1. Integrating Factors for Linear ODEs. Solve the following equations for y(x):

- (a) $y' + y = e^x$ and y(0) = 1,
- (b) xy' + 2y = 3x and y(1) = 5,
- (c) xy' y = x and y(1) = 7,
- (d) y' = 1 + 2xy and y(0) = 5. [Express your answer in terms of the error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} \, ds.$$
]

The general method: Consider an equation of the form

$$y'(x) + P(x)y(x) = Q(x).$$

Define the "integrating factor" $\rho(x) = \exp(\int P(x) dx)$, so that $\rho'(x) = \rho(x)P(x)$. Then we multiply both sides by $\rho(x)$ to obtain

$$\rho(x)(y'(x) + P(x)y(x)) = \rho(x)Q(x)$$

$$\rho(x)y'(x) + \rho(x)P(x)y(x) = \rho(x)Q(x)$$

$$\rho(x)y'(x) + \rho'(x)y(x) = \rho(x)Q(x)$$

$$[\rho(x)y(x)]' = \rho(x)Q(x)$$

$$\rho(x)y(x) = \int \rho(x)Q(x) \, dx + C$$

$$y(x) = \frac{1}{\rho(x)} \left[\int \rho(x)Q(x) \, dx + C \right].$$

Instead of memorizing the final formula we will just apply the method in each separate case.

(a): The equation $y' + y = e^x$ has P(x) = 1 and $Q(x) = e^x$. The integrating factor is

$$\rho(x) = \exp\left(\int 1\,dx\right) = e^x$$

Multiply both sides of the equation by e^x to get

$$e^{x}(y' + y) = e^{x} \cdot e^{x}$$

$$e^{x}y' + e^{x}y = e^{2x}$$

$$(e^{x}y)' = e^{2x} dx$$

$$e^{x}y = \int e^{2x} dx + C$$

$$e^{x}y = \frac{1}{2}e^{2x} + C$$

$$y = \frac{1}{2}e^{2x}e^{-x} + Ce^{-x}$$

$$y = \frac{1}{2}e^{x} + Ce^{-x}.$$

To determine C we substitute the initial condition y(0) = 1:

$$y(0) = 1$$
$$\frac{1}{2} + C = 1$$
$$C = 1/2.$$

So the solution is

$$y = \frac{1}{2}e^{x} + \frac{1}{2}e^{-x} = \frac{e^{x} + e^{-x}}{2}.$$

Remark: This function has a special name. It is called *hyperbolic cosine*:

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

The graph of cosh(x) describes the shape of a hanging chain (or a free-standing arch, such as the St. Louis arch). It is related to the usual cosine function by replacing x with ix:

$$\cosh(ix) = \frac{e^{ix} + e^{-ix}}{2} = \cos(x).$$

(b): We put the equation xy' + 2y = 3x in standard form

$$y' + \frac{2}{x}y = 3$$
$$y' + P(x)y = Q(x)$$

so that P(x) = 2/x and Q(x) = 3. The integrating factor is

$$\rho(x) = \exp\left(\int 2/x \, dx\right) = \exp(2\ln(x)) = \exp(\ln(x^2)) = x^2.$$

Multiplying both sides by x^2 gives

$$x^{2}\left(y'+\frac{2}{x}y\right) = 3x^{2}$$

$$x^{2}y'+2xy = 3x^{2}$$

$$(x^{2}y)' = 3x^{2}$$

$$x^{2}y = \int 3x^{2} dx + C$$

$$x^{2}y = x^{3} + C$$

$$y = x + C/x^{2}.$$

To determine C we substitute the initial condition y(1) = 5:

$$y(1) = 5$$
$$1 + C = 5$$
$$C = 4.$$

So the solution is

$$y = x + \frac{4}{x^2}.$$

(c): First we put xy' - y = x in standard form:

$$y' - \frac{1}{x}y = 1$$
$$y' + P(x)y = Q(x),$$

so that P(x) = -1/x and Q(x) = 1. The integrating factor is

$$\rho(x) = \exp\left(\int -1/x \, dx\right) = \exp(-\ln(x)) = \exp(\ln(1/x)) = 1/x.$$

Multiplying both sides by 1/x gives

$$\frac{1}{x}y' - \frac{1}{x^2}y = \frac{1}{x}$$
$$\left(\frac{1}{x} \cdot y\right)' = \frac{1}{x}$$
$$\frac{y}{x} = \int \frac{1}{x}dx + C$$
$$\frac{y}{x} = \ln(x) + C$$
$$y = x(\ln(x) + C).$$

To determine C we substitute y(1) = 7:

$$y(1) = 7$$
$$1(\ln(1) + C) = 7$$
$$C = 7.$$

So the solution is

$$y = x(\ln(x) + 7).$$

(d): We put the equation y' = 1 + 2xy in standard form:

$$y' - 2xy = 1$$
$$y' + P(x)y = Q(x),$$

with P(x) = -2x and Q(x) = 1. The integration factor is

$$\rho(x) = \exp\left(\int -2x \, dx\right) = \exp(-x^2) = e^{-x^2}.$$

Multiplying both sides by e^{-x^2} gives

$$e^{-x^{2}}(y' - 2xy) = e^{-x^{2}}$$
$$e^{-x^{2}}y' - 2xe^{-x^{2}}y = e^{-x^{2}}$$
$$\left[e^{-x^{2}}y\right]' = e^{-x^{2}}$$
$$e^{-x^{2}}y = \int e^{-x^{2}} dx + C$$

Now we're stuck. At this point we should express the antiderivative as a definite integral. The lower bound is arbitrary because any change in lower bound can be absorbed into the constant C. So let's take lower bound 0:¹

$$e^{-x^{2}}y = \int_{0}^{x} e^{-s^{2}} ds + C$$
$$y = e^{x^{2}} \int_{0}^{x} e^{-s^{2}} ds + Ce^{x^{2}}$$
$$y = e^{x^{2}} \left[\int_{0}^{x} e^{-s^{2}} ds + C \right].$$

To determine C we substitute y(0) = 5:

$$y(0) = 5$$
$$e^0 \left[\int_0^0 e^{-s^2} ds + C \right] = 5$$
$$C = 5.$$

Hence the solution is

$$y = e^{x^2} \left[\int_0^x e^{-s^2} \, ds + 5 \right].$$

But we were asked to express this in terms of the error function, so we write

$$y = e^{x^2} \left[\frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(x) + 5 \right].$$

I know this is correct because my computer agrees.

Remark: I didn't ask you to think about the slope field, but here it is:

Note that some solutions go to $+\infty$ and some go to $-\infty$ as x goes to infinity. To be precise, my computer says that

$$y(x) = e^{x^2} \left[\frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(x) + y(0) \right] \to \begin{cases} +\infty & \text{if } y(0) > -1, \\ 0 & \text{if } y(0) = -1, \\ -\infty & \text{if } y(0) < -1. \end{cases}$$

¹We choose 0 because the initial condition is given in terms of y(0) and because the error function erf(x) is defined with lower bound 0. Convenient.

2. Logistic Growth with Harvesting. Let x(t) be the size of a farmed population (maybe fish in a pond). Without harvesting, let's say the population has logistic growth x'(t) = x(4-x). If we harvest the population at a constant rate h > 0 then we obtain the equation

x'(t) = x(4-x) - h, where h > 0 is the constant rate of harvesting.

Solve the following problems for three different rates of harvesting: h = 3, 4, 5.

- (a) For which values of x is x(4-x) h positive, zero, negative?
- (b) Use part (a) to sketch the slope field.
- (c) Describe the behavior of x(t) as $t \to \infty$. [Ignore negative solutions. If x(t) becomes negative we say that the population is extinct.]

Remark: These equations can be solved exactly, but I'm not asking you to do that because the solutions are too complicated. Instead, we want a qualitative analysis.

Solution for h = 3 (Underharvesting). The equation for the fish population is

$$x'(t) = x(4-x) - 3 = -x^{2} + 4x - 3 = -(x-1)(x-3).$$

From this we see that

- x'(t) = 0 when x = 1 or x = 3,
- x'(t) > 0 when 1 < x < 3,
- x'(t) < 0 when x < 1 or 3 < x.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies x(0) > 1 then the fish population stabilizes at 3. If the initial population satisfies x(0) < 1 then the fish go extinct. If x(0) = 1 then we have x(t) = 1 for all t, but this solution is unstable.

Solution for h = 4 (Critical Harvesting). The equation for the fish population is

$$x'(t) = x(4-x) - 4 = -x^{2} + 4x - 4 = -(x-2)^{2}.$$

From this we see that

- x'(t) = 0 when x = 2,
- x'(t) < 0 when $x \neq 2$.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies $x(0) \ge 2$ then the fish population stabilizes at 2. If the initial population satisfies x(0) < 2 then the fish go extinct.

Solution for h = 5 (Overharvesting). The equation for the fish population is

$$x'(t) = x(4-x) - 5 = -x^2 + 4x - 5.$$

This quadratic expression does not factor. And one can check that

• x'(t) < 0 for any value of x.

No matter what the initial population is, the fish will go extinct:

3. Phase Shift. The angle sum identity for cosine tells us that

 $C\cos(x-\alpha) = C\cos\alpha\cos x + C\sin\alpha\sin x.$

- (a) Suppose that $C\cos(x \alpha) = A\cos x + B\sin x$. Use the above identity to express C and α in terms of A and B. [Hint: We must have $A = C\cos \alpha$ and $B = C\sin \alpha$.]
- (b) Use part (a) to express $\cos x + \sin x$ in the form $C \cos(x \alpha)$.
- (c) Graph the three functions $\cos x$, $\sin x$ and $C \cos(x \alpha)$ on the same axes to make sure that your answer in part (b) makes sense.

(a): If $C \cos(x - \alpha) = A \cos x + B \sin x$ then from the trig identity we must have

$$A\cos x + B\sin x = (C\cos\alpha)\cos x + (C\sin\alpha)\sin x,$$

so that $A = C \cos \alpha$ and $B = C \sin \alpha$. At this point it is useful to draw a triangle:

Then from the Pythagorean theorem and the definition of the tangent function we have

$$C = \sqrt{A^2 + B^2},$$

$$\alpha = \tan^{-1}(B/A).$$

(b): When A = B = 1 we have $C = \sqrt{1^2 + 1^2} = \sqrt{2}$ and $\alpha = \tan^{-1}(1/1) = \pi/4$, so that $\cos x + \sin x = \sqrt{2} \cdot \cos\left(x - \frac{\pi}{4}\right)$.

(c): From the computer graph, we see that the heights of $\cos x$ and $\sin x$ add to the height of $\sqrt{2} \cdot \cos(x - \pi/4)$, as expected:²

4. Indoor vs Outdoor Temperature. We will use the function $\cos(t)$ to model the outdoor temperature. If u(t) is the indoor temperature then Newton's Law says³

$$u'(t) = \cos(t) - u(t).$$

(a) Compute the general solution. [Hint: You will need the integral

$$\int e^t \cos t \, dt = \frac{e^t}{2} \left(\cos t + \sin t \right) + C.$$

- (b) Find the specific solution with u(0) = 3. Use a computer to graph the indoor temperature u(t) and the outdoor temperature $\cos(t)$ on the same axes, say for $t = 0 \dots 15$.
- (c) As $t \to \infty$ the indoor temperature settles down to a simple oscillation. Compute the phase shift between the indoor and outdoor temperatures. After the outdoor temperature peaks, how many hours until the indoor temperature peaks? [Assume the outdoor temperature has a period of 24 hours.]
- (a): This is a linear first order equation. We put the equation in standard form:

$$u'(t) + u(t) = \cos t$$
$$u'(t) + P(t)u(t) = Q(t),$$

where P(t) = 1 and $Q(t) = \cos t$. The integrating factor is

$$\rho(t) = \exp\left(\int P(t) dt\right) = \exp(t) = e^t.$$

²Desmos labeled the x-axis with multiples of $\pi/3$, but multiples of $\pi/4$ would be more appropriate here.

³Technically, there should be some insulation constant k > 0 so that $u'(t) = k(\sin(t) - u(t))$. I took k = 1 for simplicity. We assume no air conditioning.

Multiply both sides by the integrating factor and solve:

$$u'(t) + u(t) = \cos t$$

$$e^{t}u'(t) + e^{t}u(t) = e^{t}\cos t$$

$$(e^{t}u(t))' = e^{t}\cos t$$

$$e^{t}u(t) = \int e^{t}\cos t \,dt + C$$

$$e^{t}u(t) = \frac{e^{t}}{2}(\cos t + \sin t) + C$$

$$u(t) = \frac{1}{2}(\cos t + \sin t) + Ce^{-t}.$$
given

(b): The determine C we substitute the initial condition u(0) = 3:

$$u(0) = 3$$

 $\frac{1}{2}(\cos 0 + \sin 0) + Ce^0 = 3$
 $\frac{1}{2} + C = 3$
 $C = 2.5.$

Hence the indoor temperature at time t is

$$u(t) = \frac{1}{2}(\cos t + \sin t) + 2.5e^{-t}.$$

Here is a graph of the outdoor temperature $\cos t$ versus the indoor temperature u(t):

The transient term $2.5e^{-t}$ rapidly goes to zero and we are left with a steady state solution:

$$u(t) \approx \frac{1}{2}(\cos t + \sin t).$$

(c): In order to interpret the steady state, we must compute the amplitude and phase shift:

$$\frac{1}{2}\cos t + \frac{1}{2}\sin t = C\cos(t-\alpha).$$

Using the formulas from Problem 3(a) with A = B = 1/2 gives

$$C = \sqrt{A^2 + B^2} = \sqrt{1/4 + 1/4} = \sqrt{1/2} \approx 0.7,$$

$$\alpha = \tan^{-1}(B/A) = \tan^{-1}(1) = \pi/4.$$

Thus the steady state of the indoor temperature is

$$u(t) \approx 0.7 \cdot \cos(t - \pi/4).$$

This lags the outdoor temperature by $\pi/4$, which is 1/8 of the full period 2π . If we view the period as 24 hours then **the lag is 3 hours**. That is, the indoor temperature will peak 3 hours after the outdoor temperature peaks. Does this make sense? We also note that the amplitude of the indoor temperature is ≈ 0.7 . This is smaller than the amplitude of the outdoor temperature, which is 1. Does this make sense?

Remark: More generally, there is an insulation constant k > 0 so that

$$u'(t) = k \left(\cos t - u(t) \right).$$

In this case one can show that the time lag is $\tan^{-1}(1/k^2)$. Large values of k (bad insulation) cause a short time lag. Values of k close to zero (good insulation) cause a long time lag. Does this make sense?

5. Hooke's Law. I claim that the differential equation $x''(t) = -\omega^2 x(t)$ has general solution

$$x(t) = A\cos(\omega t) + B\sin(\omega t),$$

where A and B are arbitrary constants.

- (a) Verify that this is, indeed, a solution.
- (b) Solve for A and B in terms of the initial conditions x(0) and x'(0).
- (c) The solution can alternatively be expressed as

$$x(t) = C\cos(\omega(t - \alpha)).$$

Solve for C and α in terms of x(0) and x'(0). [Hint: We can use the same method as in Problem 3. It is based on the angle sum identity:

$$\cos(\omega(t-\alpha)) = \cos(\omega t - \omega \alpha) = \cos(\omega \alpha) \cos(\omega t) + \sin(\omega \alpha) \sin(\omega t).$$

(a): We saw in class that $\cos(\omega t)$ and $\sin(\omega t)$ are solutions. More generally, we will show that the formula $x(t) = A\cos(\omega t) + B\sin(\omega t)$ satisfies the differential equation $x''(t) = -\omega^2 x(t)$. First we compute x'(t):

$$\begin{aligned} x'(t) &= \frac{d}{dx} \left[A \cos(\omega t) + B \sin(\omega t) \right] \\ &= A \frac{d}{dx} \cos(\omega t) + B \frac{d}{dx} \sin(\omega t) \\ &= A(-\omega \sin(\omega t)) + B\omega \cos(\omega t) \\ &= -A\omega \sin(\omega t) + B\omega \cos(\omega t). \end{aligned}$$

10

Then we compute x''(t):

$$x''(t) = \frac{d}{dx} \left[-A\omega \sin(\omega t) + B\omega \cos(\omega t) \right]$$

= $-A\omega \frac{d}{dx} \sin(\omega t) + B\omega \frac{d}{dx} \cos(\omega t)$
= $-A\omega \cdot \omega \cos(\omega t) + B\omega (-\omega \sin(\omega t))$
= $-A\omega^2 \cos(\omega t) - B\omega^2 \sin(\omega t)$
= $-\omega^2 \left[A \cos(\omega t) + B \sin(\omega t) \right],$

and we observe that $x''(t) = -\omega^2 x(t)$ as desired.

Remark: The differential equation $x''(t) = -\omega^2 x(t)$ is **linear**, so the sum of any two solutions is also a solution. This is why we can add the solutions $A\cos(\omega t)$ and $B\sin(\omega t)$ to get another solution. We will say more about this later.

(b): To determine A and B, we substitute t = 0 into x(t) and x'(t) to get

$$\begin{cases} x(0) = A\cos(0) + B\sin(0) = A, \\ x'(0) = -A\omega\sin(0) + B\omega\cos(0) = B\omega, \end{cases}$$

Hence the solution in terms of the initial position and velocity is

$$x(t) = x(0)\cos(\omega t) + \frac{x'(0)}{\omega}\sin(\omega t).$$

(c): We want to find the amplitude C and phase shift α :

$$x(t) = x(0)\cos(\omega t) + \frac{x'(0)}{\omega}\sin(\omega t) = C\cos(\omega(t-\alpha)).$$

We will use the cosine difference of angles formula:

$$A\cos(\omega t) + B\sin(\omega t) = C\cos(\omega(t - \alpha))$$

= $C\cos(\omega t - \omega\alpha)$
= $C[\cos(\omega\alpha)\cos(\omega t) + \sin(\omega\alpha)\sin(\omega t)]$
= $[C\cos(\omega\alpha)]\cos(\omega t) + [C\sin(\omega\alpha)]\sin(\omega t).$

This implies that $A = C \cos(\omega \alpha)$ and $B = C \sin(\omega \alpha)$, hence

$$C = \sqrt{A^2 + B^2},$$

$$\omega \alpha = \tan^{-1}(B/A).$$

This is the same as in Problem 3, but using angle $\omega \alpha$ instead of α . In our case we have A = x(0) and $B = x'(0)/\omega$, so that

$$C = \sqrt{x(0)^2 + \left[\frac{x'(0)}{\omega}\right]^2} \quad \text{and} \quad \alpha = \frac{1}{\omega} \tan^{-1} \left(\frac{x'(0)/\omega}{x(0)}\right).$$

Remark: Thus we have solved the general (undamped, unforced) harmonic oscillator with frequency $\omega = \sqrt{k/m}$, where m is the mass and k is the stiffness. I know it was a lot of algebra. This is a computation you should do exactly once in your life.

6. Euler's Identity. Let *i* denote a^4 square root of -1. *Euler's identity* provides a connection between exponential and trigonometric functions:

$$e^{it} = \cos t + i\sin t.$$

(a) Use Euler's identity to prove the *angle sum formulas*:

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta,$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

[Hint: Use the property $e^{i\alpha}e^{i\beta} = e^{i\alpha+i\beta} = e^{i(\alpha+\beta)}$ of exponentials.]

(b) Use Euler's identity to prove that

$$\cos t = \frac{e^{it} + e^{-it}}{2}$$
 and $\sin t = \frac{e^{it} - e^{-it}}{2i}$.

[Hint: First show that $e^{-it} = \cos t - i \sin t$.]

(c) We have seen that the equation x''(t) = -x(t) has general solution

 $x(t) = x(0)\cos t + x'(0)\sin t.$

I claim that we can also express this solution in the form

$$x(t) = Ae^{it} + Be^{-it}$$

for some constants A and B. Use the formulas in part (b) to solve for A and B in terms of x(0) and x'(0). Your answers will involve imaginary numbers.

(a): On the one hand, we have

$$e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta).$$

On the other hand, we have

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)$$

= $\cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta + i^2 \sin \alpha \sin \beta$
= $\cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta - \sin \alpha \sin \beta$
= $(\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i (\sin \alpha \cos \beta + \cos \alpha \sin \beta).$

Comparing the real and imaginary parts of the two expressions for $e^{i\alpha} \cdot e^{i\beta}$ gives the desired formulas.

(b): First we note that

$$e^{-it} = e^{i(-t)} = \cos(-t) + i\sin(-t) = \cos t - i\sin t.$$

Then we have

$$e^{it} + e^{-it} = (\cos t + i \sin t) + (\cos t - i \sin t) = 2\cos t$$

and

$$e^{it} - e^{-it} = (\cos t + i\sin t) - (\cos t - i\sin t) = 2i\sin t,$$

as desired.

⁴There are two square roots of -1. Pick your favorite and call it *i*. Then the other is called -i.

(c): We have seen that the equation x''(t) = -x(t) has general solution $x(t) = x(0) \cos t + x'(0) \sin t$. To express this in the form $Ae^{it} + Be^{-it}$ we substitute the formulas from part (b):

$$\begin{aligned} x(t) &= x(0)\cos t + x'(0)\sin t \\ &= x(0)\left(\frac{e^{it} + e^{-it}}{2}\right) + x'(0)\left(\frac{e^{it} - e^{-it}}{2i}\right) \\ &= \left(\frac{x(0)}{2} + \frac{x'(0)}{2i}\right)e^{it} + \left(\frac{x(0)}{2} - \frac{x'(0)}{2i}\right)e^{-it}. \end{aligned}$$

We can simplify this a bit by using the fact that 1/i = -i:

$$x(t) = \left(\frac{x(0) - ix'(0)}{2}\right)e^{it} + \left(\frac{x(0) + ix'(0)}{2}\right)e^{-it}.$$

Remark: This expression has lots of imaginary numbers in it, but these imaginary numbers somehow cancel to give the real solution $x(t) = x(0) \cos t + x'(0) \sin t$. So why bother with imaginary numbers? Because they make computations easier! (Well, maybe not today. But eventually they do.)