A linear operator L takes functions to functions and satisfies

$$
L\left[a y_{1}(x)+b y_{2}(x)\right]=a L\left[y_{1}(x)\right]+b L\left[y_{2}(x)\right] .
$$

In this section we looked at non-homogeneous linear equations $L[y(x)]=f(x)$. The general solution is $y(x)=y_{c}(x)+y_{p}(x)$ where $y_{c}(x)$ is the general solution of the homogeneous equation $L[y(x)]=0$ and $y_{p}(x)$ is any one particular solution of the non-homogeneous equation.

1. Undetermined Coefficients. In each case find one particular solution:
(a) $x^{\prime}(t)+x(t)=5$ [Hint: Guess $x_{p}(t)=A$.]
(b) $x^{\prime}(t)+x(t)=\sin (2 t)$ [Hint: Guess $x_{p}(t)=A \cos (2 t)+B \sin (2 t)$.]
(c) $x^{\prime}(t)+x(t)=t^{2}$ [Hint: Guess $x_{p}(t)=A+B t+C t^{2}$.]
(d) $x^{\prime \prime}(t)+x(t)=e^{2 t}\left[\right.$ Hint: Guess $x_{p}(t)=A e^{2 t}$.]
2. Putting It Together. Solve the initial value problems:
(a) $x^{\prime}(t)+x(t)=5 ; x(0)=1$
(b) $x^{\prime}(t)+x(t)=\sin (2 t) ; x(0)=1$
(c) $x^{\prime}(t)+x(t)=t^{2} ; x(0)=1$
(d) $x^{\prime \prime}(t)+x(t)=e^{2 t} ; x(0)=1, x^{\prime}(0)=0$
3. Partial Fractions. Find the partial fraction decomposition of the following expressions:
(a) $\frac{1}{s(s+1)}$
(b) $\frac{1}{s(s-1)(s-2)}$
(c) $\frac{1}{s^{2}\left(s^{2}+1\right)}$
4. Laplace Transform Rules. Use the information in the table to compute the following Laplace transforms:
(a) $\mathscr{L}\left[t \cdot e^{2 t}\right]$
(b) $\mathscr{L}\left[t^{2} \cdot e^{2 t}\right]$
(c) $\mathscr{L}\left[e^{3 t} \cdot \cos (2 t)\right]$
(d) $\mathscr{L}[t \cdot \cos t]$
(e) $\mathscr{L}^{-1}\left[\frac{1}{(s-3)^{2}+4}\right]$
(f) $\mathscr{L}^{-1}\left[e^{-4 s} / s^{3}\right]$
5. Using Laplace Transforms. Use Laplace transforms to solve the following initial value problems:
(a) $x^{\prime}(t)+x(t)=2 ; x(0)=0$
(b) $x^{\prime \prime}(t)-x^{\prime}(t)=e^{2 t} ; x(0)=x^{\prime}(0)=0$
(c) $x^{\prime}(t)+x(t)=\delta(t-1) ; x(0)=1$
(d) $x^{\prime \prime}(t)+x(t)=t ; x(0)=x^{\prime}(0)=1$
(e) $x^{\prime \prime}(t)+x(t)=\delta(t-4) ; x(0)=x^{\prime}(0)=0$
6. Eigenvectors. Find the eigenvalues and eigenvectors of the following matrices:
(a) $\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right)$
(b) $\left(\begin{array}{ll}7 & -16 \\ 8 & -17\end{array}\right)$
7. First Order Linear Systems. Consider the first order linear system:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=5 x(t)-4 y(t), \\
y^{\prime}(t)=6 x(t)-5 y(t) .
\end{array}\right.
$$

(a) Use your answer from 6(a) to find the general solution.
(b) Find the specific solution with $x(0)=1$ and $y(0)=2$.
8. Second Order Linear Systems. Consider the second order linear system:

$$
\left\{\begin{aligned}
x^{\prime \prime}(t) & =7 x(t)-16 y(t), \\
y^{\prime \prime}(t) & =8 x(t)-17 y(t)
\end{aligned}\right.
$$

(a) Use your answer from $6(\mathrm{~b})$ to find the general solution.
(b) Find the particular solution with $x(0)=x^{\prime}(0)=y(0)=0$ and $y^{\prime}(0)=1$.

Rules for Laplace Transforms. Let $\mathscr{L}[f(t)]=F(s)$. Then

- $\mathscr{L}[t f(t)]=-F^{\prime}(s)$
- $\mathscr{L}\left[e^{a t} f(t)=F(s-a)\right.$
- $\mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$
- $\mathscr{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
- $\mathscr{L}[H(t-a) f(t-a)]=e^{-a s} F(s)$, where $H(t-a)= \begin{cases}0 & t<a, \\ 1 & t>a .\end{cases}$

Table of Laplace Transforms.

- $\mathscr{L}[0]=0$
- $\mathscr{L}[1]=1 / s$
- $\mathscr{L}\left[e^{a s}\right]=1 /(s-a)$
- $\mathscr{L}[t]=1 / s^{2}$
- $\mathscr{L}\left[t^{n}\right]=n!/ s^{n+1}$
- $\mathscr{L}[\cos (k t)]=s /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\sin (k t)]=k /\left(s^{2}+k^{2}\right)$
- $\mathscr{L}[\delta(t)]=1$, where $\delta(t)$ is the Dirac delta function
- $\mathscr{L}[\delta(t-a)]=e^{-a s}$
- $\mathscr{L}[H(t-a)]=e^{-a s} / s$

