No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

1. Undetermined Coefficients.

(a) Find one solution to the equation $x^{\prime}(t)+x(t)=e^{2 t}$. [Guess: $x_{p}(t)=A e^{2 t}$.]

Substituting the guess $x_{p}(t)=A e^{2 t}$ into the equation gives

$$
\begin{aligned}
x_{p}^{\prime}(t)+x_{p}(t) & =e^{2 t} \\
2 A e^{2 t}+A e^{2 t} & =e^{2 t} \\
3 A e^{2 t} & =e^{2 t} \\
3 A & =1 \\
A & =1 / 3
\end{aligned}
$$

Hence $x_{p}(t)=(1 / 3) e^{2 t}$ is a particular solution.
(b) Find one solution to the equation $x^{\prime \prime}(t)+x(t)=t^{2}$. [Guess: $x_{p}(t)=A+B t+C t^{2}$.] Substituting the guess $x_{p}(t)=A+B t+C t^{2}$ into the equation gives

$$
\begin{aligned}
x_{p}^{\prime \prime}(t)+x_{p}(t) & =t^{2} \\
2 C+A+B t+C t^{2} & =t^{2} \\
C t^{2}+B t+(A+2 C) & =1 t^{2}+0 t+0
\end{aligned}
$$

Comparing coefficients gives $C=1, B=0$ and $A+2 C=0$, hence $A=-2$. Hence we obtain the particular solution $x_{p}(t)=t^{2}-2$.
2. Putting it Together. Consider the differential equation $x^{\prime \prime}(t)+x(t)=t^{2}$.
(a) Find the general solution of the homogeneous equation $x^{\prime \prime}(t)+x(t)=0$.

The basic solutions of a homogeneous linear equation with constant coefficients have the form $x(t)=e^{\lambda t}$. Plugging this in gives an equation for λ :

$$
\begin{aligned}
\lambda^{2} e^{\lambda t}+e^{\lambda t} & =0 \\
\left(\lambda^{2}+1\right) e^{\lambda t} & =0 \\
\lambda^{2}+1 & =0 \\
\lambda^{2} & =-1 \\
\lambda & = \pm i .
\end{aligned}
$$

Hence the general solution is $x_{c}(t)=c_{1} e^{i t}+c_{2} e^{-i t}$. By using Euler's formula we can rewrite this as

$$
x_{c}(t)=c_{3} \cos t+c_{3} \sin t
$$

for some real constants c_{3}, c_{4}.
(b) Combine $1(\mathrm{~b})$ and $2(\mathrm{a})$ to find the solution of $x^{\prime \prime}(t)+x(t)=t^{2}$ with $x(0)=x^{\prime}(0)=1$.

The general solution of $x^{\prime \prime}(t)+x(t)=t^{2}$ is the sum of the general homogeneous solution and any one particular solution:

$$
x(t)=x_{c}(t)+x_{p}(t)=c_{3} \cos t+c_{4} \sin t+t^{2}-2
$$

The parameters c_{3}, c_{4} are determined by the initial conditions $x(0)=x^{\prime}(0)=1$.
Substituting $t=0$ in $x(t)$ gives

$$
\begin{aligned}
x(0) & =c_{3} \cos (0)+c_{4} \sin (0)+0^{2}-2 \\
1 & =c_{3}-2 \\
c & =3
\end{aligned}
$$

Then substituting $t=0$ in $x^{\prime}(t)$ gives

$$
\begin{aligned}
x^{\prime}(t) & =-c_{3} \sin t+c_{4} \cos t+2 t \\
x^{\prime}(0) & =-c_{3} \sin (0)+c_{4} \cos (0)+2(0) \\
1 & =c_{4} \\
c_{4} & =1
\end{aligned}
$$

We conclude that

$$
x(t)=3 \cos t+\sin t+t^{2}-2
$$

3. Using Laplace Transforms.

(a) Find the partial fraction decomposition of $\frac{1}{s\left(s^{2}+1\right)}$.

We are looking for A, B, C such that

$$
\begin{aligned}
\frac{1}{s\left(s^{2}+1\right)} & =\frac{A}{s}+\frac{B s+C}{s^{2}+1} \\
\frac{1}{s\left(s^{2}+1\right)} & =\frac{A\left(s^{2}+1\right)+(B s+C) s}{s\left(s^{2}+1\right)} \\
1 & =A\left(s^{2}+1\right)+(B s+C) s \\
0 s^{2}+0 s+1 & =(A+B) s^{2}+C s+A .
\end{aligned}
$$

Comparing coefficients gives $A=1, C=0$ and $A+B=0$, hence $B=-1$. We conclude that

$$
\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}
$$

(b) Use Laplace transforms to solve the equation $x^{\prime \prime}(t)+x(t)=1$ with $x(0)=x^{\prime}(0)=0$.

Applying Laplace transforms gives

$$
\begin{aligned}
s^{2} X-s x(0)-x^{\prime}(0)+X & =1 / s \\
s^{2} X+X & =1 / s \\
\left(s^{2}+1\right) X & =1 / s \\
X & =\frac{1}{s\left(s^{2}+1\right)} \\
X & =\frac{1}{s}-\frac{s}{s^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\mathscr{L}^{-1}\left[\frac{1}{s}\right]+\mathscr{L}^{-1}\left[\frac{s}{s^{2}+1}\right] \\
& x(t)=1-\cos t
\end{aligned}
$$

4. Discontinuous Input. Consider the step function $H(t)$ and the delta function $\delta(t)$.
(a) Solve the following inverse Laplace transform: $\mathscr{L}^{-1}\left[e^{-5 s} \cdot \frac{1}{s^{2}+1}\right]$. Your answer will involve the step function.

Since $\mathscr{L}^{-1}\left[\frac{1}{s^{2}+1}\right]=\sin t$ we have

$$
\mathscr{L}^{-1}\left[e^{-5 s} \cdot \frac{1}{s^{2}+1}\right]=H(t-5) \sin (t-5)= \begin{cases}\sin t & t<5 \\ \sin t+\sin (t-5) & t>5\end{cases}
$$

(b) Solve the equation $x^{\prime \prime}(t)+x(t)=\delta(t-5)$ with $x(0)=0$ and $x^{\prime}(0)=1$.

Applying Laplace transforms gives

$$
\begin{aligned}
s^{2} X-s x(0)-x^{\prime}(0)+X & =e^{-5 s} \\
s^{2} X-1+X & =e^{-5 s} \\
\left(s^{2}+1\right) X & =1+e^{-5 s} \\
X & =\frac{1}{s^{2}+1}+e^{-5 s} \cdot \frac{1}{s^{2}+1} \\
x(t) & =\mathscr{L}^{-1}\left[\frac{1}{s^{2}+1}\right]+\mathscr{L}^{-1}\left[e^{-5 s} \cdot \frac{1}{s^{2}+1}\right] \\
x(t) & =\sin t+H(t-5) \sin (t-5)
\end{aligned}
$$

5. Linear Systems. Consider the linear system

$$
\left\{\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =-2 x(t)+4 y(t)
\end{aligned}\right.
$$

(a) Find the eigenvalues and eigenvectors of the matrix $\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$.

The eigenvalues are given by the characteristic equation:

$$
\begin{aligned}
\left|\begin{array}{cc}
1-\lambda & 1 \\
-2 & 4-\lambda
\end{array}\right| & =0 \\
(1-\lambda)(4-\lambda)-(-2)(1) & =0 \\
\lambda^{2}-5 \lambda+4+2 & =0 \\
\lambda^{2}-5 \lambda+6 & =0 \\
(\lambda-2)(\lambda-3) & =0 \\
\lambda & =2,3 .
\end{aligned}
$$

The eigenvectors for $\lambda=2$ are given by

$$
\begin{aligned}
& \left\{\begin{array}{r}
(1-2) u+1 v=0 \\
-2 u+(4-2) v=0
\end{array}\right. \\
& \rightsquigarrow \quad\left\{\begin{array}{r}
-1 u+1 v=0 \\
-2 u+2 v=0
\end{array}\right. \\
& \rightsquigarrow \quad\binom{u}{v}=\binom{1}{1} .
\end{aligned}
$$

The eigenvectors for $\lambda=3$ are given by

$$
\begin{aligned}
& \left\{\begin{array}{r}
(1-3) u+1 v=0 \\
-2 u+(4-3) v=0
\end{array}\right. \\
& \rightsquigarrow \quad\left\{\begin{array}{l}
-2 u+1 v=0 \\
-2 u+1 v=0
\end{array}\right. \\
& \rightsquigarrow \quad\binom{u}{v}=\binom{1}{2} .
\end{aligned}
$$

In summary, we have found that

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right)\binom{1}{1}=2\binom{1}{1} \quad \text { and } \quad\left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right)\binom{1}{2}=3\binom{1}{2}
$$

(b) Find the general solution of the linear system.

The general solution of the linear system is

$$
\binom{x(t)}{y(t)}=c_{1}\binom{1}{1} e^{2 t}+c_{2}\binom{1}{2} e^{3 t}
$$

