x)e−x +���
��

u(x)e−x = x2

u′(x)e−x = x2

u′(x) = x2ex

u(x) =

∫
x2ex dx.

We can solve this using integration by parts:∫
x2ex dx =

∫
udv (u = x2, dv = exdx)

= uv −
∫
vdu

= x2ex −
∫

2xex dx

= x2ex − 2

∫
wdz (w = x, dz = exdx)

= x2ex − 2

(
wz −

∫
zdw

)
= x2ex − 2

(
xex −

∫
exdx

)
= x2ex − 2 (xex − ex)

= (x2 − 2x+ 2)ex.

Hence we obtain a particular solution

yp(x) = u(x)e−x = (x2 − 2x+ 2)ex · e−x = x2 − 2x+ 2.

Wait a minute! We already found this solution in Problem 2(b). Which method was easier?

(b): I apologize that this problem originally had a typo. I will solve the fixed version. The
homogeneous linear equation y′(x) − y(x)/x = 0 has general solution y(x) = Cx. Since this
was the typo, let me check that this is correct. I will use separation of variables:

dy

dx
− y

x
= 0

dy

dx
=
y

x
dy

y
=
dx

x∫
dy

y
=

∫
dx

x
+B

ln(y) = ln(x) +B

y = xeB

y = Cx.
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Okay, it’s correct. Based on this we should have a particular solution of the form yp(x) =
u(x) · x. Substituting gives

y′p(x) + yp(x)/x = x

[u(x) · x]′ − u(x) = x

u′(x) · x+���
�u(x) · 1 −���u(x) = x

u′(x) · x = x

u′(x) = 1

u(x) = x.

Hence we obtain a particular solution:

yp(x) = u(x) · x = x · x = x2.

(c): The general homogeneous solution is

xc(t) = c1e
t + c2e

2t,

hence we look for a particular solution of the form

xp(t) = u1(t)e
t + u2(t)e

2t,

For simplicity we will assume that u′1(t)e
t +u′2(t)e

2t = 0. (This is a good trick that makes the
solution computable by hand.) Substituting gives

e3t = x′′p(t) − 3x′p(t) + 2xp(t)

= [u1(t)e
t + u1(t)2e

2t +((((
(((

((
u′1(t)e

t + u′2(t)e
2t]′

− 3[u1(t)e
t + u1(t)2e

2t +((((
((((

(
u′1(t)e

t + u′2(t)e
2t]

+ 2[u1(t)e
t + u2(t)e

2t]

= [u1(t)e
t + u1(t)2e

2t]′

− 3[u1(t)e
t + u1(t)2e

2t]

+ 2[u1(t)e
t + u2(t)e

2t]

= [u′1(t)e
t + 2u′2(t)e

2t + u1(t)e
t + 4u2(t)e

2t]

− 3[u1(t)e
t + u1(t)2e

2t]

+ 2[u1(t)e
t + u2(t)e

2t]

= u′1(t)e
t + 2u′2(t)e

2t + (1 − 3 + 2)u1(t)e
t + (4 − 6 + 2)u2(t)e

2t

= u′1(t)e
t + 2u′2(t)e

2t + 0.

Thus we have two equations:4 {
u′1(t)e

t + u′2(t)e
2t = 0,

u′1(t)e
t + 2u′2(t)e

2t = e3t.

(You are free to skip the derivation and go right to the system of two equations.) Subtracting
the equations gives

u′2(t)e
2t = e3t

4In general, if x1(t) and x2(t) are the homogeneous solutions, then u1(t) and u2(t) satisfy the two equations
u′
1(t)x1(t) + u′

2(t)x2(t) = 0 and u′
1(t)x′1(t) + u′

2(t)x′2(t) = f(t), where f(t) is the non-homogeneous term.
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u′2(t) = et

u2(t) = et.

Then substituting into the first equation gives

u′1(t)e
t + u′2(t)e

2t = 0

u′1(t)e
t + ete2t = 0

u′1(t)e
t = −e3t

u′1(t) = −e2t

u1(t) = −1

2
e2t.

Hence we obtain a particular solution:

xp(t) = u1(t)e
t + u2(t)e

2t = −1

2
e2t + ete2t =

1

2
e3t.

Remark: Again, it is easier to find this solution using the method of undetermined coefficients.
But apparently the method of variation of parameters is usually taught in this course. Since
this is my first time teaching the course I am trying to follow tradition.

6. Beats. Consider a free undamped oscillator with mass m = 1 and stiffness k = 3025,
which satisfies the differential equation

x′′(t) + 3025x(t) = 0.

The natural frequency is ω0 =
√
k/m = 55 and the general solution is xc(t) = c1 cos(55t) +

c2 sin(55t). Now suppose we subject this oscillator to a periodic external force with amplitude
500 and frequency 45:

x′′(t) + 3025x(t) = 500 cos(45t).

(a) Find a particular solution of the form xp(t) = A cos(45t) +B sin(45t).
(b) Find the general solution x(t) = xc(t) + xp(t).
(c) Find the unique solution x(t) with initial conditions x(0) = 0 and x′(0) = 0.
(d) Express your solution in the form x(t) = C sin(αt) sin(βt). [Hint: Use the trig identities

cos(α− β) = cosα cosβ + sinα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ,

cos(α− β) − cos(α+ β) = 2 sinα sinβ.]

(e) Plot your solution x(t) for t between 0 and 3π/5. [Use a computer.]

(a): Substitute the guess xp(t) = A cos(45t) +B sin(45t) to get

500 cos(45t) = x′′p(t) + 3025xp(t)

= −452A cos(45t) − 452B sin(45t) + 3025A cos(45t) + 3025 sin(45t)

= (3025 − 452)A cos(45t) + (3025 − 452)B sin(45t)

= 1000A cos(45t) + 1000B sin(45t).

Comparing coefficients of cos(45t) and sin(45t) gives 500 = 1000A and 0 = 1000B, hence
A = 1/2 and B = 0. Thus we obtain the particular solution

xp(t) =
1

2
cos(45t).
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(b): The general solution is

x(t) = xc(t) + xp(t) = c1 cos(55t) + c2 sin(55t) +
1

2
cos(45t).

(c): Substitute the initial condition x(0) = 0 to get

0 = x(0)

0 = c1 cos(0) + c2 sin(0) +
1

2
cos(0)

0 = c1 +
1

2

c1 = −1

2
.

Then compute the derivative and substitute x′(0) = 0 to get

x′(t) = −− 55c1 sin(55t) + 55c2 cos(55t) − 1

2
45 sin(45t)

0 = −55c1 sin(0) + 55c2 cos(0) − 1

2
45 sin(0)

0 = 55c2

c2 = 0.

We conclude that

x(t) = −1

2
cos(55t) +

1

2
cos(45t).

(d): Putting α = 50t and β = 5t in the trig identity gives

cos(45t) − cos(55t) = cos(α− β) − cos(α+ β)

= 2 sinα sinβ

= 2 sin(50t) sin(5t),

and hence
x(t) = sin(50t) sin(5t).

Yes, this problem was reverse-engineered to have a nice solution.

(e): Here is a plot of x(t) for t from 0 to 3π/5:


