No electronic devices are allowed. No collaboration is allowed. There are 10 pages and each page is worth 6 points, for a total of 60 points.

1. Direct Integration. Consider the equation $x^{\prime \prime}(t)=t$.
(a) Find the general solution.

Integrating twice gives

$$
\begin{aligned}
x^{\prime \prime}(t) & =t \\
x^{\prime}(t) & =\frac{1}{2} t^{2}+c_{1} \\
x(t) & =\frac{1}{6} t^{3}+c_{1} t+c_{2}
\end{aligned}
$$

for some constants c_{1}, c_{2}.
(b) Find the solution with $x(0)=2$ and $x^{\prime}(0)=3$.

Substituting $t=0$ in $x^{\prime}(t)$ gives

$$
\begin{aligned}
x^{\prime}(0) & =\frac{1}{2} 0^{2}+c_{1} \\
3 & =c_{1},
\end{aligned}
$$

and substituting $t=0$ in $x(0)$ gives

$$
\begin{aligned}
x(0) & =\frac{1}{6} t^{3}+c_{1}(0)+c_{2} \\
2 & =c_{2},
\end{aligned}
$$

hence

$$
x(t)=\frac{1}{6} t^{3}+3 t+2 .
$$

2. Separation of Variables. Consider the equation $d y / d x=x / y$.
(a) Use separation of variables to find the general solution.

We have

$$
\begin{aligned}
y d y & =x d x \\
\int y d y & =\int x d x+C \\
\frac{1}{2} y^{2} & =\frac{1}{2} x^{2}+C \\
y^{2} & =x^{2}+D \\
y & = \pm \sqrt{x^{2}+D}
\end{aligned}
$$

for some constant D.
(b) Find the specific solution with $y(2)=4$.

Substituting $x=2$ and $y=4$ gives

$$
\begin{aligned}
(4)^{2} & =(2)^{2}+D \\
16 & =4+D \\
12 & =D,
\end{aligned}
$$

hence

$$
y(x)= \pm \sqrt{x^{2}+12} .
$$

3. Logistic Growth. The logistic equation $d y / d x=y(1-y)$ has general solution

$$
y(x)=\left[1+e^{-x}\left(\frac{y(0)}{1-y(0)}\right)\right]^{-1} .
$$

(a) Sketch the slope field of the equation.
(b) Sketch the solutions with initial conditions $y(0)=0.1, y(0)=1$ and $y(0)=2$.

4. Damped Oscillations. Consider the equation $x^{\prime \prime}(t)+2 x^{\prime}(t)+2 x(t)=0$.
(a) Find the general solution.

We look for basic solutions of the form $x(t)=e^{\lambda t}$. Substituting gives

$$
\begin{aligned}
\lambda^{2} e^{\lambda t}+2 \lambda e^{\lambda t}+2 e^{\lambda t} & =0 \\
\lambda^{2}+2 \lambda+2 & =0 \\
\lambda & =\frac{-2 \pm \sqrt{4-8}}{2} \\
& =-1 \pm i .
\end{aligned}
$$

Hence the general solution is

$$
\begin{aligned}
x(t) & =c_{1} e^{(-1+i) t}+c_{2} e^{(-1-i) t} \\
& =e^{-t}\left(c_{1} e^{i t}+c_{2} e^{-i t}\right)
\end{aligned}
$$

$$
=e^{-t}\left(c_{3} \cos t+c_{4} \sin t\right)
$$

for some constants c_{3}, c_{4}.
(b) Find the specific solution with $x(0)=0$ and $x^{\prime}(0)=1$.

Substituting $t=0$ in $x(t)$ gives

$$
\begin{aligned}
x(0) & =e^{0}\left(c_{3} 1+c_{4} 0\right) \\
0 & =c_{3} .
\end{aligned}
$$

Computing $x^{\prime}(t)$ and substituting $t=0$ gives

$$
\begin{aligned}
x^{\prime}(t) & =-e^{-t}\left(c_{3} \cos t+c_{4} \sin t\right)+e^{-t}\left(-c_{3} \sin t+c_{4} \cos t\right) \\
x^{\prime}(0) & =-e^{0}\left(c_{3} 1+c_{4} 0\right)+e^{0}\left(-c_{3} 0+c_{4} 1\right) \\
1 & =-c_{3}+c_{4} \\
1 & =-0+c_{4} \\
1 & =c_{4},
\end{aligned}
$$

hence

$$
x(t)=e^{-t}(0 \cos t+1 \sin t)=e^{-t} \sin t .
$$

5. Undetermined Coefficients. Consider the equation $x^{\prime \prime}(t)+x^{\prime}(t)=t$.
(a) Find the general solution of the homogeneous equation $x^{\prime \prime}(t)+x^{\prime}(t)=0$.

Substituting the guess $x(t)=e^{\lambda t}$ gives

$$
\begin{aligned}
\lambda^{2} e^{\lambda t}+\lambda e^{\lambda t} & =0 \\
\lambda^{2}+\lambda & =0 \\
\lambda(\lambda+1) & =0 \\
\lambda & =0,-1 .
\end{aligned}
$$

Hence the general solution of $x^{\prime \prime}(t)+x^{\prime}(t)=0$ is

$$
x(t)=c_{1} e^{0 t}+c_{2} e^{-1 t}=c_{1}+c_{2} e^{-t}
$$

(b) Find the general solution of the non-homogeneous equation $x^{\prime \prime}(t)+x^{\prime}(t)=t$. Use the guess $x_{p}(t)=A+B t+C t^{2}$ for the particular solution.

To find a particular solution we substitute the guess $x_{p}(t)=A+B t+C t^{2}$:

$$
\begin{aligned}
\left(A+B t+C t^{2}\right)^{\prime \prime}+\left(A+B t+C t^{2}\right)^{\prime} & =t \\
2 C+B+2 C t & =t \\
(2 C) t+(B+2 C) & =1 t+0 .
\end{aligned}
$$

Comparing coefficients gives $2 C=1$ and $B+2 C=0$, hence $C=1 / 2$ and $B=$ $-2 C=-1$. The value of A is arbitrary. Let's just take $A=0$ to obtain the particular solution

$$
x_{p}(t)=0-t+t^{2} / 2 .
$$

Combining this with the homogeneous solution from part (a) gives the general solution

$$
x(t)=x_{c}(t)+x_{p}(t)=c_{1}+c_{2} e^{-t}-t+t^{2} / 2 .
$$

6. Rules for Laplace Transforms. Use the rules in the attached table to compute the following Laplace transforms.
(a) $\mathscr{L}\left[t \cdot e^{2 t}\right]$

The table says that $\mathscr{L}[t]=1 / s^{2}$ and hence

$$
\mathscr{L}\left[t \cdot e^{2 t}\right]=\mathscr{L}[t]_{s \rightarrow s-2}=\frac{1}{(s-2)^{2}} .
$$

(b) $\mathscr{L}\left[e^{2 t} \cdot \sin t\right]$

The table says that $\mathscr{L}[\sin t]=1 /\left(s^{2}+1\right)$ and hence

$$
\mathscr{L}\left[e^{2 t} \cdot \sin \right]=\mathscr{L}[\sin t]_{s \rightarrow s-2}=\frac{1}{(s-2)^{2}+1}
$$

(c) $\mathscr{L}[t \cdot \sin t]$

The table says that $\mathscr{L}[\sin t]=1 /\left(s^{2}+1\right)$ and hence

$$
\mathscr{L}[t \cdot \sin]=-\frac{d}{d s} \mathscr{L}[\sin t]=-\frac{d}{d s} \frac{1}{\left(s^{2}+1\right)}=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

7. Solve Using Laplace Transforms. Consider the equation $x^{\prime}(t)+x(t)=2 \sin t$.
(a) Find the partial fraction decomposition of $\frac{2}{(s+1)\left(s^{2}+1\right)}$.

We are looking for A, B, C so that

$$
\begin{aligned}
\frac{2}{(s+1)\left(s^{2}+1\right)} & =\frac{A}{s+1}+\frac{B s+C}{s^{2}+1} \\
\frac{2}{(s+1)\left(s^{2}+1\right)} & =\frac{A\left(s^{2}+1\right)+(B s+C)(s+1)}{(s+1)\left(s^{2}+1\right)} \\
2 & =A\left(s^{2}+1\right)+(B s+C)(s+1) \\
0 s^{2}+0 s+2 & =(A+B) s^{2}+(B+C) s+(A+C)
\end{aligned}
$$

Comparing coefficients gives $A+B=0, B+C=0$ and $A+C=2$, which implies that $A=-B=C=1$. We conclude that

$$
\frac{2}{(s+1)\left(s^{2}+1\right)}=\frac{1}{s+1}+\frac{-s+1}{s^{2}+1}=\frac{1}{s+1}-\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1} .
$$

(b) Use Laplace transforms to solve the equation with $x(0)=0$.

Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime}(t)+x(t) & =2 \sin t \\
s X-x(0)+X & =\frac{2}{s^{2}+1} \\
(s+1) X & =\frac{2}{s^{2}+1} \\
X & =\frac{2}{(s+1)\left(s^{2}+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
X & =\frac{1}{s+1}-\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s+1}\right]-\mathscr{L}^{-1}\left[\frac{s}{s^{2}+1}\right]+\mathscr{L}^{-1}\left[\frac{1}{s^{2}+1}\right] \\
x(t) & =e^{-t}-\cos t+\sin t
\end{aligned}
$$

8. Discontinuous Input. Consider the step function $H(t)$ and the delta function $\delta(t)$.
(a) Compute the partial fraction decomposition of $\frac{1}{s(s-1)}$.

We are looking for A, B such that

$$
\begin{aligned}
\frac{1}{s(s-1)} & =\frac{A}{s}+\frac{B}{s-1} \\
\frac{1}{s(s-1)} & =\frac{A(s-1)+B s}{s(s-1)} \\
1 & =A(s-1)+B s
\end{aligned}
$$

Substituting $s=0$ gives $1=A(0-1)=-A$ and substituting $s=1$ gives $1=B$, hence

$$
\frac{1}{s(s-1)}=-\frac{1}{s}+\frac{1}{s-1} .
$$

(b) Use your answer from (a) to evaluate $\mathscr{L}^{-1}\left[\frac{e^{-3 s}}{s(s-1)}\right]$

If $F(s)=\mathscr{L}[f(t)]$ then $\mathscr{L}^{-1}\left[e^{-a s} \cdot f(t)\right]=H(t-a) f(t-a)$. In our case we have $F(s)=\frac{1}{s(s-1)}$, which implies that

$$
\begin{aligned}
f(t) & =\mathscr{L}^{-1}\left[\frac{1}{s(s-1)}\right] \\
& =\mathscr{L}^{-1}\left[-\frac{1}{s}+\frac{1}{s-1}\right] \\
& =-\mathscr{L}^{-1}\left[\frac{1}{s}\right]+\mathscr{L}^{-1}\left[\frac{1}{s-1}\right] \\
& =-1+e^{t},
\end{aligned}
$$

and hence

$$
\mathscr{L}^{-1}\left[\frac{e^{-3 s}}{s(s-1)}\right]=H(t-3) f(t-3)=H(t-3)\left(-1+e^{t-3}\right) .
$$

(c) Use your answers from (a) and (b) to solve the equation $x^{\prime \prime}(t)-x^{\prime}(t)=\delta(t-3)$ with initial conditions $x(0)=x^{\prime}(0)=0$.

Applying Laplace transforms gives

$$
\begin{aligned}
x^{\prime \prime}(t)-x^{\prime}(t) & =\delta(t-3) \\
s^{2} X-s x(0)-x^{\prime}(0)-(s X-x(0)) & =e^{-3 s} \\
\left(s^{2}-s\right) X & =e^{-3 s}
\end{aligned}
$$

$$
\begin{aligned}
X & =\frac{e^{-3 s}}{s(s-1)} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{e^{-3 s}}{s(s-1)}\right] \\
x(t) & =H(t-3)\left(-1+e^{t-3}\right) .
\end{aligned}
$$

9. First Order Linear System. Consider the linear system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-x(t)+2 y(t), \\
y^{\prime}(t)=x(t)
\end{array}\right.
$$

(a) Find the eigenvalues and eigenvectors of the matrix $\left(\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right)$.

The eigenvalues are the roots of the characteristic equation:

$$
\begin{aligned}
\left|\begin{array}{cc}
-1-\lambda & 2 \\
1 & 0-\lambda
\end{array}\right| & =0 \\
(-1-\lambda)(0-\lambda)-(1)(2) & =0 \\
\lambda^{2}+\lambda-2 & =0 \\
(\lambda+2)(\lambda-1) & =0 \\
\lambda & =1,-2 .
\end{aligned}
$$

The eigenvectors (u, v) for $\lambda=1$ satisfy

$$
\begin{aligned}
& \left(\begin{array}{cc}
-1-1 & 2 \\
1 & 0-1
\end{array}\right)\binom{u}{v}=\binom{0}{0} \\
\rightsquigarrow & \left(\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right)\binom{u}{v}=\binom{0}{0} \\
\rightsquigarrow & \binom{u}{v}=\text { any multiple of }\binom{1}{1}
\end{aligned}
$$

The eigenvectors (u, v) for $\lambda=-2$ satisfy

$$
\begin{array}{ll}
& \left(\begin{array}{cc}
-1+2 & 2 \\
1 & 0+2
\end{array}\right)\binom{u}{v}=\binom{0}{0} \\
\rightsquigarrow & \left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\binom{u}{v}=\binom{0}{0} \\
\rightsquigarrow & \binom{u}{v}=\text { any multiple of }\binom{2}{-1}
\end{array}
$$

(b) Find the general solution of the linear system.

The general solution is

$$
\binom{x(t)}{y(t)}=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{2}{-1} e^{-2 t}
$$

10. Second Order Linear System. Consider the linear system

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=-3 x(t)+2 y(t) \\
y^{\prime \prime}(t)=x(t)-2 y(t)
\end{array}\right.
$$

Here are the eigenvalues and eigenvectors of the coefficient matrix:

$$
\left(\begin{array}{cc}
-3 & 2 \\
1 & -2
\end{array}\right)\binom{1}{1}=-1^{2}\binom{1}{1} \quad \text { and } \quad\left(\begin{array}{cc}
-3 & 2 \\
1 & -2
\end{array}\right)\binom{2}{-1}=-2^{2}\binom{2}{-1} .
$$

(a) Use the given information to find the general solution of the system.

The general solution is

$$
\binom{x(t)}{y(t)}=a_{1}\binom{1}{1} \cos t+b_{1}\binom{1}{1} \sin t+a_{2}\binom{2}{-1} \cos (2 t)+b_{2}\binom{2}{-1} \sin (2 t) .
$$

(b) Find the specific solution with $x(0)=x^{\prime}(0)=y(0)=0$ and $y^{\prime}(0)=1$.

Substituting $t=0$ into $x(t)$ and $y(t)$ gives

$$
\binom{0}{0}=\binom{x(0)}{y(0)}=a_{1}\binom{1}{1}+a_{2}\binom{2}{-1} .
$$

This implies that $0=a_{1}+2 a_{2}$ and $0=a_{1}-a_{2}$, which has solution $a_{1}=a_{2}=0$.
Now we know that

$$
\binom{x(t)}{y(t)}=b_{1}\binom{1}{1} \sin t+b_{2}\binom{2}{-1} \sin (2 t) .
$$

Taking derivatives and substituting $t=0$ gives

$$
\begin{aligned}
\binom{x^{\prime}(t)}{y^{\prime}(t)} & =b_{1}\binom{1}{1} \cos t+2 b_{2}\binom{2}{-1} \cos (2 t) \\
\binom{0}{1} & =b_{1}\binom{1}{1}+2 b_{2}\binom{2}{-1}
\end{aligned}
$$

This implies that $0=b_{1}+4 b_{2}$ and $1=b_{1}-2 b_{2}$, which has solution $b_{1}=2 / 3$ and $b_{2}=-1 / 6$. Hence the solution is

$$
\binom{x(t)}{y(t)}=\frac{2}{3}\binom{1}{1} \sin t-\frac{1}{6}\binom{2}{-1} \sin (2 t) .
$$

