1. Integrating Factors for Linear ODEs. Solve the following equations for $y(x)$:
(a) $y^{\prime}+y=e^{x}$ and $y(0)=1$,
(b) $x y^{\prime}+2 y=3 x$ and $y(1)=5$,
(c) $x y^{\prime}-y=x$ and $y(1)=7$,
(d) $y^{\prime}=1+2 x y$ and $y(0)=5$. [Express your answer in terms of the error function

$$
\left.\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s .\right]
$$

The general method: Consider an equation of the form

$$
y^{\prime}(x)+P(x) y(x)=Q(x) .
$$

Define the "integrating factor" $\rho(x)=\exp \left(\int P(x) d x\right)$, so that $\rho^{\prime}(x)=\rho(x) P(x)$. Then we multiply both sides by $\rho(x)$ to obtain

$$
\begin{aligned}
\rho(x)\left(y^{\prime}(x)+P(x) y(x)\right) & =\rho(x) Q(x) \\
\rho(x) y^{\prime}(x)+\rho(x) P(x) y(x) & =\rho(x) Q(x) \\
\rho(x) y^{\prime}(x)+\rho^{\prime}(x) y(x) & =\rho(x) Q(x) \\
{[\rho(x) y(x)]^{\prime} } & =\rho(x) Q(x) \\
\rho(x) y(x) & =\int \rho(x) Q(x) d x+C \\
y(x) & =\frac{1}{\rho(x)}\left[\int \rho(x) Q(x) d x+C\right] .
\end{aligned}
$$

Instead of memorizing the final formula we will just apply the method in each separate case.
(a): The equation $y^{\prime}+y=e^{x}$ has $P(x)=1$ and $Q(x)=e^{x}$. The integrating factor is

$$
\rho(x)=\exp \left(\int 1 d x\right)=e^{x} .
$$

Multiply both sides of the equation by e^{x} to get

$$
\begin{aligned}
e^{x}\left(y^{\prime}+y\right) & =e^{x} \cdot e^{x} \\
e^{x} y^{\prime}+e^{x} y & =e^{2 x} \\
\left(e^{x} y\right)^{\prime} & =e^{2 x} d x \\
e^{x} y & =\int e^{2 x} d x+C \\
e^{x} y & =\frac{1}{2} e^{2 x}+C \\
y & =\frac{1}{2} e^{2 x} e^{-x}+C e^{-x} \\
y & =\frac{1}{2} e^{x}+C e^{-x} . \\
& 1
\end{aligned}
$$

To determine C we substitute the initial condition $y(0)=1$:

$$
\begin{aligned}
y(0) & =1 \\
\frac{1}{2}+C & =1 \\
C & =1 / 2 .
\end{aligned}
$$

So the solution is

$$
y=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}=\frac{e^{x}+e^{-x}}{2} .
$$

Remark: This function has a special name. It is called hyperbolic cosine:

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

The graph of $\cosh (x)$ describes the shape of a hanging chain (or a free-standing arch, such as the St. Louis arch). It is related to the usual cosine function by replacing x with $i x$:

$$
\cosh (i x)=\frac{e^{i x}+e^{-i x}}{2}=\cos (x)
$$

(b): We put the equation $x y^{\prime}+2 y=3 x$ in standard form

$$
\begin{aligned}
y^{\prime}+\frac{2}{x} y & =3 \\
y^{\prime}+P(x) y & =Q(x)
\end{aligned}
$$

so that $P(x)=2 / x$ and $Q(x)=3$. The integrating factor is

$$
\rho(x)=\exp \left(\int 2 / x d x\right)=\exp (2 \ln (x))=\exp \left(\ln \left(x^{2}\right)\right)=x^{2} .
$$

Multiplying both sides by x^{2} gives

$$
\begin{aligned}
x^{2}\left(y^{\prime}+\frac{2}{x} y\right) & =3 x^{2} \\
x^{2} y^{\prime}+2 x y & =3 x^{2} \\
\left(x^{2} y\right)^{\prime} & =3 x^{2} \\
x^{2} y & =\int 3 x^{2} d x+C \\
x^{2} y & =x^{3}+C \\
y & =x+C / x^{2} .
\end{aligned}
$$

To determine C we substitute the initial condition $y(1)=5$:

$$
\begin{aligned}
y(1) & =5 \\
1+C & =5 \\
C & =4 .
\end{aligned}
$$

So the solution is

$$
y=x+\frac{4}{x^{2}} .
$$

(c): First we put $x y^{\prime}-y=x$ in standard form:

$$
\begin{aligned}
y^{\prime}-\frac{1}{x} y & =1 \\
y^{\prime}+P(x) y & =Q(x),
\end{aligned}
$$

so that $P(x)=-1 / x$ and $Q(x)=1$. The integrating factor is

$$
\rho(x)=\exp \left(\int-1 / x d x\right)=\exp (-\ln (x))=\exp (\ln (1 / x))=1 / x .
$$

Multiplying both sides by $1 / x$ gives

$$
\begin{aligned}
\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y & =\frac{1}{x} \\
\left(\frac{1}{x} \cdot y\right)^{\prime} & =\frac{1}{x} \\
\frac{y}{x} & =\int \frac{1}{x} d x+C \\
\frac{y}{x} & =\ln (x)+C \\
y & =x(\ln (x)+C) .
\end{aligned}
$$

To determine C we substitute $y(1)=7$:

$$
\begin{aligned}
y(1) & =7 \\
1(\ln (1)+C) & =7 \\
C & =7 .
\end{aligned}
$$

So the solution is

$$
y=x(\ln (x)+7) .
$$

(d): We put the equation $y^{\prime}=1+2 x y$ in standard form:

$$
\begin{aligned}
y^{\prime}-2 x y & =1 \\
y^{\prime}+P(x) y & =Q(x),
\end{aligned}
$$

with $P(x)=-2 x$ and $Q(x)=1$. The integration factor is

$$
\rho(x)=\exp \left(\int-2 x d x\right)=\exp \left(-x^{2}\right)=e^{-x^{2}} .
$$

Multiplying both sides by $e^{-x^{2}}$ gives

$$
\begin{aligned}
e^{-x^{2}}\left(y^{\prime}-2 x y\right) & =e^{-x^{2}} \\
e^{-x^{2}} y^{\prime}-2 x e^{-x^{2}} y & =e^{-x^{2}} \\
{\left[e^{-x^{2}} y\right]^{\prime} } & =e^{-x^{2}} \\
e^{-x^{2}} y & =\int e^{-x^{2}} d x+C .
\end{aligned}
$$

Now we're stuck. At this point we should express the antiderivative as a definite integral. The lower bound is arbitrary because any change in lower bound can be absorbed into the
constant C. So let's take lower bound 0.1

$$
\begin{aligned}
e^{-x^{2}} y & =\int_{0}^{x} e^{-s^{2}} d s+C \\
y & =e^{x^{2}} \int_{0}^{x} e^{-s^{2}} d s+C e^{x^{2}} \\
y & =e^{x^{2}}\left[\int_{0}^{x} e^{-s^{2}} d s+C\right] .
\end{aligned}
$$

To determine C we substitute $y(0)=5$:

$$
\begin{aligned}
y(0) & =5 \\
e^{0}\left[\int_{0}^{0} e^{-s^{2}} d s+C\right] & =5 \\
C & =5
\end{aligned}
$$

Hence the solution is

$$
y=e^{x^{2}}\left[\int_{0}^{x} e^{-s^{2}} d s+5\right] .
$$

But we were asked to express this in terms of the error function, so we write

$$
y=e^{x^{2}}\left[\frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(x)+5\right] .
$$

I know this is correct because my computer agrees.
Remark: I didn't ask you to think about the slope field, but here it is:

Note that some solutions go to $+\infty$ and some go to $-\infty$ as x goes to infinity. To be precise, my computer says that

$$
y(x)=e^{x^{2}}\left[\frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(x)+y(0)\right] \rightarrow \begin{cases}+\infty & \text { if } y(0)>-1 \\ 0 & \text { if } y(0)=-1 \\ -\infty & \text { if } y(0)<-1\end{cases}
$$

[^0]2. Logistic Growth with Harvesting. Let $x(t)$ be the size of a farmed population (maybe fish in a pond). Without harvesting, let's say the population has logistic growth $x^{\prime}(t)=$ $x(4-x)$. If we harvest the population at a constant rate $h>0$ then we obtain the equation
$$
x^{\prime}(t)=x(4-x)-h, \quad \text { where } h>0 \text { is the constant rate of harvesting. }
$$

Solve the following problems for three different rates of harvesting: $h=3,4,5$.
(a) For which values of x is $x(4-x)-h$ positive, zero, negative?
(b) Use part (a) to sketch the slope field.
(c) Describe the behavior of $x(t)$ as $t \rightarrow \infty$. [Ignore negative solutions. If $x(t)$ becomes negative we say that the population is extinct.]
Remark: These equations can be solved exactly, but I'm not asking you to do that because the solutions are too complicated. Instead, we want a qualitative analysis.

Solution for $h=3$ (Underharvesting). The equation for the fish population is

$$
x^{\prime}(t)=x(4-x)-3=-x^{2}+4 x-3=-(x-1)(x-3) .
$$

From this we see that

- $x^{\prime}(t)=0$ when $x=1$ or $x=3$,
- $x^{\prime}(t)>0$ when $1<x<3$,
- $x^{\prime}(t)<0$ when $x<1$ or $3<x$.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies $x(0)>1$ then the fish population stabilizes at 3 . If the initial population satisfies $x(0)<1$ then the fish go extinct. If $x(0)=1$ then we have $x(t)=1$ for all t, but this solution is unstable.

Solution for $h=4$ (Critical Harvesting). The equation for the fish population is

$$
x^{\prime}(t)=x(4-x)-4=-x^{2}+4 x-4=-(x-2)^{2} .
$$

From this we see that

- $x^{\prime}(t)=0$ when $x=2$,
- $x^{\prime}(t)<0$ when $x \neq 2$.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies $x(0) \geq 2$ then the fish population stabilizes at 2 . If the initial population satisfies $x(0)<2$ then the fish go extinct.

Solution for $h=5$ (Overharvesting). The equation for the fish population is

$$
x^{\prime}(t)=x(4-x)-5=-x^{2}+4 x-5
$$

This quadratic expression does not factor. And one can check that

- $x^{\prime}(t)<0$ for any value of x.

No matter what the initial population is, the fish will go extinct:

3. Phase Shift. The angle sum identity for cosine tells us that

$$
C \cos (x-\alpha)=C \cos \alpha \cos x+C \sin \alpha \sin x .
$$

(a) Suppose that $C \cos (x-\alpha)=A \cos x+B \sin x$. Use the above identity to express C and α in terms of A and B. [Hint: We must have $A=C \cos \alpha$ and $B=C \sin \alpha$.]
(b) Use part (a) to express $\cos x+\sin x$ in the form $C \cos (x-\alpha)$.
(c) Graph the three functions $\cos x, \sin x$ and $C \cos (x-\alpha)$ on the same axes to make sure that your answer in part (b) makes sense.
(a): If $C \cos (x-\alpha)=A \cos x+B \sin x$ then from the trig identity we must have

$$
A \cos x+B \sin x=(C \cos \alpha) \cos x+(C \sin \alpha) \sin x,
$$

so that $A=C \cos \alpha$ and $B=C \sin \alpha$. At this point it is useful to draw a triangle:

Then from the Pythagorean theorem and the definition of the tangent function we have

$$
\begin{aligned}
& C=\sqrt{A^{2}+B^{2}}, \\
& \alpha=\tan ^{-1}(B / A) .
\end{aligned}
$$

(b): When $A=B=1$ we have $C=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\alpha=\tan ^{-1}(1 / 1)=\pi / 4$, so that

$$
\cos x+\sin x=\sqrt{2} \cdot \cos \left(x-\frac{\pi}{4}\right)
$$

(c): From the computer graph, we see that the heights of $\cos x$ and $\sin x$ add to the height of $\sqrt{2} \cdot \cos (x-\pi / 4)$, as expected $\left\lfloor^{2}\right.$

4. Indoor vs Outdoor Temperature. We will use the function $\cos (t)$ to model the outdoor temperature. If $u(t)$ is the indoor temperature then Newton's Law says ${ }^{3}$

$$
u^{\prime}(t)=\cos (t)-u(t)
$$

(a) Compute the general solution. [Hint: You will need the integral

$$
\left.\int e^{t} \cos t d t=\frac{e^{t}}{2}(\cos t+\sin t)+C .\right]
$$

(b) Find the specific solution with $u(0)=3$. Use a computer to graph the indoor temperature $u(t)$ and the outdoor temperature $\cos (t)$ on the same axes, say for $t=0 \ldots 15$.
(c) As $t \rightarrow \infty$ the indoor temperature settles down to a simple oscillation. Compute the phase shift between the indoor and outdoor temperatures. After the outdoor temperature peaks, how many hours until the indoor temperature peaks? [Assume the outdoor temperature has a period of 24 hours.]
(a): This is a linear first order equation. We put the equation in standard form:

$$
\begin{aligned}
u^{\prime}(t)+u(t) & =\cos t \\
u^{\prime}(t)+P(t) u(t) & =Q(t)
\end{aligned}
$$

where $P(t)=1$ and $Q(t)=\cos t$. The integrating factor is

$$
\rho(t)=\exp \left(\int P(t) d t\right)=\exp (t)=e^{t}
$$

[^1]Multiply both sides by the integrating factor and solve:

$$
\begin{aligned}
u^{\prime}(t)+u(t) & =\cos t \\
e^{t} u^{\prime}(t)+e^{t} u(t) & =e^{t} \cos t \\
\left(e^{t} u(t)\right)^{\prime} & =e^{t} \cos t \\
e^{t} u(t) & =\int e^{t} \cos t d t+C \\
e^{t} u(t) & =\frac{e^{t}}{2}(\cos t+\sin t)+C \\
u(t) & =\frac{1}{2}(\cos t+\sin t)+C e^{-t}
\end{aligned}
$$

(b): The determine C we substitute the initial condition $u(0)=3$:

$$
\begin{aligned}
u(0) & =3 \\
\frac{1}{2}(\cos 0+\sin 0)+C e^{0} & =3 \\
\frac{1}{2}+C & =3 \\
C & =2.5 .
\end{aligned}
$$

Hence the indoor temperature at time t is

$$
u(t)=\frac{1}{2}(\cos t+\sin t)+2.5 e^{-t} .
$$

Here is a graph of the outdoor temperature cost versus the indoor temperature $u(t)$:

The transient term $2.5 e^{-t}$ rapidly goes to zero and we are left with a steady state solution:

$$
u(t) \approx \frac{1}{2}(\cos t+\sin t)
$$

(c): In order to interpret the steady state, we must compute the amplitude and phase shift:

$$
\frac{1}{2} \cos t+\frac{1}{2} \sin t=C \cos (t-\alpha) .
$$

Using the formulas from Problem 3(a) with $A=B=1 / 2$ gives

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}}=\sqrt{1 / 4+1 / 4}=\sqrt{1 / 2} \approx 0.7 \\
\alpha & =\tan ^{-1}(B / A)=\tan ^{-1}(1)=\pi / 4
\end{aligned}
$$

Thus the steady state of the indoor temperature is

$$
u(t) \approx 0.7 \cdot \cos (t-\pi / 4)
$$

This lags the outdoor temperature by $\pi / 4$, which is $1 / 8$ of the full period 2π. If we view the period as 24 hours then the lag is 3 hours. That is, the indoor temperature will peak 3 hours after the outdoor temperature peaks. Does this make sense? We also note that the amplitude of the indoor temperature is ≈ 0.7. This is smaller than the amplitude of the outdoor temperature, which is 1 . Does this make sense?

Remark: More generally, there is an insulation constant $k>0$ so that

$$
u^{\prime}(t)=k(\cos t-u(t)) .
$$

In this case one can show that the time lag is $\tan ^{-1}\left(1 / k^{2}\right)$. Large values of k (bad insulation) cause a short time lag. Values of k close to zero (good insulation) cause a long time lag. Does this make sense?
5. Hooke's Law. I claim that the differential equation $x^{\prime \prime}(t)=-\omega^{2} x(t)$ has general solution

$$
x(t)=A \cos (\omega t)+B \sin (\omega t)
$$

where A and B are arbitrary constants.
(a) Verify that this is, indeed, a solution.
(b) Solve for A and B in terms of the initial conditions $x(0)$ and $x^{\prime}(0)$.
(c) The solution can alternatively be expressed as

$$
x(t)=C \cos (\omega(t-\alpha))
$$

Solve for C and α in terms of $x(0)$ and $x^{\prime}(0)$. [Hint: We can use the same method as in Problem 3. It is based on the angle sum identity:

$$
\cos (\omega(t-\alpha))=\cos (\omega t-\omega \alpha)=\cos (\omega \alpha) \cos (\omega t)+\sin (\omega \alpha) \sin (\omega t) .]
$$

(a): We saw in class that $\cos (\omega t)$ and $\sin (\omega t)$ are solutions. More generally, we will show that the formula $x(t)=A \cos (\omega t)+B \sin (\omega t)$ satisfies the differential equation $x^{\prime \prime}(t)=-\omega^{2} x(t)$. First we compute $x^{\prime}(t)$:

$$
\begin{aligned}
x^{\prime}(t) & =\frac{d}{d x}[A \cos (\omega t)+B \sin (\omega t)] \\
& =A \frac{d}{d x} \cos (\omega t)+B \frac{d}{d x} \sin (\omega t) \\
& =A(-\omega \sin (\omega t))+B \omega \cos (\omega t) \\
& =-A \omega \sin (\omega t)+B \omega \cos (\omega t) .
\end{aligned}
$$

Then we compute $x^{\prime \prime}(t)$:

$$
\begin{aligned}
x^{\prime \prime}(t) & =\frac{d}{d x}[-A \omega \sin (\omega t)+B \omega \cos (\omega t)] \\
& =-A \omega \frac{d}{d x} \sin (\omega t)+B \omega \frac{d}{d x} \cos (\omega t) \\
& =-A \omega \cdot \omega \cos (\omega t)+B \omega(-\omega \sin (\omega t)) \\
& =-A \omega^{2} \cos (\omega t)-B \omega^{2} \sin (\omega t) \\
& =-\omega^{2}[A \cos (\omega t)+B \sin (\omega t)]
\end{aligned}
$$

and we observe that $x^{\prime \prime}(t)=-\omega^{2} x(t)$ as desired.
Remark: The differential equation $x^{\prime \prime}(t)=-\omega^{2} x(t)$ is linear, so the sum of any two solutions is also a solution. This is why we can add the solutions $A \cos (\omega t)$ and $B \sin (\omega t)$ to get another solution. We will say more about this later.
(b): To determine A and B, we substitute $t=0$ into $x(t)$ and $x^{\prime}(t)$ to get

$$
\left\{\begin{array}{rll}
x(0) & =A \cos (0)+B \sin (0) & =A, \\
x^{\prime}(0) & =-A \omega \sin (0)+B \omega \cos (0) & =B \omega .
\end{array}\right.
$$

Hence the solution in terms of the initial position and velocity is

$$
x(t)=x(0) \cos (\omega t)+\frac{x^{\prime}(0)}{\omega} \sin (\omega t) .
$$

(c): We want to find the amplitude C and phase shift α :

$$
x(t)=x(0) \cos (\omega t)+\frac{x^{\prime}(0)}{\omega} \sin (\omega t)=C \cos (\omega(t-\alpha)) .
$$

We will use the cosine difference of angles formula:

$$
\begin{aligned}
A \cos (\omega t)+B \sin (\omega t) & =C \cos (\omega(t-\alpha)) \\
& =C \cos (\omega t-\omega \alpha) \\
& =C[\cos (\omega \alpha) \cos (\omega t)+\sin (\omega \alpha) \sin (\omega t)] \\
& =[C \cos (\omega \alpha)] \cos (\omega t)+[C \sin (\omega \alpha)] \sin (\omega t) .
\end{aligned}
$$

This implies that $A=C \cos (\omega \alpha)$ and $B=C \sin (\omega \alpha)$, hence

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}} \\
\omega \alpha & =\tan ^{-1}(B / A) .
\end{aligned}
$$

This is the same as in Problem 3, but using angle $\omega \alpha$ instead of α. In our case we have $A=x(0)$ and $B=x^{\prime}(0) / \omega$, so that

$$
C=\sqrt{x(0)^{2}+\left[\frac{x^{\prime}(0)}{\omega}\right]^{2}} \quad \text { and } \quad \alpha=\frac{1}{\omega} \tan ^{-1}\left(\frac{x^{\prime}(0) / \omega}{x(0)}\right) .
$$

Remark: Thus we have solved the general (undamped, unforced) harmonic oscillator with frequency $\omega=\sqrt{k / m}$, where m is the mass and k is the stiffness. I know it was a lot of algebra. This is a computation you should do exactly once in your life.
6. Euler's Identity. Let i denote $\sqrt{4}^{4}$ square root of -1 . Euler's identity provides a connection between exponential and trigonometric functions:

$$
e^{i t}=\cos t+i \sin t
$$

(a) Use Euler's identity to prove the angle sum formulas:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

[Hint: Use the property $e^{i \alpha} e^{i \beta}=e^{i \alpha+i \beta}=e^{i(\alpha+\beta)}$ of exponentials.]
(b) Use Euler's identity to prove that

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2} \quad \text { and } \quad \sin t=\frac{e^{i t}-e^{-i t}}{2 i}
$$

[Hint: First show that $e^{-i t}=\cos t-i \sin t$.]
(c) We have seen that the equation $x^{\prime \prime}(t)=-x(t)$ has general solution

$$
x(t)=x(0) \cos t+x^{\prime}(0) \sin t .
$$

I claim that we can also express this solution in the form

$$
x(t)=A e^{i t}+B e^{-i t}
$$

for some constants A and B. Use the formulas in part (b) to solve for A and B in terms of $x(0)$ and $x^{\prime}(0)$. Your answers will involve imaginary numbers.
(a): On the one hand, we have

$$
e^{i \alpha} \cdot e^{i \beta}=e^{i(\alpha+\beta)}=\cos (\alpha+\beta)+i \sin (\alpha+\beta)
$$

On the other hand, we have

$$
\begin{aligned}
e^{i \alpha} \cdot e^{i \beta} & =(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta) \\
& =\cos \alpha \cos \beta+i \cos \alpha \sin \beta+i \sin \alpha \cos \beta+i^{2} \sin \alpha \sin \beta \\
& =\cos \alpha \cos \beta+i \cos \alpha \sin \beta+i \sin \alpha \cos \beta-\sin \alpha \sin \beta \\
& =(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta) .
\end{aligned}
$$

Comparing the real and imaginary parts of the two expressions for $e^{i \alpha} \cdot e^{i \beta}$ gives the desired formulas.
(b): First we note that

$$
e^{-i t}=e^{i(-t)}=\cos (-t)+i \sin (-t)=\cos t-i \sin t
$$

Then we have

$$
e^{i t}+e^{-i t}=(\cos t+i \sin t)+(\cos t-i \sin t)=2 \cos t
$$

and

$$
e^{i t}-e^{-i t}=(\cos t+i \sin t)-(\cos t-i \sin t)=2 i \sin t
$$

as desired.

[^2](c): We have seen that the equation $x^{\prime \prime}(t)=-x(t)$ has general solution $x(t)=x(0) \cos t+$ $x^{\prime}(0) \sin t$. To express this in the form $A e^{i t}+B e^{-i t}$ we substitute the formulas from part (b):
\[

$$
\begin{aligned}
x(t) & =x(0) \cos t+x^{\prime}(0) \sin t \\
& =x(0)\left(\frac{e^{i t}+e^{-i t}}{2}\right)+x^{\prime}(0)\left(\frac{e^{i t}-e^{-i t}}{2 i}\right) \\
& =\left(\frac{x(0)}{2}+\frac{x^{\prime}(0)}{2 i}\right) e^{i t}+\left(\frac{x(0)}{2}-\frac{x^{\prime}(0)}{2 i}\right) e^{-i t} .
\end{aligned}
$$
\]

We can simplify this a bit by using the fact that $1 / i=-i$:

$$
x(t)=\left(\frac{x(0)-i x^{\prime}(0)}{2}\right) e^{i t}+\left(\frac{x(0)+i x^{\prime}(0)}{2}\right) e^{-i t} .
$$

Remark: This expression has lots of imaginary numbers in it, but these imaginary numbers somehow cancel to give the real solution $x(t)=x(0) \cos t+x^{\prime}(0) \sin t$. So why bother with imaginary numbers? Because they make computations easier! (Well, maybe not today. But eventually they do.)

[^0]: ${ }^{1}$ We choose 0 because the initial condition is given in terms of $y(0)$ and because the error function $\operatorname{erf}(x)$ is defined with lower bound 0 . Convenient.

[^1]: ${ }^{2}$ Desmos labeled the x-axis with multiples of $\pi / 3$, but multiples of $\pi / 4$ would be more appropriate here.
 ${ }^{3}$ Technically, there should be some insulation constant $k>0$ so that $u^{\prime}(t)=k(\sin (t)-u(t))$. I took $k=1$ for simplicity. We assume no air conditioning.

[^2]: ${ }^{4}$ There are two square roots of -1 . Pick your favorite and call it i. Then the other is called $-i$.

