1. Integrating Factors for Linear ODEs. Solve the following equations for $y(x)$:
(a) $y^{\prime}+y=e^{x}$ and $y(0)=1$,
(b) $x y^{\prime}+2 y=3 x$ and $y(1)=5$,
(c) $x y^{\prime}-y=x$ and $y(1)=7$,
(d) $y^{\prime}=1+2 x y$ and $y(0)=5$. [Express your answer in terms of the error function

$$
\left.\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s .\right]
$$

2. Logistic Growth with Harvesting. Let $x(t)$ be the size of a farmed population (maybe fish in a pond). Without harvesting, let's say the population has logistic growth $x^{\prime}(t)=$ $x(4-x)$. If we harvest the population at a constant rate $h>0$ then we obtain the equation

$$
x^{\prime}(t)=x(4-x)-h, \quad \text { where } h>0 \text { is the constant rate of harvesting. }
$$

Solve the following problems for three different rates of harvesting: $h=3,4,5$.
(a) For which values of x is $x(4-x)-h$ positive, zero, negative?
(b) Use part (a) to sketch the slope field.
(c) Describe the behavior of $x(t)$ as $t \rightarrow \infty$. [Ignore negative solutions. If $x(t)$ becomes negative we say that the population is extinct.]
Remark: These equations can be exactly solved, but I'm not asking you to do that.
3. Phase Shift. The angle sum identity for cosine tells us that

$$
C \cos (x-\alpha)=C \cos \alpha \cos x+C \sin \alpha \sin x .
$$

(a) Suppose that $C \cos (x-\alpha)=A \cos x+B \sin x$. Use the above identity to express C and α in terms of A and B. [Hint: We must have $A=C \cos \alpha$ and $B=C \sin \alpha$.]
(b) Use part (a) to express $\cos x+\sin x$ in the form $C \cos (x-\alpha)$.
(c) Graph the three functions $\cos x, \sin x$ and $C \cos (x-\alpha)$ on the same axes to make sure that your answer in part (b) makes sense.
4. Indoor vs Outdoor Temperature. We will use the function $\cos (t)$ to model the outdoor temperature. If $u(t)$ is the indoor temperature then Newton's Law say \rrbracket^{1}

$$
u^{\prime}(t)=\cos (t)-u(t) .
$$

(a) Compute the general solution. [Hint: You will need the integral

$$
\left.\int e^{t} \cos t d t=\frac{e^{t}}{2}(\cos t+\sin t)+C .\right]
$$

(b) Find the specific solution with $u(0)=3$. Use a computer to graph the indoor temperature $u(t)$ and the outdoor temperature $\cos (t)$ on the same axes, say for $t=0 \ldots 15$.
(c) As $t \rightarrow \infty$ the indoor temperature settles down to a simple oscillation. Compute the phase shift between the indoor and outdoor temperatures. After the outdoor temperature peaks, how many hours until the indoor temperature peaks? [Assume the outdoor temperature has a period of 24 hours.]

[^0]5. Hooke's Law. I claim that the differential equation $x^{\prime \prime}(t)=-\omega^{2} x(t)$ has general solution
$$
x(t)=A \cos (\omega t)+B \sin (\omega t),
$$
where A and B are arbitrary constants.
(a) Verify that this is, indeed, a solution.
(b) Solve for A and B in terms of the initial conditions $x(0)$ and $x^{\prime}(0)$.
(c) The solution can alternatively be expressed as
$$
x(t)=C \cos (\omega(t-\alpha)) .
$$

Solve for C and α in terms of $x(0)$ and $x^{\prime}(0)$. [Hint: We can use the same method as in Problem 3. It is based on the angle sum identity:

$$
\cos (\omega(t-\alpha))=\cos (\omega t-\omega \alpha)=\cos (\omega \alpha) \cos (\omega t)+\sin (\omega \alpha) \sin (\omega t) .]
$$

6. Euler's Identity. Let i denote $\sqrt{2}^{2}$ square root of -1 . Euler's identity provides a connection between exponential and trigonometric functions:

$$
e^{i t}=\cos t+i \sin t
$$

(a) Use Euler's identity to prove the angle sum formulas:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta, \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta .
\end{aligned}
$$

[Hint: Use the property $e^{i \alpha} e^{i \beta}=e^{i \alpha+i \beta}=e^{i(\alpha+\beta)}$ of exponentials.]
(b) Use Euler's identity to prove that

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2} \quad \text { and } \quad \sin t=\frac{e^{i t}-e^{-i t}}{2 i} .
$$

[Hint: First show that $e^{-i t}=\cos t-i \sin t$.]
(c) We have seen that the equation $x^{\prime \prime}(t)=-x(t)$ has general solution

$$
x(t)=x(0) \cos t+x^{\prime}(0) \sin t .
$$

I claim that we can also express this solution in the form

$$
x(t)=A e^{i t}+B e^{-i t}
$$

for some constants A and B. Use the formulas in part (b) to solve for A and B in terms of $x(0)$ and $x^{\prime}(0)$. Your answers will involve imaginary numbers.

[^1]
[^0]: ${ }^{1}$ Technically, there should be some insulation constant $k>0$ so that $u^{\prime}(t)=k(\sin (t)-u(t))$. I took $k=1$ for simplicity. We assume no air conditioning.

[^1]: ${ }^{2}$ There are two square roots of -1 . Pick your favorite and call it i. Then the other is called $-i$.

