The general first order ODE has the form

$$
\frac{d y}{d x}=f(x, y) \quad\left(\text { or sometimes } x^{\prime}(t)=f(x, t)\right) .
$$

We can think of $f(x, y)$ as the slope of a tiny line at the point (x, y) in the x, y-plane. For any given point (a, b) (sometimes called the initial condition), if the function $f(x, y)$ is "nice" near $(x, y)=(a, b)$ then near this point there exists a unique solution $y(x)$ satisfying $y(a)=b$. We might not be able to write a formula for $y(x)$.

1. Direct Integration. Solve the equation $d y / d x=f(x, y)$ in the following cases:
(a) $f(x, y)=2 x+1$ and $y(0)=3$,
(b) $f(x, y)=(x-2)^{2}$ and $y(2)=1$,
(c) $f(x, y)=e^{-x^{2}}$ and $y(3)=5$. [Hint Check that the following ${ }^{11}$ is a solution: $y(x)=$ $\int_{3}^{x} e^{-s^{2}} d s+C$ for some constant C. What is the correct value of C ?]
2. Separation of Variables. Solve the equation $d y / d x=f(x, y)$ in the following cases:
(a) $f(x, y)=y^{2}$ and $y(0)=1$,
(b) $f(x, y)=y \cdot \sin x$ and $y(0)=2$.
(c) $f(x, y)=x y+x+y+1$ and $y(0)=0$. [Hint: This equation doesn't look separable, but it is. Factor the expression for $f(x, y)$.]
3. Logistic Growth. Let $x(t)$ be the size of a population of bacteria at time t. In the presence of limited resources, this population might follow the logistic growth equation:

$$
x^{\prime}(t)=x(1000-x) .
$$

(a) Find the general form of the solution. [Hint: Use partial fractions to write $1 /[x(5-x)$] in the form $A / x+B /(1000-x)$ for some constants A and B.]
(b) Sketch the solution with initial population size $x(0)=1$.
4. Free Fall. A projectile of mass m is launched straight up, near the surface of a planet. Let $h(t), v(t)$ and $a(t)$ denote the height, velocity and acceleration at time t. Let $h_{0}=h(0)$ and $v_{0}=v(0)$ denote the initial height and initial velocity (pointed upwards).
(a) In the absence of air resistance, Galileo says that $a(t)=-g$ for some positive constant $g>0$. Use direct integration twice to find a formula for $h(t)$ in terms of the initial conditions h_{0} and v_{0}, and the constant g.
(b) In the presence of air resistance we must modify Galileo's law to $a(t)=-g-\rho v(t)$ for some positive constant $\rho>0$. We can also write this as $d v / d t=-g-\rho v$. Use separation of variables to solve for $v(t)$ in terms of v_{0}, g and ρ.
(c) Terminal Velocity. Use your solution from (b) to show that $v(t)$ approaches a constant as $t \rightarrow \infty$. Find a formula for this constant in terms of g and ρ.

[^0]5. Newton's Law of Cooling. Let $u(t)$ be the temperature of a cup of coffee at time t and let A be the ambient temperature of the room. Newton's Law of Cooling ${ }^{2}$ says that
$$
\frac{d u}{d t}=A-u .
$$
(a) Solve for $u(t)$ in terms of A and the initial temperature $u_{0}=u(0)$.
(b) Sketch the graphs of two solutions in the t, u-plane: one solution with $0<u_{0}<A$ and one solution with $A<u_{0}$.
(c) Now suppose that the ambient temperature is not constant; let's say $A=t$, so the temperature is increasing with time. Then Newton's Law becomes $d u / d t=t-u$. This equation cannot be solved with our current methods. Instead, sketch the slope field in the t, u-plane and sketch a typical solution with $u_{0}>0$.
6. A Non-Separable Equation. Consider the first order ODE
$$
\frac{d y}{d x}=f(x, y)=x+y .
$$
(a) Sketch the slope field in the x, y-plane.
(b) One of the solution curves is a straight line. Find the equation of this line. [Hint: Suppose that $y=m x+b$ for some constants m and b. Then we have
$$
m=\frac{d y}{d x}=x+y=x+m x+b .
$$

Hence the equation $m=x+m x+b$ holds for any value of x. Use this to solve for m and b.]

[^1]
[^0]: ${ }^{1}$ Remark: This integral cannot be simplified.

[^1]: ${ }^{2}$ Technically, we have $d u / d t=k(A-u)$ for some positive constant $k>0$. We will set $k=1$ for simplicity.

