A linear operator L sends each function $y(x)$ to a function $L[y(x)]$, and satisfies two properties:

- $L[C y(x)]=C L[y(x)]$ for all constants C and functions $y(x)$,
- $L\left[y_{1}(x)+y_{2}(x)\right]=L\left[y_{1}(x)\right]+L\left[y_{2}(x)\right]$ for all functions $y_{1}(x)$ and $y_{2}(x)$.

We can also phrase these two properties as one property:

- $L\left[C_{1} y_{1}(x)+C_{2} y_{2}(x)\right]=C_{1} L\left[y_{1}(x)\right]+C_{2} L\left[y_{2}(x)\right]$ for all constants C_{1}, C_{2} and functions $y_{1}(x), y_{2}(x)$.
A linear differential operator has the form

$$
L[y(x)]=P_{0}(x) y(x)+P_{1}(x) y^{\prime}(x)+P_{2}(x) y^{\prime \prime}(x)+\cdots+P_{n} y^{(n)}(x)
$$

for some functions $P_{0}(x), \ldots, P_{n}(x)$. A linear $O D E$ has the form $L[y(x)]=f(x)$, where L is a linear differential operator and $f(x)$ is any function. The general solution of the linear ODE is $y(x)=y_{c}(x)+y_{p}(x)$, where

- $y_{c}(x)$ is the general solution of the homogeneous equation $L[y(x)]=0$,
- $y_{p}(x)$ is any one particular solution of the non-homogeneous equation $L[y(x)]=f(x)$.

1. Linear Operators. Test whether each of the following operators is linear:
(a) $L[y(x)]=y^{\prime}(x)$
(b) $L[y(x)]=y(x)^{2}$
(c) $L[y(x)]=y^{\prime}(x) \cdot y(x)$
(d) $L[y(x)]=\int_{0}^{x} y(s) d s$
2. Undetermined Coefficients I. The method of undetermined coefficients uses an educated guess to find one particular solution of a non-homogeneous linear ODE:
(a) Find one solution to $x^{\prime}(t)+x(t)=5$. [Hint: Guess $x_{p}(t)=A$.]
(b) Find one solution to $x^{\prime}(t)+x(t)=t^{2}$. [Hint: Guess $x_{p}(t)=A t^{2}+B t+C$.]
(c) Find one solution to $x^{\prime}(t)+x(t)=\cos t$. [Hint: Guess $x_{p}(t)=A \cos t+B \sin t$.]
3. Undetermined Coefficients II. Use your answers from Problem 2 to solve the following initial value problems:
(a) $x^{\prime}(t)+x(t)=5 ; x(0)=0$
(b) $x^{\prime}(t)+x(t)=t^{2} ; x(0)=0$
(c) $x^{\prime}(t)+x(t)=\cos t ; x(0)=0$
4. The Hanging Spring. Consider a particle of mass $m>0$ hanging from the ceiling by a (massless, frictionless) spring with stiffness $k>0$. Let $y(t)$ be the height of the mass at time t. Let $y=0$ be the bottom of the spring when the mass is not attached, so the spring force is $-k y(t)$. Then $y(t)$ satisfies the differential equation

$$
\begin{aligned}
(\text { force }) & =(\text { spring })+(\text { gravity }) \\
m y^{\prime \prime}(t) & =-k y(t)-g m \\
m y^{\prime \prime}(t)+k y(t) & =-g m,
\end{aligned}
$$

where $g>0$ is the gravitational constant. This is a linear ODE. Find the general solution. [Hint: First find the general homogeneous solution $y_{c}(t)$. Then find a particular solution $y_{p}(t)$. Since the non-homogeneous term $-g m$ is constant, look for a constant solution $y_{p}(t)=A$.]
5. Variation of Parameters. The method of undetermined coefficients only works sometimes. The method of variation of parameters always works, but the computations are usually more difficult.
(a) The homogeneous equation $y^{\prime}(x)+y(x)=0$ has general solution $y_{c}(x)=C e^{-x}$. So the non-homogeneous equation $y^{\prime}(x)+y(x)=x^{2}$ has a solution $y_{p}(x)=u(x) e^{-x}$ for some function $u(x) \cdot{ }_{-1}^{1}$ Substitute this into the ODE and solve for $u(x)$.
(b) The homogeneous equation $y^{\prime}(x)-y(x) / x=0$ has general solution $y_{c}(x)=C x$, so the non-homogeneous equation $y^{\prime}(x)-y(x) / x=x$ has a solution $y_{p}(x)=u(x) x$. Substitute and solve for $u(x)$.
(c) The homogeneous equation $x^{\prime \prime}(t)-3 x^{\prime}(t)+2 x(t)=0$ has general solution $x_{c}(t)=$ $c_{1} e^{t}+c_{2} e^{2 t}$, so the non-homogeneous equation $x^{\prime \prime}(t)-3 x^{\prime}(t)+2 x(t)=e^{3 t}$ has a solution $x_{p}(t)=u_{1}(t) e^{t}+u_{2}(t) e^{2 t}$ for some functions $u_{1}(t)$ and $u_{2}(t)$. Substitute and solve for $u_{1}(t)$ and $u_{2}(t)$. [Hint: You may assume for simplicity that $u_{1}^{\prime}(t) e^{t}+u_{2}^{\prime}(t) e^{2 t}=0$.]
6. Beats. Consider a free undamped oscillator with mass $m=1$ and stiffness $k=3025$, which satisfies the differential equation

$$
x^{\prime \prime}(t)+3025 x(t)=0 .
$$

The natural frequency is $\omega_{0}=\sqrt{k / m}=55$ and the general solution is $x_{c}(t)=c_{1} \cos (55 t)+$ $c_{2} \sin (55 t)$. Now suppose we subject this oscillator to a periodic external force with amplitude 500 and frequency 45 :

$$
x^{\prime \prime}(t)+3025 x(t)=500 \cos (45 t) .
$$

(a) Find a particular solution of the form $x_{p}(t)=A \cos (45 t)+B \sin (45 t)$.
(b) Find the general solution $x(t)=x_{c}(t)+x_{p}(t)$.
(c) Find the unique solution $x(t)$ with initial conditions $x(0)=0$ and $x^{\prime}(0)=0$.
(d) Express your solution in the form $x(t)=C \sin (\alpha t) \sin (\beta t)$. [Hint: Use the trig identities

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta, \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta, \\
\cos (\alpha-\beta)-\cos (\alpha+\beta) & =2 \sin \alpha \sin \beta .]
\end{aligned}
$$

(e) Plot your solution $x(t)$ for t between 0 and $3 \pi / 5$. [Use a computer.]

[^0]
[^0]: ${ }^{1}$ The method is called "variation of paramters" because we turn the parameter into a function.

