Math 311 Spring 2023
Homework 2 Drew Armstrong

1. Integrating Factors for Linear ODEs. Solve the following equations for y(x):

@)M+y=6“mﬁy®):L
xy' + 2y = 3x and y(l)

(b)
(c) 2y’ —y =2 and y(1) =
(d) ¥ =1+ 2zy and y(0) = 5 [Express your answer in terms of the error function

erf(z / —s’ ds.]
G

The general method: Consider an equation of the form

Y (x) + P(x)y(z) = Q).

Define the “integrating factor” p(z) = exp([ P(z)dz), so that p'(z) = p(z)P(x). Then we
multiply both sides by p(x) to obtain

p(x)(y' (x) + P(x)y(z)) = p(z)Q(z)
p(x)y'(x) + p(x) P(x)y(z) = p(2)Q(z)
p(x)y' (x) + p'(2)y(z) = p(z)Q(z)
[p(2)y(2)] = p(2)Q(z)

@) = [ pa)Qa)da+ C
1
y@w=mm{/MMQ@wx+c.

Instead of memorizing the final formula we will just apply the method in each separate case.

(a): The equation y' +y = e” has P(z) = 1 and Q(x) = €”. The integrating factor is

o) - [ 185) - .

Multiply both sides of the equation by e* to get
Cl Yy =€t
eacy/ +€xy — 621‘
(ey) = e** dx
exy:/eQxdx—l—C
1
ety = 56% +C

1
Y= §e2x6_r +Ce™*

1
Yy = 563: +Ce™™

1
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To determine C' we substitute the initial condition y(0) = 1:

y(0) =1
1
—-+C=1
5 +
C=1/2.
So the solution is
1, 1, ette®
Y= 26 + 26 = 5 .
Remark: This function has a special name. It is called hyperbolic cosine:
x —X
cosh(z) = %

The graph of cosh(x) describes the shape of a hanging chain (or a free-standing arch, such as
the St. Louis arch). It is related to the usual cosine function by replacing = with ix:

eZCL’ + e*’LI‘

) = cos(x).

cosh(iz) =

(b): We put the equation zy’ + 2y = 3z in standard form

2
y+-y=3
X

Yy + P(x)y = Q)
so that P(x) = 2/x and Q(x) = 3. The integrating factor is

p(x) = exp </ 2/x d;v> = exp(2In(z)) = exp(In(z?)) = 2%
Multiplying both sides by z? gives

2
z? <y/ + y) = 322
x

22y 4 2zy = 322
(¢%y)' = 32

m2y:/3x2daﬁ+C’

2y =23+ C
y=x+C/x%
To determine C' we substitute the initial condition y(1) = 5:
y(1) =5
1+C=5
C=4.
So the solution is
4

y:x—i-?.




(¢): First we put xy’ — y = x in standard form:

, 1
y——y=1
x
Yy + P(x)y = Q)
so that P(x) = —1/x and Q(z) = 1. The integrating factor is

p(x) = exp (/ —1/z d:c) =exp(—In(z)) = exp(In(1/z)) = 1/x.
Multiplying both sides by 1/x gives

1, 1
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To determine C' we substitute y(1) = 7:

So the solution is

(d): We put the equation y' = 1 4 2zy in standard form:
y —2zy =1
y' + P(z)y = Q(z),
with P(z) = —2z and Q(x) = 1. The integration factor is

2

o(z) = exp ( / iy dx) — exp(—a?) = e

Multiplying both sides by e’ gives

x? x?

e (Y —2xy) = e”

_ 22 ) 2
ey — 2T y=e"

[e_ny]/ =
e—:ch = /6_12 dr + C.

Now we're stuck. At this point we should express the antiderivative as a definite integral.
The lower bound is arbitrary because any change in lower bound can be absorbed into the
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constant C. So let’s take lower bound OEl
X
ef’”Qy = / e 5" ds + C
0

x
y= ™ / e " ds + Ce®”
0

y:ex2 [/ e_Sst—i—C}
0

To determine C' we substitute y(0) = 5:

y(0) =5
0 2
e’ [/ e ds+C| =5
0
C =5.

Hence the solution is

y:e””2 [/ 652d5+5].
0

But we were asked to express this in terms of the error function, so we write

y=e" {\f erf(z) + 5} .

I know this is correct because my computer agrees.

Remark: I didn’t ask you to think about the slope field, but here it is:

Note that some solutions go to +o00 and some go to —oo as x goes to infinity. To be precise,
my computer says that

oo if y(0) > —1,
y(x) = v [\/27? erf(z) + y(O)] —<0 if y(0) = —1,
—oo if y(0) < —1.

IWe choose 0 because the initial condition is given in terms of y(0) and because the error function erf(z) is
defined with lower bound 0. Convenient.
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2. Logistic Growth with Harvesting. Let x(t) be the size of a farmed population (maybe
fish in a pond). Without harvesting, let’s say the population has logistic growth /() =
x(4 — ). If we harvest the population at a constant rate h > 0 then we obtain the equation

2'(t) = x(4—x) —h, where h > 0 is the constant rate of harvesting.
Solve the following problems for three different rates of harvesting: h = 3,4, 5.

(a) For which values of z is z(4 — x) — h positive, zero, negative?

(b) Use part (a) to sketch the slope field.

(c) Describe the behavior of z(t) as ¢ — oco. [Ignore negative solutions. If x(¢) becomes
negative we say that the population is extinct.]

Remark: These equations can be solved exactly, but I'm not asking you to do that because
the solutions are too complicated. Instead, we want a qualitative analysis.

Solution for A = 3 (Underharvesting). The equation for the fish population is
P(t)=2(4—2)-3=—2*+42-3=—(z—1)(z —3).
From this we see that
e 2/(t) =0 when z =1 or z = 3,

e 2/(t) >0 when 1 < z < 3,
e 2/(t) <O whenz <1or3<ua.

Here is the slope field with a few solution curves drawn:

.
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... _ . .
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If the initial population satisfies z(0) > 1 then the fish population stabilizes at 3. If the initial
population satisfies #(0) < 1 then the fish go extinct. If z(0) = 1 then we have x(t) = 1 for
all £, but this solution is unstable.
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Solution for h = 4 (Critical Harvesting). The equation for the fish population is
) =2(d—2)—4d=—2?+4x —4=—(z —2)%

From this we see that

e 2/(t) =0 when z = 2,
e 2/(t) < 0 when z # 2.

Here is the slope field with a few solution curves drawn:

1.0_\\\\\\\\\\\\\\\\
I e
.

If the initial population satisfies 2:(0) > 2 then the fish population stabilizes at 2. If the initial
population satisfies £(0) < 2 then the fish go extinct.

Solution for h =5 (Overharvesting). The equation for the fish population is

2 (t)=x(4—x) -5 = —z + 4z — 5.

This quadratic expression does not factor. And one can check that
e 2/(t) < 0 for any value of x.

No matter what the initial population is, the fish will go extinct:
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3. Phase Shift. The angle sum identity for cosine tells us that

Ccos(z —a) =Ccosacosz + Csinasinz.

(a) Suppose that Ccos(z — a) = Acosz + Bsinz. Use the above identity to express C

and « in terms of A and B. [Hint: We must have A = C'cosa and B = C'sin o]
(b) Use part (a) to express cosz + sin in the form C cos(z — a).

(¢) Graph the three functions cosz, sinx and C cos(z — a) on the same axes to make sure

that your answer in part (b) makes sense.

(a): If Ccos(x — ) = Acosz + Bsinz then from the trig identity we must have
Acosz + Bsinz = (Ccosa)cosz + (Csina)sinz,

so that A = C cosa and B = C'sina. At this point it is useful to draw a triangle:

N
)~ rjg

C——
A

Then from the Pythagorean theorem and the definition of the tangent function we have

C =A%+ B2,

o = tan"}(B/A).

(b): When A= B =1 we have C = V12 + 12 = y/2 and o = tan~1(1/1) = /4, so that

cosz +sinz = V2 - cos <w—%>
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(c): From the computer graph, we see that the heights of cosz and sinx add to the height of
V2 - cos(z — m/4), as expected

3 Y/s ™ 4117/51'y T
1 \ \4
S

4. Indoor vs Outdoor Temperature. We will use the function cos(t) to model the outdoor
temperature. If u(t) is the indoor temperature then Newton’s Law say&El

u'(t) = cos(t) — u(t).

(a) Compute the general solution. [Hint: You will need the integral
ot
/et costdt = 5 (cost +sint) 4+ C.]

(b) Find the specific solution with «(0) = 3. Use a computer to graph the indoor temper-
ature u(t) and the outdoor temperature cos(t) on the same axes, say for t =0...15.

(¢) As t — oo the indoor temperature settles down to a simple oscillation. Compute
the phase shift between the indoor and outdoor temperatures. After the outdoor
temperature peaks, how many hours until the indoor temperature peaks? [Assume the
outdoor temperature has a period of 24 hours.]

(a): This is a linear first order equation. We put the equation in standard form:
u'(t) + u(t) = cost
u'(t) + P(t)u(t) = Q(b),
where P(t) =1 and Q(t) = cost. The integrating factor is

p(t) = exp </ P(t) dt> = exp(t) = e’

2Desmos labeled the z-axis with multiples of 7/3, but multiples of 7/4 would be more appropriate here.
3Technically, there should be some insulation constant k > 0 so that u/(t) = k(sin(t) — u(t)). I took k = 1
for simplicity. We assume no air conditioning.



Multiply both sides by the integrating factor and solve:
u'(t) + u(t) = cost
e/ (t) + etu(t) = e’ cost
(e'u(t)) = e’ cost
(

t

eu(t) = /etcostdt+C’
ol
elu(t) = i(cost +sint) + C given

1
u(t) = 2(cost +sint) + Ce™".

(b): The determine C' we substitute the initial condition u(0) = 3:
u(0) =3
1
§(COSO +sin0) + Ce® =3
1
-+C=3
5 +

C =2.5.

Hence the indoor temperature at time ¢ is

1
u(t) = i(cost +sint) + 2.5¢ 7"

Here is a graph of the outdoor temperature cost versus the indoor temperature u(t):

N

TN s
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The transient term 2.5¢ ! rapidly goes to zero and we are left with a steady state solution:

1
u(t) = i(cost + sint).

(c): In order to interpret the steady state, we must compute the amplitude and phase shift:

1 1
icost + §sint = C cos(t — ).
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Using the formulas from Problem 3(a) with A = B = 1/2 gives
C=VA2+B2=\/1/4+1/4=/1/2~0.7,
o =tan 1 (B/A) = tan" (1) = 7/4.
Thus the steady state of the indoor temperature is
u(t) = 0.7 - cos(t — w/4).

This lags the outdoor temperature by 7 /4, which is 1/8 of the full period 27. If we view the
period as 24 hours then the lag is 3 hours. That is, the indoor temperature will peak 3
hours after the outdoor temperature peaks. Does this make sense? We also note that the
amplitude of the indoor temperature is ~ 0.7. This is smaller than the amplitude of the
outdoor temperature, which is 1. Does this make sense?

Remark: More generally, there is an insulation constant & > 0 so that
u'(t) =k (cost —u(t)).

In this case one can show that the time lag is tan~!(1/k?). Large values of k (bad insulation)
cause a short time lag. Values of k close to zero (good insulation) cause a long time lag. Does
this make sense?

5. Hooke’s Law. I claim that the differential equation z”(t) = —w?x(t) has general solution

x(t) = Acos(wt) + Bsin(wt),

where A and B are arbitrary constants.

(a) Verify that this is, indeed, a solution.
(b) Solve for A and B in terms of the initial conditions x(0) and 2’(0).
(¢) The solution can alternatively be expressed as

z(t) = Ccos(w(t — ).

Solve for C' and « in terms of z(0) and 2/(0). [Hint: We can use the same method as
in Problem 3. It is based on the angle sum identity:

cos(w(t — a)) = cos(wt — wa) = cos(wa) cos(wt) + sin(wa) sin(wt).]

(a): We saw in class that cos(wt) and sin(wt) are solutions. More generally, we will show that
the formula z(t) = Acos(wt) + Bsin(wt) satisfies the differential equation 2”(t) = —w?x(t).
First we compute 2'(t):

2 (t) = % [A cos(wt) + B sin(wt)]

d d .
= A% cos(wt) + B% sin(wt)
= A(—wsin(wt)) + Bw cos(wt)
= —Awsin(wt) + Bw cos(wt).
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Then we compute z”(¢):

:L‘” (t) d

T da
= —Awi sin(wt) + Bu}i cos(wt)
B dz dz

= —Aw - wcos(wt) + Bw(—wsin(wt))
= —Aw? cos(wt) — Bw? sin(wt)

= —w?[Acos(wt) + Bsin(wt)] ,

[~ Aw sin(wt) + Bw cos(wt)]

and we observe that z”(t) = —w?z(t) as desired.

Remark: The differential equation z”(t) = —w?x(t) is linear, so the sum of any two solutions

is also a solution. This is why we can add the solutions A cos(wt) and B sin(wt) to get another
solution. We will say more about this later.

(b): To determine A and B, we substitute ¢t = 0 into z(t) and 2/(¢) to get

z(0) = Acos(0) + Bsin(0) = A,
2/(0) = —Awsin(0) + Bwcos(0) = Buw.
Hence the solution in terms of the initial position and velocity is
/
z(t) = x(0) cos(wt) + xLO) sin(wt).

(c): We want to find the amplitude C' and phase shift a:

x(t) = x(0) cos(wt) + x’i}O)

sin(wt) = C cos(w(t — ).
We will use the cosine difference of angles formula:
Acos(wt) + Bsin(wt) = C cos(w(t — «))

= C cos(wt — wa)

= (' [cos(wa) cos(wt) + sin(wa) sin(wt)]

= [C cos(wa)] cos(wt) + [C sin(wa)] sin(wt).
This implies that A = C cos(wa) and B = C'sin(wa), hence

C =+VA?+ B2,
wa = tan ! (B/A).

This is the same as in Problem 3, but using angle wa instead of a. In our case we have
A =z(0) and B = 2/(0)/w, so that

o= e+ [ZO]" wmaam Lt (2002

Remark: Thus we have solved the general (undamped, unforced) harmonic oscillator with
frequency w = y/k/m, where m is the mass and k is the stiffness. I know it was a lot of
algebra. This is a computation you should do exactly once in your life.
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6. Euler’s Identity. Let ¢ denote aﬁsquare root of —1. Euler’s identity provides a connection
between exponential and trigonometric functions:

eit

= cost—i—isint.‘

(a) Use Euler’s identity to prove the angle sum formulas:
cos(a + ) = cosaccos  — sin asin 3,

sin(a + 3) = sina.cos B + cos asin .

[Hint: Use the property eloeif = giatiB — gi(atP) of exponentials.]
(b) Use Euler’s identity to prove that

it | it it _ it
cost = ete” and sint = i
2 27
[Hint: First show that e~% = cost — isint.]
(¢) We have seen that the equation z”(t) = —xz(t) has general solution

z(t) = x(0) cost + z'(0) sin t.
I claim that we can also express this solution in the form
x(t) = Ae + Be ™

for some constants A and B. Use the formulas in part (b) to solve for A and B in
terms of (0) and 2/(0). Your answers will involve imaginary numbers.

(a): On the one hand, we have
e e = OB — cos(a + B) + i sin(a + f).
On the other hand, we have
e . e = (cos o + isin o) (cos B + i sin 3)
= cosacos B 4 i cosasin B 4 isin o cos f 4 32 sin asin 8
= cosacos B+ icosasin S+ isinacos f — sinasin 8

= (cosavcos B — sin asin B) + i(sin v cos f + cos asin ).

Comparing the real and imaginary parts of the two expressions for e’ - ¢?? gives the desired
formulas.

(b): First we note that
e~ = &7t = cos(—t) + isin(—t) = cost — isint.
Then we have
e + e = (cost +ishrT) + (cost — isint) = 2cost
and
e — e = (cost +isint) — (cost —isint) = 2isint,
as desired.

4There are two square roots of —1. Pick your favorite and call it <. Then the other is called —i.
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(c): We have seen that the equation x"(t) = —xz(t) has general solution z(t) = x(0)cost +
2/(0) sint. To express this in the form Ae" + Be™" we substitute the formulas from part (b):

z(t) = 2(0) cost + 2/ (0) sint

e
- (fﬂ(o) . x’(0)> Gty (z(o) B x'(0)> -

2 21 2 2i
We can simplify this a bit by using the fact that 1/: = —i:

o) - (B9 o, (MO

Remark: This expression has lots of imaginary numbers in it, but these imaginary numbers
somehow cancel to give the real solution z(t) = x(0)cost + z/(0) sint. So why bother with
imaginary numbers? Because they make computations easier! (Well, maybe not today.
But eventually they do.)



