
Math 311 Spring 2023
Homework 3 Drew Armstrong

The second order, linear, homogeneous ODE with constant coefficients has the form

mx′′ + γx′ + kx = 0.

We can think of this as a damped oscillator. The general solution will depend on two pa-
rameters, and a unique solution is determined by specifying the initial position x(0) and
velocity x′(0).1 To obtain the general solution, we first look for basic solutions of the
form x(t) = eλt. Substituting this guess into the ODE gives (after a bit if simplification) the
characteristic equation

mλ2 + γλ+ k = 0.

Let λ1, λ2 be the two roots of this equation. There are two cases:

• If λ1 6= λ2 then the general solution is x(t) = c1e
λ1t + c2e

λ2t.
• If λ1 = λ2 then the general solution is x(t) = c1e

λ1t + c2te
λ1t.

If λ1, λ2 are not real then they must be complex conjugates: λ1, λ2 = a ± ib with b 6= 0, in
which case Euler’s formula allows us to express the solution in terms of sine and cosine:

c1e
a+ib + c2e

a−ib = eat (c3 cos(bt) + c4 sin(bt)) for some new constants c3, c4.

After finding the general solution x(t) we compute x′(t) and then substitute t = 0 to obtain
two equations for the two unknown constants, which determine the constants uniquely.

1. Distinct Real Roots. Solve the following equations:

(a) y′′ − 3y′ + 2y = 0 with y(0) = 4 and y′(0) = 3,
(b) y′′ − 4y = 0 with y(0) = 1 and y′(0) = 0,
(c) y′′ − 3y′ = 0 with y(0) = 5 and y′(0) = 3.

(a): The independent variable wasn’t named in the problem. For fun, let’s call it t. We guess
the basic solution y(t) = eλt and substitute to get the characteristic equation:

y′′(t)− 3y′(t) + 2y(t) = 0

λ2eλt − 3λeλt + 2eλt = 0

eλt(λ2 − 3λ+ 2) = 0

λ2 − 3λ+ 2 = 0

(λ− 1)(λ− 2) = 0.

The two roots are λ1, λ2 = 1, 2 hence the general solution is

y(t) = c1e
1t + c2e

2t.

To determine c1 and c2 we first consider y(t) and its derivative y′(t):{
y(t) = c1e

t + c2e
2t,

y′(t) = c1e
t + 2c2e

2t.

Then we substitute t = 0 to get a system of two equations for c1 and c2:{
4 = c1 + c2,
3 = c1 + 2c2.

1More generally, you can specify the position x(t1) and the velocity x′(t2) at any times t1 and t2.
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Substituting these equations gives c2 = −1 and back-substituting gives c5. Hence

y(t) = 5et − e2t.

(b): We guess the solution y(t) = eλt and substitute to get the characteristic equation:

y′′(t)− 4y(t) = 0

λ2eλt − 4eλt = 0

eλt(λ2 − 4) = 0

λ2 − 4 = 0

(λ+ 2)(λ− 2) = 0.

The two roots are λ1, λ2 = −2, 2 hence the general solution is

y(t) = c1e
−2t + c2e

2t.

To determine c1 and c2 we first consider y(t) and its derivative y′(t):{
y(t) = c1e

−2t + c2e
2t,

y′(t) = −2c1e
−2t + 2c2e

2t.

Then we substitute t = 0 to get a system of two equations for c1 and c2:{
1 = c1 + c2,
0 = −2c1 + 2c2.

The second equation gives c1 = c2 then the first equation gives c1 = c2 = 1/2. Hence

y(t) = e−2t/2 + e2t/2.

Remark: This can also be expressed as cosh(2t).

(c): We guess the solution y(t) = eλt and substitute to get the characteristic equation:

y′′(t)− 3y′(t) = 0

λ2eλt − 3λeλt = 0

eλt(λ2 − 3λ) = 0

λ2 − 3λ = 0

λ(λ− 3) = 0.

The two roots are λ1, λ2 = 0, 3 hence the general solution is

y(t) = c1e
0t + c2e

3t = c1 + c2e
3t.

To determine c1 and c2 we first consider y(t) and its derivative y′(t):{
y(t) = c1 + c2e

3t,
y′(t) = 0 + 3c2e

3t.

Then we substitute t = 0 to get a system of two equations for c1 and c2:{
5 = c1 + c2,
3 = 3c2.

Solving this system gives c1 = 4 and c2 = 1, hence

y(t) = 4 + e3t.
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2. Repeated Roots. Solve the following equations:

(a) y′′ + 2y′ + y = 0 with y(0) = 1 and y′(0) = 1,
(b) y′′ = 0 with y(0) = 2 and y′(0) = 3. [use the general method with repeated root λ = 0.]
(c) Now solve the equation y′′ = 0 using two direct integrations. Observe that you get the

same answer as with the general method.

(a): We guess the solution y(t) = eλt and substitute to get the characteristic equation:

y′′(t) + 2y(t) + y(t) = 0

λ2eλt + y(t) + y(t) = 0

eλt(λ2 + 2λ+ 1) = 0

λ2 + 2λ+ 1 = 0

(λ+ 1)2 = 0.

This time there is a repeated root λ1 = −1. Hence the general solution is

y(t) = c1e
−t + c2te

−t.

To determine c1 and c2 we must first compute y′(t) via the chain rule:

y′(t) = −c1e−t + c2e
−t − c2te−t

= −c1e−t + c2(1− t)e−t.
Thus we obtain the system {

y(t) = c1e
−t + c2te

−t,
y′(t) = −c1e−t + c2(1− t)e−t.

Substituting the initial conditions y(0) = 1 and y′(0) = 1 gives{
1 = c1 + 0,
1 = −c1 + c2.

The first equation gives c1, then the second equation gives c2 = 2, hence

y(t) = e−t + 2te−t = (1 + 2t)e−t.

(b): The equation y′′(t) = 0 can be solved by direct integration. Integrating gives

y′(t) =

∫
y′′(t) dt =

∫
0 dt = c1,

y(t) =

∫
y′(t) dt =

∫
c1 dt+ c2 = c1t+ c2,

for some constants c1 and c2. Substituting y(0) = 2 and y′(0) = 3 gives c1 = 3 and c2 = 2,
hence the solution is

y(t) = 3t+ 2.

(c): But let’s check that the general method still works. Substitute y(t) = eλt to get the
characteristic equation:

y′′(t) = 0

λ2eλt = 0

λ2 = 0.
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We see that λ = 0 is a repeated root, hence the general solution is

y(t) = c1e
0t + c2te

0 = c1 + c2t.

To determine c1 and c2 we consider the sytem:{
y(t) = c1 + c2t,
y′(t) = c2.

Substituting the initial conditions y(0) = 2 and y′(0) = 3 gives{
2 = c1 + 0,
3 = c2.

Hence the solution is
y(t) = 2 + 3t.

Yes, this agrees with part (b). Remark: Sometimes we have a choice between several methods
of solution.

3. Complex Conjugate Roots. Solve the following equations. Express your answer in
terms of sine and cosine:

(a) y′′ + y = 0 with y(0) = 2 and y′(0) = 3,
(b) y′′ + 4y′ + 13y = 0 with y(0) = 1 and y′(0) = 1,
(c) y′′ + y′ + y = 0 with y(0) = 0 and y′(0) = 3.

(a): This example is very important. We starting talking about it on the first day
of class. At that time we observed that sin t and cos t are solutions, and I told you that the
general solution has the form

y(t) = A cos t+B sin t.

Let’s check that this agrees with the general method. Substitute y(t) = eλt to get the charac-
teristic equation:

y′′(t) + y(t) = 0

λ2eλt + eλt = 0

eλt(λ2 + 1) = 0

λ2 + 1 = 0

λ2 = −1

λ = ±i.
Since there are two distinct roots λ1, λ2 = +i,−i the general solution is

y(t) = c1e
it + c2e

−it.

This doesn’t look like A sin t+B cos t but it turns out to be exactly the same. To see this we
can use Euler’s formulas:

eit = cos t+ i sin t,

e−it = cos(−t) + i sin(−t) = cos t− i sin t.

Substituting these into our solution gives

y(t) = c1e
it + c2e

−it

= c1(cos t+ i sin t) + c2(cos t− i sin t)

= (c1 + c2) cos t+ (ic1 − ic2) sin t.
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Since c1 + c2 and ic1 − ic2 are just constants, we are free to rename them as A = c1 + c2 and
B = ic1 − ic2.2 In order to solve for A and B we first need the derivative:

y′(t) = (A cos t+B sin t)′ = −A sin t+B cos t.

Then we substitute:{
y(t) = A cos t+B sin t,
y′(t) = −A sin t+B cos t,

⇒
{

2 = A cos 0 +B sin 0,
3 = −A sin 0 +B cos 0,

⇒
{
A = 2,
B = 3.

The final solution is
y(t) = 2 cos t+ 3 sin t.

Remark: You should memorize the fact that y′′(t) = −y(t) implies y(t) = A cos t+B sin t.

(b): Substitute y(t) = eλt to get the characteristic equation:

y′′(t) + 4y′(t) + 13y(t) = 0

λ2eλt + 4λeλt + 13eλt = 0

eλt(λ2 + 4λ+ 13) = 0

λ2 + 4λ+ 13 = 0.

We can solve this via the quadratic formula

λ =
−4±

√
16− 52

2
=
−4±

√
−36

2
=
−4± 6i

2
= −2± 3i.

The two roots are λ1, λ2 = −2± 3i hence the general solution is

y(t) = c1e
(−2+3i)t + c2e

(−2−3i)t

= c1e
−2t+3it + c2e

−2t−3it

= c1e
−2tei3t + c2e

−2te−3it

= e−2t
(
c1e

i3t + c2e
−i3t) .

This formula is correct, but hard to interpret. We prefer to express the solution without
using complex numbers. To do this we substitute Euler’s formulas

ei3t = cos(3t) + i sin(3t),

e−i3t = cos(−3t) + i sin(−3t) = cos(3t)− i sin(3t),

to obtain

y(t) = e−2t
(
c1e

i3t + c2e
−i3t)

= e−2t (c1 [cos(3t) + i sin(3t)] + c2 [cos(3t)− i sin(3t))])

= e−2t ([c1 + c2] cos(3t) + [c1i− c2i] sin(3t)) .

Since c1 + c2 and c1i− c2i are just constants, we are free to rename them. Let’s say

y(t) = e−2t (A cos(3t) +B sin(3t)) .

This is the “real form” of the solution. The constants A,B are determined by the initial
conditions, which were given as y(0) = 1 and y′(0) = 1. The condition y(0) = 1 tells us that

y(0) = e0 (A cos(0) +B sin(0))

1 = c3.

2There is a technical point here. To guarantee that this works, we need to know that the pair of functions
eit and e−it is “linearly independent”, as well as the pair cos t and sin t. We’ll discuss this concept later.
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In order to substitute y′(0) = 1 we must first compute y′(t), which requires the product rule:

y′(t) = −2e−2t (A cos(3t) +B sin(3t)) + e−2t (−3A sin(3t) + 3B cos(3t)) .

(That was annoying.) Now we substitute t = 0 to get

1 = y′(0)

1 = −2e0 (A cos(0) +B sin(0)) + e0 (−3A sin(0) + 3B cos(0))

1 = −2A+ 3B

1 = −2 · 1 + 3B

3 = 3B

1 = B.

Hence the final solution is

y(t) = e−2t (cos(3t) + sin(3t)) .

(c): In parts (a) and (b) I showed all of the details. This time I will skip the routine parts.
Substitute y(t) = eλt to get the characteristic equation:

y′′(t) + y′(t) + y(t) = 0

...

λ2 + λ+ 1 = 0.

We can solve this via the quadratic formula

λ1, λ2 = −1

2
± 3

2
i.

Hence the general solution is

y(t) = c1e
(−1/2+i

√
3/2)t + c2e

(−1/2−i
√
3/2)t.

This formula is correct, but we prefer to express it as

y(t) = e−t/2
(
A cos(t

√
3/2) +B sin(t

√
3/2)

)
.

To solve for A and B we first substitute y(0) = 0 to get

0 = y(0) = e0(A cos 0 +B sin 0) = A.

This simplifies the formula to

y(t) = e−t/2B sin(t
√

3/2),

which makes it easier to solve for B. First we differentiate using the product rule:

y′(t) = −1

2
e−t/2B sin(t

√
3/2)−

√
3

2
B cos(t

√
3/2).

Then substituting y′(0) = 3 gives

3 = y′(0) = 0−
√

3

2
B =⇒ B = 2

√
3.

The final solution is

y(t) = 2
√

3 · e−t/2 · sin(t
√

3/2).

4. A Damped Oscillator. Consider the equation for a damped oscillator:

x′′(t) + γx′(t) + x(t) = 0,
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where γ ≥ 0 is the coefficient of friction. Solve the following problems for three different
amounts of friction: γ = 0, 1, 2.

(a) Find the general form of the solution.
(b) Find the specific solution x(t) with x(0) = 0 and x′(0) = 1.
(c) Graph the solution.

γ = 0: The equation x′′(t) + x(t) = 0 has general solution x(t) = A cos t+ B sin t, which you
have memorized because I told you to. Substituting x(0) = 0 and x′(0) = 1 gives A = 0 and
B = 0, hence

x(t) = sin t.

γ = 1: In Problem 3(b) we saw that the equation x′′(t) + x′(t) + x(t) = 0 has general solution

x(t) = e−t/2
(
A cos(t

√
3/2) +B sin(t

√
3/2)

)
.

Substituting initial conditions x(0) = 0 and x′(0) = 1 gives

x(t) =
2
√

3

3
· e−t/2 · sin

(√
3

2
t

)
.

γ = 2: In Problem 2(a) we saw that the equation x′′(t)+2x′(t)+x(t) = 0 has general solution

x(t) = Ae−t +Bte−t.

Substituting x(0) = 0 and x′(0) = 1 gives A = 0 and B = 1, hence

x(t) = te−t.

Here are the three graphs shown on the same axes:
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Remarks:

• With no friction (γ = 0) the frequency is 1 and the amplitude is always 1.
• With a small amount of friction (γ = 1) there is still oscillation with a frequency of√

3/2 but now the amplitude is e−t/2 · 2
√

3/3, which quickly decays to zero.
• With a sufficient amount of friction (γ = 2) there is no more oscillation.
• The graph for any 0 < γ < 2 looks roughly like the graph for γ = 1.
• The graph for any γ ≥ 2 looks roughly like the graph for γ = 2.


