
Math 311 Spring 2023
Homework 2 Drew Armstrong

1. Integrating Factors for Linear ODEs. Solve the following equations for y(x):

(a) y′ + y = ex and y(0) = 1,
(b) xy′ + 2y = 3x and y(1) = 5,
(c) xy′ − y = x and y(1) = 7,
(d) y′ = 1 + 2xy and y(0) = 5. [Express your answer in terms of the error function

erf(x) =
2√
π

∫ x

0
e−s

2
ds.]

The general method: Consider an equation of the form

y′(x) + P (x)y(x) = Q(x).

Define the “integrating factor” ρ(x) = exp(
∫
P (x) dx), so that ρ′(x) = ρ(x)P (x). Then we

multiply both sides by ρ(x) to obtain

ρ(x)(y′(x) + P (x)y(x)) = ρ(x)Q(x)

ρ(x)y′(x) + ρ(x)P (x)y(x) = ρ(x)Q(x)

ρ(x)y′(x) + ρ′(x)y(x) = ρ(x)Q(x)

[ρ(x)y(x)]′ = ρ(x)Q(x)

ρ(x)y(x) =

∫
ρ(x)Q(x) dx+ C

y(x) =
1

ρ(x)

[∫
ρ(x)Q(x) dx+ C

]
.

Instead of memorizing the final formula we will just apply the method in each separate case.

(a): The equation y′ + y = ex has P (x) = 1 and Q(x) = ex. The integrating factor is

ρ(x) = exp

(∫
1 dx

)
= ex.

Multiply both sides of the equation by ex to get

ex(y′ + y) = ex · ex

exy′ + exy = e2x

(exy)′ = e2x dx

exy =

∫
e2x dx+ C

exy =
1

2
e2x + C

y =
1

2
e2xe−x + Ce−x

y =
1

2
ex + Ce−x.

1
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To determine C we substitute the initial condition y(0) = 1:

y(0) = 1

1

2
+ C = 1

C = 1/2.

So the solution is

y =
1

2
ex +

1

2
e−x =

ex + e−x

2
.

Remark: This function has a special name. It is called hyperbolic cosine:

cosh(x) =
ex + e−x

2
.

The graph of cosh(x) describes the shape of a hanging chain (or a free-standing arch, such as
the St. Louis arch). It is related to the usual cosine function by replacing x with ix:

cosh(ix) =
eix + e−ix

2
= cos(x).

(b): We put the equation xy′ + 2y = 3x in standard form

y′ +
2

x
y = 3

y′ + P (x)y = Q(x),

so that P (x) = 2/x and Q(x) = 3. The integrating factor is

ρ(x) = exp

(∫
2/x dx

)
= exp(2 ln(x)) = exp(ln(x2)) = x2.

Multiplying both sides by x2 gives

x2
(
y′ +

2

x
y

)
= 3x2

x2y′ + 2xy = 3x2

(x2y)′ = 3x2

x2y =

∫
3x2 dx+ C

x2y = x3 + C

y = x+ C/x2.

To determine C we substitute the initial condition y(1) = 5:

y(1) = 5

1 + C = 5

C = 4.

So the solution is

y = x+
4

x2
.
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(c): First we put xy′ − y = x in standard form:

y′ − 1

x
y = 1

y′ + P (x)y = Q(x),

so that P (x) = −1/x and Q(x) = 1. The integrating factor is

ρ(x) = exp

(∫
−1/x dx

)
= exp(− ln(x)) = exp(ln(1/x)) = 1/x.

Multiplying both sides by 1/x gives

1

x
y′ − 1

x2
y =

1

x(
1

x
· y
)′

=
1

x

y

x
=

∫
1

x
dx+ C

y

x
= ln(x) + C

y = x(ln(x) + C).

To determine C we substitute y(1) = 7:

y(1) = 7

1(ln(1) + C) = 7

C = 7.

So the solution is

y = x(ln(x) + 7).

(d): We put the equation y′ = 1 + 2xy in standard form:

y′ − 2xy = 1

y′ + P (x)y = Q(x),

with P (x) = −2x and Q(x) = 1. The integration factor is

ρ(x) = exp

(∫
−2x dx

)
= exp(−x2) = e−x

2
.

Multiplying both sides by e−x
2

gives

e−x
2
(y′ − 2xy) = e−x

2

e−x
2
y′ − 2xe−x

2
y = e−x

2[
e−x

2
y
]′

= e−x
2

e−x
2
y =

∫
e−x

2
dx+ C.

Now we’re stuck. At this point we should express the antiderivative as a definite integral.
The lower bound is arbitrary because any change in lower bound can be absorbed into the
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constant C. So let’s take lower bound 0:1

e−x
2
y =

∫ x

0
e−s

2
ds+ C

y = ex
2

∫ x

0
e−s

2
ds+ Cex

2

y = ex
2

[∫ x

0
e−s

2
ds+ C

]
.

To determine C we substitute y(0) = 5:

y(0) = 5

e0
[∫ 0

0
e−s

2
ds+ C

]
= 5

C = 5.

Hence the solution is

y = ex
2

[∫ x

0
e−s

2
ds+ 5

]
.

But we were asked to express this in terms of the error function, so we write

y = ex
2

[√
π

2
· erf(x) + 5

]
.

I know this is correct because my computer agrees.

Remark: I didn’t ask you to think about the slope field, but here it is:

Note that some solutions go to +∞ and some go to −∞ as x goes to infinity. To be precise,
my computer says that

y(x) = ex
2

[√
π

2
· erf(x) + y(0)

]
→


+∞ if y(0) > −1,

0 if y(0) = −1,

−∞ if y(0) < −1.

1We choose 0 because the initial condition is given in terms of y(0) and because the error function erf(x) is
defined with lower bound 0. Convenient.
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2. Logistic Growth with Harvesting. Let x(t) be the size of a farmed population (maybe
fish in a pond). Without harvesting, let’s say the population has logistic growth x′(t) =
x(4− x). If we harvest the population at a constant rate h > 0 then we obtain the equation

x′(t) = x(4− x)− h, where h > 0 is the constant rate of harvesting.

Solve the following problems for three different rates of harvesting: h = 3, 4, 5.

(a) For which values of x is x(4− x)− h positive, zero, negative?
(b) Use part (a) to sketch the slope field.
(c) Describe the behavior of x(t) as t → ∞. [Ignore negative solutions. If x(t) becomes

negative we say that the population is extinct.]

Remark: These equations can be solved exactly, but I’m not asking you to do that because
the solutions are too complicated. Instead, we want a qualitative analysis.

Solution for h = 3 (Underharvesting). The equation for the fish population is

x′(t) = x(4− x)− 3 = −x2 + 4x− 3 = −(x− 1)(x− 3).

From this we see that

• x′(t) = 0 when x = 1 or x = 3,
• x′(t) > 0 when 1 < x < 3,
• x′(t) < 0 when x < 1 or 3 < x.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies x(0) > 1 then the fish population stabilizes at 3. If the initial
population satisfies x(0) < 1 then the fish go extinct. If x(0) = 1 then we have x(t) = 1 for
all t, but this solution is unstable.
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Solution for h = 4 (Critical Harvesting). The equation for the fish population is

x′(t) = x(4− x)− 4 = −x2 + 4x− 4 = −(x− 2)2.

From this we see that

• x′(t) = 0 when x = 2,
• x′(t) < 0 when x 6= 2.

Here is the slope field with a few solution curves drawn:

If the initial population satisfies x(0) ≥ 2 then the fish population stabilizes at 2. If the initial
population satisfies x(0) < 2 then the fish go extinct.

Solution for h = 5 (Overharvesting). The equation for the fish population is

x′(t) = x(4− x)− 5 = −x2 + 4x− 5.

This quadratic expression does not factor. And one can check that

• x′(t) < 0 for any value of x.

No matter what the initial population is, the fish will go extinct:
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3. Phase Shift. The angle sum identity for cosine tells us that

C cos(x− α) = C cosα cosx+ C sinα sinx.

(a) Suppose that C cos(x − α) = A cosx + B sinx. Use the above identity to express C
and α in terms of A and B. [Hint: We must have A = C cosα and B = C sinα.]

(b) Use part (a) to express cosx+ sinx in the form C cos(x− α).
(c) Graph the three functions cosx, sinx and C cos(x−α) on the same axes to make sure

that your answer in part (b) makes sense.

(a): If C cos(x− α) = A cosx+B sinx then from the trig identity we must have

A cosx+B sinx = (C cosα) cosx+ (C sinα) sinx,

so that A = C cosα and B = C sinα. At this point it is useful to draw a triangle:

Then from the Pythagorean theorem and the definition of the tangent function we have

C =
√
A2 +B2,

α = tan−1(B/A).

(b): When A = B = 1 we have C =
√

12 + 12 =
√

2 and α = tan−1(1/1) = π/4, so that

cosx+ sinx =
√

2 · cos
(
x− π

4

)
.
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(c): From the computer graph, we see that the heights of cosx and sinx add to the height of√
2 · cos(x− π/4), as expected:2

4. Indoor vs Outdoor Temperature. We will use the function cos(t) to model the outdoor
temperature. If u(t) is the indoor temperature then Newton’s Law says3

u′(t) = cos(t)− u(t).

(a) Compute the general solution. [Hint: You will need the integral∫
et cos t dt =

et

2
(cos t+ sin t) + C.]

(b) Find the specific solution with u(0) = 3. Use a computer to graph the indoor temper-
ature u(t) and the outdoor temperature cos(t) on the same axes, say for t = 0 . . . 15.

(c) As t → ∞ the indoor temperature settles down to a simple oscillation. Compute
the phase shift between the indoor and outdoor temperatures. After the outdoor
temperature peaks, how many hours until the indoor temperature peaks? [Assume the
outdoor temperature has a period of 24 hours.]

(a): This is a linear first order equation. We put the equation in standard form:

u′(t) + u(t) = cos t

u′(t) + P (t)u(t) = Q(t),

where P (t) = 1 and Q(t) = cos t. The integrating factor is

ρ(t) = exp

(∫
P (t) dt

)
= exp(t) = et.

2Desmos labeled the x-axis with multiples of π/3, but multiples of π/4 would be more appropriate here.
3Technically, there should be some insulation constant k > 0 so that u′(t) = k(sin(t) − u(t)). I took k = 1

for simplicity. We assume no air conditioning.
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Multiply both sides by the integrating factor and solve:

u′(t) + u(t) = cos t

etu′(t) + etu(t) = et cos t

(etu(t))′ = et cos t

etu(t) =

∫
et cos t dt+ C

etu(t) =
et

2
(cos t+ sin t) + C given

u(t) =
1

2
(cos t+ sin t) + Ce−t.

(b): The determine C we substitute the initial condition u(0) = 3:

u(0) = 3

1

2
(cos 0 + sin 0) + Ce0 = 3

1

2
+ C = 3

C = 2.5.

Hence the indoor temperature at time t is

u(t) =
1

2
(cos t+ sin t) + 2.5e−t.

Here is a graph of the outdoor temperature cos t versus the indoor temperature u(t):

The transient term 2.5e−t rapidly goes to zero and we are left with a steady state solution:

u(t) ≈ 1

2
(cos t+ sin t).

(c): In order to interpret the steady state, we must compute the amplitude and phase shift:

1

2
cos t+

1

2
sin t = C cos(t− α).
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Using the formulas from Problem 3(a) with A = B = 1/2 gives

C =
√
A2 +B2 =

√
1/4 + 1/4 =

√
1/2 ≈ 0.7,

α = tan−1(B/A) = tan−1(1) = π/4.

Thus the steady state of the indoor temperature is

u(t) ≈ 0.7 · cos(t− π/4).

This lags the outdoor temperature by π/4, which is 1/8 of the full period 2π. If we view the
period as 24 hours then the lag is 3 hours. That is, the indoor temperature will peak 3
hours after the outdoor temperature peaks. Does this make sense? We also note that the
amplitude of the indoor temperature is ≈ 0.7. This is smaller than the amplitude of the
outdoor temperature, which is 1. Does this make sense?

Remark: More generally, there is an insulation constant k > 0 so that

u′(t) = k (cos t− u(t)) .

In this case one can show that the time lag is tan−1(1/k2). Large values of k (bad insulation)
cause a short time lag. Values of k close to zero (good insulation) cause a long time lag. Does
this make sense?

5. Hooke’s Law. I claim that the differential equation x′′(t) = −ω2x(t) has general solution

x(t) = A cos(ωt) +B sin(ωt),

where A and B are arbitrary constants.

(a) Verify that this is, indeed, a solution.
(b) Solve for A and B in terms of the initial conditions x(0) and x′(0).
(c) The solution can alternatively be expressed as

x(t) = C cos(ω(t− α)).

Solve for C and α in terms of x(0) and x′(0). [Hint: We can use the same method as
in Problem 3. It is based on the angle sum identity:

cos(ω(t− α)) = cos(ωt− ωα) = cos(ωα) cos(ωt) + sin(ωα) sin(ωt).]

(a): We saw in class that cos(ωt) and sin(ωt) are solutions. More generally, we will show that
the formula x(t) = A cos(ωt) + B sin(ωt) satisfies the differential equation x′′(t) = −ω2x(t).
First we compute x′(t):

x′(t) =
d

dx
[A cos(ωt) +B sin(ωt)]

= A
d

dx
cos(ωt) +B

d

dx
sin(ωt)

= A(−ω sin(ωt)) +Bω cos(ωt)

= −Aω sin(ωt) +Bω cos(ωt).
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Then we compute x′′(t):

x′′(t) =
d

dx
[−Aω sin(ωt) +Bω cos(ωt)]

= −Aω d

dx
sin(ωt) +Bω

d

dx
cos(ωt)

= −Aω · ω cos(ωt) +Bω(−ω sin(ωt))

= −Aω2 cos(ωt)−Bω2 sin(ωt)

= −ω2 [A cos(ωt) +B sin(ωt)] ,

and we observe that x′′(t) = −ω2x(t) as desired.

Remark: The differential equation x′′(t) = −ω2x(t) is linear, so the sum of any two solutions
is also a solution. This is why we can add the solutions A cos(ωt) and B sin(ωt) to get another
solution. We will say more about this later.

(b): To determine A and B, we substitute t = 0 into x(t) and x′(t) to get{
x(0) = A cos(0) +B sin(0) = A,
x′(0) = −Aω sin(0) +Bω cos(0) = Bω.

Hence the solution in terms of the initial position and velocity is

x(t) = x(0) cos(ωt) +
x′(0)

ω
sin(ωt).

(c): We want to find the amplitude C and phase shift α:

x(t) = x(0) cos(ωt) +
x′(0)

ω
sin(ωt) = C cos(ω(t− α)).

We will use the cosine difference of angles formula:

A cos(ωt) +B sin(ωt) = C cos(ω(t− α))

= C cos(ωt− ωα)

= C [cos(ωα) cos(ωt) + sin(ωα) sin(ωt)]

= [C cos(ωα)] cos(ωt) + [C sin(ωα)] sin(ωt).

This implies that A = C cos(ωα) and B = C sin(ωα), hence

C =
√
A2 +B2,

ωα = tan−1(B/A).

This is the same as in Problem 3, but using angle ωα instead of α. In our case we have
A = x(0) and B = x′(0)/ω, so that

C =

√
x(0)2 +

[
x′(0)

ω

]2
and α =

1

ω
tan−1

(
x′(0)/ω

x(0)

)
.

Remark: Thus we have solved the general (undamped, unforced) harmonic oscillator with

frequency ω =
√
k/m, where m is the mass and k is the stiffness. I know it was a lot of

algebra. This is a computation you should do exactly once in your life.
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6. Euler’s Identity. Let i denote a4 square root of −1. Euler’s identity provides a connection
between exponential and trigonometric functions:

eit = cos t+ i sin t.

(a) Use Euler’s identity to prove the angle sum formulas:

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

[Hint: Use the property eiαeiβ = eiα+iβ = ei(α+β) of exponentials.]
(b) Use Euler’s identity to prove that

cos t =
eit + e−it

2
and sin t =

eit − e−it

2i
.

[Hint: First show that e−it = cos t− i sin t.]
(c) We have seen that the equation x′′(t) = −x(t) has general solution

x(t) = x(0) cos t+ x′(0) sin t.

I claim that we can also express this solution in the form

x(t) = Aeit +Be−it

for some constants A and B. Use the formulas in part (b) to solve for A and B in
terms of x(0) and x′(0). Your answers will involve imaginary numbers.

(a): On the one hand, we have

eiα · eiβ = ei(α+β) = cos(α+ β) + i sin(α+ β).

On the other hand, we have

eiα · eiβ = (cosα+ i sinα)(cosβ + i sinβ)

= cosα cosβ + i cosα sinβ + i sinα cosβ + i2 sinα sinβ

= cosα cosβ + i cosα sinβ + i sinα cosβ − sinα sinβ

= (cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ).

Comparing the real and imaginary parts of the two expressions for eiα · eiβ gives the desired
formulas.

(b): First we note that

e−it = ei(−t) = cos(−t) + i sin(−t) = cos t− i sin t.

Then we have

eit + e−it = (cos t+���i sin t) + (cos t−���i sin t) = 2 cos t

and

eit − e−it = (���cos t+ i sin t)− (���cos t− i sin t) = 2i sin t,

as desired.

4There are two square roots of −1. Pick your favorite and call it i. Then the other is called −i.
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(c): We have seen that the equation x′′(t) = −x(t) has general solution x(t) = x(0) cos t +
x′(0) sin t. To express this in the form Aeit +Be−it we substitute the formulas from part (b):

x(t) = x(0) cos t+ x′(0) sin t

= x(0)

(
eit + e−it

2

)
+ x′(0)

(
eit − e−it

2i

)
=

(
x(0)

2
+
x′(0)

2i

)
eit +

(
x(0)

2
− x′(0)

2i

)
e−it.

We can simplify this a bit by using the fact that 1/i = −i:

x(t) =

(
x(0)− ix′(0)

2

)
eit +

(
x(0) + ix′(0)

2

)
e−it.

Remark: This expression has lots of imaginary numbers in it, but these imaginary numbers
somehow cancel to give the real solution x(t) = x(0) cos t + x′(0) sin t. So why bother with
imaginary numbers? Because they make computations easier! (Well, maybe not today.
But eventually they do.)


