The second order, linear, homogeneous ODE with constant coefficients has the form

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 .
$$

We can think of this as a damped oscillator. The general solution will depend on two parameters, and a unique solution is determined by specifying the initial position $x(0)$ and velocity $x^{\prime}(0)$ To obtain the general solution, we first look for basic solutions of the form $\mathbf{x}(\mathbf{t})=\mathbf{e}^{\lambda \mathbf{t}}$. Substituting this guess into the ODE gives (after a bit if simplification) the characteristic equation

$$
m \lambda^{2}+\gamma \lambda+k=0
$$

Let λ_{1}, λ_{2} be the two roots of this equation. There are two cases:

- If $\lambda_{1} \neq \lambda_{2}$ then the general solution is $x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}$.
- If $\lambda_{1}=\lambda_{2}$ then the general solution is $x(t)=c_{1} e^{\lambda 1 t}+c_{2} t e^{\lambda_{1} t}$.

If λ_{1}, λ_{2} are not real then they must be complex conjugates: $\lambda_{1}, \lambda_{2}=a \pm i b$ with $b \neq 0$, in which case Euler's formula allows us to express the solution in terms of sine and cosine:

$$
c_{1} e^{a+i b}+c_{2} e^{a-i b}=e^{a t}\left(c_{3} \cos (b t)+c_{4} \sin (b t)\right) \quad \text { for some new constants } c_{3}, c_{4} .
$$

After finding the general solution $x(t)$ we compute $x^{\prime}(t)$ and then substitute $t=0$ to obtain two equations for the two unknown constants, which determine the constants uniquely.

1. Distinct Real Roots. Solve the following equations:
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=0$ with $y(0)=4$ and $y^{\prime}(0)=3$,
(b) $y^{\prime \prime}-4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$,
(c) $y^{\prime \prime}-3 y^{\prime}=0$ with $y(0)=5$ and $y^{\prime}(0)=3$.
(a): The independent variable wasn't named in the problem. For fun, let's call it t. We guess the basic solution $y(t)=e^{\lambda t}$ and substitute to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t) & =0 \\
\lambda^{2} e^{\lambda t}-3 \lambda e^{\lambda t}+2 e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}-3 \lambda+2\right) & =0 \\
\lambda^{2}-3 \lambda+2 & =0 \\
(\lambda-1)(\lambda-2) & =0 .
\end{aligned}
$$

The two roots are $\lambda_{1}, \lambda_{2}=1,2$ hence the general solution is

$$
y(t)=c_{1} e^{1 t}+c_{2} e^{2 t} .
$$

To determine c_{1} and c_{2} we first consider $y(t)$ and its derivative $y^{\prime}(t)$:

$$
\left\{\begin{aligned}
y(t) & =c_{1} e^{t}+c_{2} e^{2 t} \\
y^{\prime}(t) & =c_{1} e^{t}+2 c_{2} e^{2 t} .
\end{aligned}\right.
$$

Then we substitute $t=0$ to get a system of two equations for c_{1} and c_{2} :

$$
\left\{\begin{aligned}
4 & =c_{1}+c_{2} \\
3 & =c_{1}+2 c_{2}
\end{aligned}\right.
$$

[^0]Substituting these equations gives $c_{2}=-1$ and back-substituting gives c_{5}. Hence

$$
y(t)=5 e^{t}-e^{2 t} .
$$

(b): We guess the solution $y(t)=e^{\lambda t}$ and substitute to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)-4 y(t) & =0 \\
\lambda^{2} e^{\lambda t}-4 e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}-4\right) & =0 \\
\lambda^{2}-4 & =0 \\
(\lambda+2)(\lambda-2) & =0 .
\end{aligned}
$$

The two roots are $\lambda_{1}, \lambda_{2}=-2,2$ hence the general solution is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{2 t} .
$$

To determine c_{1} and c_{2} we first consider $y(t)$ and its derivative $y^{\prime}(t)$:

$$
\left\{\begin{aligned}
y(t) & =c_{1} e^{-2 t}+c_{2} e^{2 t}, \\
y^{\prime}(t) & =-2 c_{1} e^{-2 t}+2 c_{2} e^{2 t} .
\end{aligned}\right.
$$

Then we substitute $t=0$ to get a system of two equations for c_{1} and c_{2} :

$$
\begin{cases}1 & =c_{1}+c_{2} \\ 0 & =-2 c_{1}+2 c_{2}\end{cases}
$$

The second equation gives $c_{1}=c_{2}$ then the first equation gives $c_{1}=c_{2}=1 / 2$. Hence

$$
y(t)=e^{-2 t} / 2+e^{2 t} / 2
$$

Remark: This can also be expressed as $\cosh (2 t)$.
(c): We guess the solution $y(t)=e^{\lambda t}$ and substitute to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)-3 y^{\prime}(t) & =0 \\
\lambda^{2} e^{\lambda t}-3 \lambda e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}-3 \lambda\right) & =0 \\
\lambda^{2}-3 \lambda & =0 \\
\lambda(\lambda-3) & =0 .
\end{aligned}
$$

The two roots are $\lambda_{1}, \lambda_{2}=0,3$ hence the general solution is

$$
y(t)=c_{1} e^{0 t}+c_{2} e^{3 t}=c_{1}+c_{2} e^{3 t} .
$$

To determine c_{1} and c_{2} we first consider $y(t)$ and its derivative $y^{\prime}(t)$:

$$
\left\{\begin{aligned}
y(t) & =c_{1}+c_{2} e^{3 t}, \\
y^{\prime}(t) & =0+3 c_{2} e^{3 t} .
\end{aligned}\right.
$$

Then we substitute $t=0$ to get a system of two equations for c_{1} and c_{2} :

$$
\left\{\begin{array}{l}
5=c_{1}+c_{2} \\
3=3 c_{2}
\end{array}\right.
$$

Solving this system gives $c_{1}=4$ and $c_{2}=1$, hence

$$
y(t)=4+e^{3 t} \text {. }
$$

2. Repeated Roots. Solve the following equations:
(a) $y^{\prime \prime}+2 y^{\prime}+y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$,
(b) $y^{\prime \prime}=0$ with $y(0)=2$ and $y^{\prime}(0)=3$. [use the general method with repeated root $\lambda=0$.]
(c) Now solve the equation $y^{\prime \prime}=0$ using two direct integrations. Observe that you get the same answer as with the general method.
(a): We guess the solution $y(t)=e^{\lambda t}$ and substitute to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)+2 y(t)+y(t) & =0 \\
\lambda^{2} e^{\lambda t}+y(t)+y(t) & =0 \\
e^{\lambda t}\left(\lambda^{2}+2 \lambda+1\right) & =0 \\
\lambda^{2}+2 \lambda+1 & =0 \\
(\lambda+1)^{2} & =0 .
\end{aligned}
$$

This time there is a repeated root $\lambda_{1}=-1$. Hence the general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t} .
$$

To determine c_{1} and c_{2} we must first compute $y^{\prime}(t)$ via the chain rule:

$$
\begin{aligned}
y^{\prime}(t) & =-c_{1} e^{-t}+c_{2} e^{-t}-c_{2} t e^{-t} \\
& =-c_{1} e^{-t}+c_{2}(1-t) e^{-t}
\end{aligned}
$$

Thus we obtain the system

$$
\left\{\begin{aligned}
y(t) & =c_{1} e^{-t}+c_{2} t e^{-t}, \\
y^{\prime}(t) & =-c_{1} e^{-t}+c_{2}(1-t) e^{-t} .
\end{aligned}\right.
$$

Substituting the initial conditions $y(0)=1$ and $y^{\prime}(0)=1$ gives

$$
\begin{cases}1 & =c_{1}+0, \\ 1 & =-c_{1}+c_{2} .\end{cases}
$$

The first equation gives c_{1}, then the second equation gives $c_{2}=2$, hence

$$
y(t)=e^{-t}+2 t e^{-t}=(1+2 t) e^{-t} .
$$

(b): The equation $y^{\prime \prime}(t)=0$ can be solved by direct integration. Integrating gives

$$
\begin{aligned}
& y^{\prime}(t)=\int y^{\prime \prime}(t) d t \\
&=\int 0 d t=c_{1} \\
& y(t)=\int y^{\prime}(t) d t=\int c_{1} d t+c_{2}=c_{1} t+c 2
\end{aligned}
$$

for some constants c_{1} and c_{2}. Substituting $y(0)=2$ and $y^{\prime}(0)=3$ gives $c_{1}=3$ and $c_{2}=2$, hence the solution is

$$
y(t)=3 t+2
$$

(c): But let's check that the general method still works. Substitute $y(t)=e^{\lambda t}$ to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t) & =0 \\
\lambda^{2} e^{\lambda t} & =0 \\
\lambda^{2} & =0 .
\end{aligned}
$$

We see that $\lambda=0$ is a repeated root, hence the general solution is

$$
y(t)=c_{1} e^{0 t}+c_{2} t e^{0}=c_{1}+c_{2} t
$$

To determine c_{1} and c_{2} we consider the sytem:

$$
\left\{\begin{aligned}
y(t) & =c_{1}+c_{2} t, \\
y^{\prime}(t) & =c_{2} .
\end{aligned}\right.
$$

Substituting the initial conditions $y(0)=2$ and $y^{\prime}(0)=3$ gives

$$
\left\{\begin{aligned}
2 & =c_{1}+0 \\
3 & =c_{2}
\end{aligned}\right.
$$

Hence the solution is

$$
y(t)=2+3 t .
$$

Yes, this agrees with part (b). Remark: Sometimes we have a choice between several methods of solution.
3. Complex Conjugate Roots. Solve the following equations. Express your answer in terms of sine and cosine:
(a) $y^{\prime \prime}+y=0$ with $y(0)=2$ and $y^{\prime}(0)=3$,
(b) $y^{\prime \prime}+4 y^{\prime}+13 y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$,
(c) $y^{\prime \prime}+y^{\prime}+y=0$ with $y(0)=0$ and $y^{\prime}(0)=3$.
(a): This example is very important. We starting talking about it on the first day of class. At that time we observed that $\sin t$ and $\cos t$ are solutions, and I told you that the general solution has the form

$$
y(t)=A \cos t+B \sin t
$$

Let's check that this agrees with the general method. Substitute $y(t)=e^{\lambda t}$ to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =0 \\
\lambda^{2} e^{\lambda t}+e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}+1\right) & =0 \\
\lambda^{2}+1 & =0 \\
\lambda^{2} & =-1 \\
\lambda & = \pm i .
\end{aligned}
$$

Since there are two distinct roots $\lambda_{1}, \lambda_{2}=+i,-i$ the general solution is

$$
y(t)=c_{1} e^{i t}+c_{2} e^{-i t} .
$$

This doesn't look like $A \sin t+B \cos t$ but it turns out to be exactly the same. To see this we can use Euler's formulas:

$$
\begin{aligned}
e^{i t} & =\cos t+i \sin t \\
e^{-i t} & =\cos (-t)+i \sin (-t)=\cos t-i \sin t .
\end{aligned}
$$

Substituting these into our solution gives

$$
\begin{aligned}
y(t) & =c_{1} e^{i t}+c_{2} e^{-i t} \\
& =c_{1}(\cos t+i \sin t)+c_{2}(\cos t-i \sin t) \\
& =\left(c_{1}+c_{2}\right) \cos t+\left(i c_{1}-i c_{2}\right) \sin t .
\end{aligned}
$$

Since $c_{1}+c_{2}$ and $i c_{1}-i c_{2}$ are just constants, we are free to rename them as $A=c_{1}+c_{2}$ and $B=i c_{1}-i c_{2} \cdot{ }^{2}$ In order to solve for A and B we first need the derivative:

$$
y^{\prime}(t)=(A \cos t+B \sin t)^{\prime}=-A \sin t+B \cos t
$$

Then we substitute:

$$
\left\{\begin{array} { c }
{ y (t) = A \operatorname { c o s } t + B \operatorname { s i n } t , } \\
{ y ^ { \prime } (t) = - A \operatorname { s i n } t + B \operatorname { c o s } t , }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 2 = A \operatorname { c o s } 0 + B \operatorname { s i n } 0 , } \\
{ 3 = - A \operatorname { s i n } 0 + B \operatorname { c o s } 0 , }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=2, \\
B=3 .
\end{array}\right.\right.\right.
$$

The final solution is

$$
y(t)=2 \cos t+3 \sin t
$$

Remark: You should memorize the fact that $y^{\prime \prime}(t)=-y(t)$ implies $y(t)=A \cos t+B \sin t$.
(b): Substitute $y(t)=e^{\lambda t}$ to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t) & =0 \\
\lambda^{2} e^{\lambda t}+4 \lambda e^{\lambda t}+13 e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}+4 \lambda+13\right) & =0 \\
\lambda^{2}+4 \lambda+13 & =0 .
\end{aligned}
$$

We can solve this via the quadratic formula

$$
\lambda=\frac{-4 \pm \sqrt{16-52}}{2}=\frac{-4 \pm \sqrt{-36}}{2}=\frac{-4 \pm 6 i}{2}=-2 \pm 3 i .
$$

The two roots are $\lambda_{1}, \lambda_{2}=-2 \pm 3 i$ hence the general solution is

$$
\begin{aligned}
y(t) & =c_{1} e^{(-2+3 i) t}+c_{2} e^{(-2-3 i) t} \\
& =c_{1} e^{-2 t+3 i t}+c_{2} e^{-2 t-3 i t} \\
& =c_{1} e^{-2 t} e^{i 3 t}+c_{2} e^{-2 t} e^{-3 i t} \\
& =e^{-2 t}\left(c_{1} e^{i 3 t}+c_{2} e^{-i 3 t}\right)
\end{aligned}
$$

This formula is correct, but hard to interpret. We prefer to express the solution without using complex numbers. To do this we substitute Euler's formulas

$$
\begin{aligned}
e^{i 3 t} & =\cos (3 t)+i \sin (3 t), \\
e^{-i 3 t} & =\cos (-3 t)+i \sin (-3 t)=\cos (3 t)-i \sin (3 t),
\end{aligned}
$$

to obtain

$$
\begin{aligned}
y(t) & =e^{-2 t}\left(c_{1} e^{i 3 t}+c_{2} e^{-i 3 t}\right) \\
& \left.=e^{-2 t}\left(c_{1}[\cos (3 t)+i \sin (3 t)]+c_{2}[\cos (3 t)-i \sin (3 t))\right]\right) \\
& =e^{-2 t}\left(\left[c_{1}+c_{2}\right] \cos (3 t)+\left[c_{1} i-c_{2} i\right] \sin (3 t)\right) .
\end{aligned}
$$

Since $c_{1}+c_{2}$ and $c_{1} i-c_{2} i$ are just constants, we are free to rename them. Let's say

$$
y(t)=e^{-2 t}(A \cos (3 t)+B \sin (3 t)) .
$$

This is the "real form" of the solution. The constants A, B are determined by the initial conditions, which were given as $y(0)=1$ and $y^{\prime}(0)=1$. The condition $y(0)=1$ tells us that

$$
\begin{aligned}
y(0) & =e^{0}(A \cos (0)+B \sin (0)) \\
1 & =c_{3} .
\end{aligned}
$$

[^1]In order to substitute $y^{\prime}(0)=1$ we must first compute $y^{\prime}(t)$, which requires the product rule:

$$
y^{\prime}(t)=-2 e^{-2 t}(A \cos (3 t)+B \sin (3 t))+e^{-2 t}(-3 A \sin (3 t)+3 B \cos (3 t)) .
$$

(That was annoying.) Now we substitute $t=0$ to get

$$
\begin{aligned}
& 1=y^{\prime}(0) \\
& 1=-2 e^{0}(A \cos (0)+B \sin (0))+e^{0}(-3 A \sin (0)+3 B \cos (0)) \\
& 1=-2 A+3 B \\
& 1=-2 \cdot 1+3 B \\
& 3=3 B \\
& 1=B
\end{aligned}
$$

Hence the final solution is

$$
y(t)=e^{-2 t}(\cos (3 t)+\sin (3 t)) .
$$

(c): In parts (a) and (b) I showed all of the details. This time I will skip the routine parts. Substitute $y(t)=e^{\lambda t}$ to get the characteristic equation:

$$
\begin{aligned}
y^{\prime \prime}(t)+y^{\prime}(t)+y(t) & =0 \\
& \vdots \\
\lambda^{2}+\lambda+1 & =0 .
\end{aligned}
$$

We can solve this via the quadratic formula

$$
\lambda_{1}, \lambda_{2}=-\frac{1}{2} \pm \frac{3}{2} i .
$$

Hence the general solution is

$$
\left.y(t)=c_{1} e^{(-1 / 2+i \sqrt{3} / 2) t}+c_{2} e^{(-1 / 2-i \sqrt{3} / 2}\right) t
$$

This formula is correct, but we prefer to express it as

$$
y(t)=e^{-t / 2}(A \cos (t \sqrt{3} / 2)+B \sin (t \sqrt{3} / 2)) .
$$

To solve for A and B we first substitute $y(0)=0$ to get

$$
0=y(0)=e^{0}(A \cos 0+B \sin 0)=A .
$$

This simplifies the formula to

$$
y(t)=e^{-t / 2} B \sin (t \sqrt{3} / 2),
$$

which makes it easier to solve for B. First we differentiate using the product rule:

$$
y^{\prime}(t)=-\frac{1}{2} e^{-t / 2} B \sin (t \sqrt{3} / 2)-\frac{\sqrt{3}}{2} B \cos (t \sqrt{3} / 2)
$$

Then substituting $y^{\prime}(0)=3$ gives

$$
3=y^{\prime}(0)=0-\frac{\sqrt{3}}{2} B \quad \Longrightarrow \quad B=2 \sqrt{3}
$$

The final solution is

$$
y(t)=2 \sqrt{3} \cdot e^{-t / 2} \cdot \sin (t \sqrt{3} / 2)
$$

4. A Damped Oscillator. Consider the equation for a damped oscillator:

$$
x^{\prime \prime}(t)+\gamma x^{\prime}(t)+x(t)=0
$$

where $\gamma \geq 0$ is the coefficient of friction. Solve the following problems for three different amounts of friction: $\gamma=0,1,2$.
(a) Find the general form of the solution.
(b) Find the specific solution $x(t)$ with $x(0)=0$ and $x^{\prime}(0)=1$.
(c) Graph the solution.
$\gamma=0$: The equation $x^{\prime \prime}(t)+x(t)=0$ has general solution $x(t)=A \cos t+B \sin t$, which you have memorized because I told you to. Substituting $x(0)=0$ and $x^{\prime}(0)=1$ gives $A=0$ and $B=0$, hence

$$
x(t)=\sin t .
$$

$\gamma=1$: In Problem 3(b) we saw that the equation $x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0$ has general solution

$$
x(t)=e^{-t / 2}(A \cos (t \sqrt{3} / 2)+B \sin (t \sqrt{3} / 2)) .
$$

Substituting initial conditions $x(0)=0$ and $x^{\prime}(0)=1$ gives

$$
x(t)=\frac{2 \sqrt{3}}{3} \cdot e^{-t / 2} \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

$\gamma=2$: In Problem 2(a) we saw that the equation $x^{\prime \prime}(t)+2 x^{\prime}(t)+x(t)=0$ has general solution

$$
x(t)=A e^{-t}+B t e^{-t} .
$$

Substituting $x(0)=0$ and $x^{\prime}(0)=1$ gives $A=0$ and $B=1$, hence

$$
x(t)=t e^{-t} .
$$

Here are the three graphs shown on the same axes:

Remarks:

- With no friction $(\gamma=0)$ the frequency is 1 and the amplitude is always 1 .
- With a small amount of friction $(\gamma=1)$ there is still oscillation with a frequency of $\sqrt{3} / 2$ but now the amplitude is $e^{-t / 2} \cdot 2 \sqrt{3} / 3$, which quickly decays to zero.
- With a sufficient amount of friction $(\gamma=2)$ there is no more oscillation.
- The graph for any $0<\gamma<2$ looks roughly like the graph for $\gamma=1$.
- The graph for any $\gamma \geq 2$ looks roughly like the graph for $\gamma=2$.

[^0]: ${ }^{1}$ More generally, you can specify the position $x\left(t_{1}\right)$ and the velocity $x^{\prime}\left(t_{2}\right)$ at any times t_{1} and t_{2}.

[^1]: ${ }^{2}$ There is a technical point here. To guarantee that this works, we need to know that the pair of functions $e^{i t}$ and $e^{-i t}$ is "linearly independent", as well as the pair $\cos t$ and $\sin t$. We'll discuss this concept later.

