A linear operator L takes functions to functions and satisfies

$$
L\left[a y_{1}(x)+b y_{2}(x)\right]=a L\left[y_{1}(x)\right]+b L\left[y_{2}(x)\right] .
$$

In this section we looked at non-homogeneous linear equations $L[y(x)]=f(x)$. The general solution is $y(x)=y_{c}(x)+y_{p}(x)$ where $y_{c}(x)$ is the general solution of the homogeneous equation $L[y(x)]=0$ and $y_{p}(x)$ is any one particular solution of the non-homogeneous equation.

1. Undetermined Coefficients. In each case find one particular solution:
(a) $x^{\prime}(t)+x(t)=5$ [Hint: Guess $x_{p}(t)=A$.]
(b) $x^{\prime}(t)+x(t)=\sin (2 t)$ [Hint: Guess $x_{p}(t)=A \cos (2 t)+B \sin (2 t)$.]
(c) $x^{\prime}(t)+x(t)=t^{2}$ [Hint: Guess $x_{p}(t)=A+B t+C t^{2}$.]
(d) $x^{\prime \prime}(t)+x(t)=e^{2 t}\left[\right.$ Hint: Guess $x_{p}(t)=A e^{2 t}$.]
2. Putting It Together. Solve the initial value problems:
(a) $x^{\prime}(t)+x(t)=5 ; x(0)=1$
(b) $x^{\prime}(t)+x(t)=\sin (2 t) ; x(0)=1$
(c) $x^{\prime}(t)+x(t)=t^{2} ; x(0)=1$
(d) $x^{\prime \prime}(t)+x(t)=e^{2 t} ; x(0)=1, x^{\prime}(0)=0$
3. Partial Fractions. Find the partial fraction decomposition of the following expressions:
(a) $\frac{1}{s(s+1)}$
(b) $\frac{1}{s(s-1)(s-2)}$
(c) $\frac{1}{s^{2}\left(s^{2}+1\right)}$
4. Laplace Transform Rules. Use the information in the table to compute the following Laplace transforms:
(a) $\mathscr{L}\left[t \cdot e^{2 t}\right]$
(b) $\mathscr{L}\left[t^{2} \cdot e^{2 t}\right]$
(c) $\mathscr{L}\left[e^{3 t} \cdot \cos (2 t)\right]$
(d) $\mathscr{L}[t \cdot \cos t]$
(e) $\mathscr{L}^{-1}\left[\frac{1}{(s-3)^{2}+4}\right]$
(f) $\mathscr{L}^{-1}\left[e^{-4 s} / s^{3}\right]$
5. Using Laplace Transforms. Use Laplace transforms to solve the following initial value problems:
(a) $x^{\prime}(t)+x(t)=2 ; x(0)=0$
(b) $x^{\prime \prime}(t)-x^{\prime}(t)=e^{2 t} ; x(0)=x^{\prime}(0)=0$
(c) $x^{\prime}(t)+x(t)=\delta(t-1) ; x(0)=1$
(d) $x^{\prime \prime}(t)+x(t)=t ; x(0)=x^{\prime}(0)=1$
(e) $x^{\prime \prime}(t)+x(t)=\delta(t-4) ; x(0)=x^{\prime}(0)=0$
6. Eigenvectors. Find the eigenvalues and eigenvectors of the following matrices:
(a) $\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right)$
(b) $\left(\begin{array}{ll}7 & -16 \\ 8 & -17\end{array}\right)$
7. First Order Linear Systems. Consider the first order linear system:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=5 x(t)-4 y(t), \\
y^{\prime}(t)=6 x(t)-5 y(t) .
\end{array}\right.
$$

(a) Use your answer from 6(a) to find the general solution.
(b) Find the specific solution with $x(0)=1$ and $y(0)=2$.
8. Second Order Linear Systems. Consider the second order linear system:

$$
\left\{\begin{aligned}
x^{\prime \prime}(t) & =7 x(t)-16 y(t), \\
y^{\prime \prime}(t) & =8 x(t)-17 y(t)
\end{aligned}\right.
$$

(a) Use your answer from $6(\mathrm{~b})$ to find the general solution.
(b) Find the particular solution with $x(0)=x^{\prime}(0)=y(0)=0$ and $y^{\prime}(0)=1$.

Rules for Laplace Transforms. Let $\mathscr{L}[f(t)]=F(s)$. Then

- $\mathscr{L}[t f(t)]=-F^{\prime}(s)$
- $\mathscr{L}\left[e^{a t} f(t)=F(s-a)\right.$
- $\mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$
- $\mathscr{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
- $\mathscr{L}[H(t-a) f(t-a)]=e^{-a s} F(s)$, where $H(t-a)= \begin{cases}0 & t<a, \\ 1 & t>a .\end{cases}$

Table of Laplace Transforms.

- $\mathscr{L}[0]=0$
- $\mathscr{L}[1]=1 / s$
- $\mathscr{L}\left[e^{a s}\right]=1 /(s-a)$
- $\mathscr{L}[t]=1 / s^{2}$
- $\mathscr{L}\left[t^{n}\right]=n!/ s^{n+1}$
- $\mathscr{L}[\cos (k t)]=s /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\sin (k t)]=k /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\delta(t)]=1$, where $\delta(t)$ is the Dirac delta function
- $\mathscr{L}[\delta(t-a)]=e^{-a s}$
- $\mathscr{L}[H(t-a)]=e^{-a s} / s$

Solutions.

1.

(a) Substituting $x_{p}(t)=A$ gives $A=5$.
(b) Substituting $x_{p}(t)=A \cos (2 t)+B \sin (2 t)$ gives

$$
-2 A \sin (2 t)+2 B \cos (2 t)+A \cos (2 t)+B \sin (2 t)=\sin (2 t)
$$

Comparing coefficients gives $A+2 B=0$ and $B-2 A=1$, hence $A=-2 / 5$ and $B=1 / 5$.
(c) Substituting $x_{p}(t)=A+B t+C t^{2}$ gives

$$
B+2 C t+A+B t+C t^{2}=t^{2}
$$

Comparing coefficients gives $A=2, B=-2$ and $C=1$.
(d) Substituting $x_{p}(t)=A e^{2 t}$ gives

$$
4 A e^{2 t}+A e^{2 t}=e^{2 t}
$$

Comparing coefficients gives $A=1 / 5$.
2.
(a) The general homogeneous solution is $x_{c}(t)=C_{1} e^{-t}$. The general solution is $x(t)=$ $x_{c}(t)+x_{p}(t)=C_{1} e^{-t}+5$. The solution with $x(0)=1$ is

$$
x(t)=5-4 e^{-t}
$$

(b) The general homogeneous solution is $x_{c}(t)=C_{1} e^{-t}$. The general solution is $x(t)=$ $x_{c}(t)+x_{p}(t)=C_{1} e^{-t}+(-2 / 5) \cos (2 t)+(1 / 5) \sin (2 t)$. The solution with $x(0)=1$ is

$$
x(t)=-\frac{2}{5} \cos (2 t)+\frac{1}{5} \sin (2 t)+\frac{7}{5} e^{-t}
$$

(c) The general homogeneous solution is $x_{c}(t)=C_{1} e^{-t}$. The general solution is $x(t)=$ $x_{c}(t)+x_{p}(t)=C_{1} e^{-t}+t^{2}-2 t+2$. The solution with $x(0)=1$ is

$$
x(t)=-e^{-t}+t^{2}-2 t+2
$$

(d) The general homogeneous solution is $x_{c}(t)=C_{1} \cos t+C_{2} \sin t$. The general solution is $x(t)=x_{c}(t)+x_{p}(t)=C_{1} \cos t+C_{2} \sin t+(1 / 5) e^{2 t}$. The solution with $x(0)=1$ and $x^{\prime}(0)=0$ is

$$
x(t)=\frac{4}{5} \cos t-\frac{2}{5} \sin t+\frac{1}{5} e^{-t}
$$

3.

(a) We are looking for A, B so that

$$
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
$$

The solution is $A=1$ and $B=-1$.
(b) We are looking for A, B, C such that

$$
\frac{1}{s(s-1)(s-2)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s-2}
$$

The solution is $A=1 / 2, B=-1, C=1 / 2$.
(c) We are looking for A, B, C, D such that

$$
\frac{1}{s^{2}\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{s^{2}+1} .
$$

The solution is $A=0, B=1, C=0, D=-1$. Shotrcut: Let $s^{2}=r$ and note that

$$
\frac{1}{s^{2}\left(s^{2}+1\right)}=\frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1}=\frac{1}{s^{2}}-\frac{1}{s^{2}+1} .
$$

4.

(a) $\mathscr{L}\left[t \cdot e^{2 t}\right]=-\frac{d}{d s} \mathscr{L}\left[e^{2 t}\right]=-\frac{d}{d s} \frac{1}{s-2}=\frac{1}{(s-2)^{2}}$
(b) $\mathscr{L}\left[t \cdot e^{2 t}\right]=\mathscr{L}\left[t \cdot t \cdot e^{2 t}\right]=-\frac{d}{d s} \mathscr{L}\left[t \cdot e^{2 t}\right]=-\frac{d}{d s} \frac{1}{(s-2)^{2}}=\frac{2}{(s-2)^{3}}$
(c) $\mathscr{L}\left[e^{3 t} \cdot \cos (2 t)\right]=\mathscr{L}[\cos (2 t)]_{s \rightarrow s-3}=\left[\frac{s}{s^{2}+4}\right]_{s \rightarrow s-3}=\frac{s-3}{(s-3)^{2}+4}$
(d) $\mathscr{L}[t \cdot \cos t]=-\frac{d}{d s} \mathscr{L}[\cos t]=-\frac{d}{d s} \frac{s}{s^{2}+1}=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}$
(e) We know that $\mathscr{L}[\sin (2 t)]=\frac{2}{s^{2}+4}$, hence $\mathscr{L}\left[e^{3 t} \cdot \sin (2 t)\right]=\frac{2}{(s-3)^{2}+4}$, hence

$$
\mathscr{L}^{-1}\left[\frac{1}{(s-3)^{2}+4}\right]=\frac{1}{2} \mathscr{L}^{-1}\left[\frac{2}{(s-3)^{2}+4}\right]=\frac{1}{2} \cdot e^{3 t} \cdot \sin (2 t) .
$$

(f) If $\mathscr{L}[f(t)]=F(s)$ then we know that $\mathscr{L}^{-1}\left[e^{-a s} \cdot F(s)\right]=H(t-a) f(t-a)$. In our case we let $F(s)=1 / s^{3}$, so that $f(t)=\mathscr{L}^{-1}\left[1 / s^{3}\right]=\frac{1}{2} \mathscr{L}^{-1}\left[2 / s^{3}\right]=\frac{1}{2} t^{2}$. Hence

$$
\mathscr{L}^{-1}\left[e^{-4 s} \cdot \frac{1}{s^{3}}\right]=\mathscr{L}^{-1}\left[e^{-4 s} \cdot F(s)\right]=H(t-4) f(t-4)=H(t-4) \frac{1}{2}(t-4)^{2} .
$$

5.

(a) Applying Laplace transforms gives

$$
\begin{aligned}
s X-0+X & =2 / s \\
X & =\frac{2}{s(s+1)} \\
X & =2 \frac{1}{s}-2 \frac{1}{s+1} \\
x(t) & =2-2 e^{-t} .
\end{aligned}
$$

(b) Applying Laplace transforms gives

$$
\begin{aligned}
s^{2} X-0 s-0-(s X-0) & =\frac{1}{s-2} \\
X & =\frac{1}{s(s-1)(s-2)} \\
X & =\frac{1}{2} \frac{1}{s}-\frac{1}{s-1}+\frac{1}{2} \frac{1}{s-2} \\
x(t) & =\frac{1}{2}-e^{t}+\frac{1}{2} e^{2 t} .
\end{aligned}
$$

(c) Applying Laplace transforms gives

$$
\begin{aligned}
s X-1+X & =e^{-s} \\
X & =\frac{1}{s+1}+e^{-1 s} \cdot \frac{1}{s+1}
\end{aligned}
$$

$$
x(t)=e^{-t}+\mathscr{L}^{-1}\left[e^{-1 s} \cdot \frac{1}{s+1}\right]
$$

Take $F(s)=\frac{1}{s+1}$ so that $f(t)=\mathscr{L}^{-1}[F(s)]=e^{-t}$. Then

$$
\begin{aligned}
x(t) & =e^{-t}+\mathscr{L}^{-1}\left[e^{-1 s} \cdot \frac{1}{s+1}\right] \\
& =e^{-t}+\mathscr{L}^{-1}\left[e^{-1 s} F(s)\right] \\
& =e^{-t}+H(t-1) f(t-1) \\
& =e^{-t}+H(t-1) e^{-(t-1)} .
\end{aligned}
$$

(d) Applying Laplace transforms gives

$$
\begin{aligned}
s^{2} X-s-1+X & =\frac{1}{s^{2}} \\
X & =\frac{1}{s^{2}+1}+\frac{s}{s^{2}+1}+\frac{1}{s^{2}\left(s^{2}+1\right)} \\
X & =\frac{1}{s^{2}+1}+\frac{s}{s^{2}+1}+\frac{1}{s^{2}}-\frac{1}{s^{2}+1} \\
X & =\frac{s}{s^{2}+1}+\frac{1}{s^{2}} \\
x(t) & =\cos t+t .
\end{aligned}
$$

(e) Applying Laplace transforms gives

$$
\begin{aligned}
s^{2} X-0 s-0+X & =e^{-4 s} \\
X & =e^{-4 s} \frac{1}{s^{2}+1} \\
x(t) & =\mathscr{L}^{-1}\left[e^{-4 s} \cdot \frac{1}{s^{2}+1}\right] .
\end{aligned}
$$

Let $F(s)=1 /\left(s^{2}+1\right)$ so that $f(t)=\mathscr{L}^{-1}[F(s)]=\sin t$. Then

$$
\begin{aligned}
x(t) & =\mathscr{L}^{-1}\left[e^{-4 s} \cdot \frac{1}{s^{2}+1}\right] \\
& =\mathscr{L}^{-1}\left[e^{-4 s} \cdot F(s)\right] \\
& =H(t-4) f(t-4) \\
& =H(t-4) \sin (t-4) .
\end{aligned}
$$

6.

(a) We have

$$
\left(\begin{array}{ll}
5 & -4 \\
6 & -5
\end{array}\right)\binom{1}{1}=1\binom{1}{1} \quad \text { and } \quad\left(\begin{array}{ll}
5 & -4 \\
6 & -5
\end{array}\right)\binom{2}{3}=-1\binom{2}{3}
$$

(b) We have

$$
\left(\begin{array}{ll}
7 & -16 \\
8 & -17
\end{array}\right)\binom{2}{1}=-1\binom{2}{1} \quad \text { and } \quad\left(\begin{array}{ll}
7 & -16 \\
8 & -17
\end{array}\right)\binom{1}{1}=-9\binom{1}{1} .
$$

7.

(a) The general solution of the system is

$$
\binom{x(t)}{y(t)}=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{2}{3} e^{-t}
$$

(b) Substituting $x(0)=1$ and $y(0)=2$ gives $c_{1}=-1$ and $c_{2}=1$.
8.
(a) The frequencies corresponding to $\lambda_{1}, \lambda_{2}=-1,-9$ are $\omega_{1}, \omega_{2}=1,3$. The general solution of the system is

$$
\binom{x(t)}{y(t)}=a_{1}\binom{2}{1} \cos t+b_{1}\binom{2}{1} \sin t+a_{2}\binom{1}{1} \cos (3 t)+b_{2}\binom{1}{1} \sin (3 t) .
$$

(b) Substituting $x(0)=x^{\prime}(0)=y(0)=0$ and $y^{\prime}(0)=1$ gives $a_{1}=a_{2}=0, b_{1}=-1$ and $b_{2}=2 / 3$, hence

$$
\binom{x(t)}{y(t)}=-1\binom{2}{1} \sin t+\frac{2}{3}\binom{1}{1} \sin (3 t) .
$$

