No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Let $h(t)$ be the height of a projectile above the surface of a planet. Assume that $h(t)$ satisfies the differential equation $h^{\prime \prime}(t)=-2$. Suppose the projectile is launched upwards with initial height $h(0)=5$ and initial velocity $h^{\prime}(0)=4$.
(a) Solve for $h(t)$.

We integrate $h^{\prime \prime}(t)$ twice to get $h(t)$:

$$
\begin{aligned}
h^{\prime \prime}(t) & =-2 \\
h^{\prime}(t) & =\int-2 d t \\
& =-2 t+c_{1}, \\
h(t) & =\int\left(-2 t+c_{1}\right) d t \\
& =-t^{2}+c_{1} t+c_{2} .
\end{aligned}
$$

Substituting $t=0$ into $h^{\prime}(t)$ gives

$$
4=h^{\prime}(0)=-2(0)+c_{1}=c_{1}
$$

and substituting $t=0$ into $h(t)$ gives

$$
5=h(0)=-(0)^{2}+c_{1}(0)+c_{2}=c_{2} .
$$

Hence the solution is

$$
h(t)=-t^{2}+4 t+5
$$

(b) When does the projectile hit the ground?

The projectile hits the ground when $h(t)=0$. From part (a) this means

$$
\begin{aligned}
-t^{2}+4 t+5 & =0 \\
t^{2}-4 t-5 & =0 \\
(t-5)(t+1) & =0 .
\end{aligned}
$$

So the projectile hits the ground when $t=5$ or $t=-1$. (The solution $t=-1$ is not physically relevant.)

Problem 2. Consider the differential equation $d y / d x=2-y$.
(a) Find a formula for the solution with $y(0)=1$.

We use separation of variables:

$$
\begin{aligned}
d y / d x & =2-y \\
\frac{d y}{2-y} & =d x \\
\int \frac{d y}{2-y} & =\int d x+C \\
-\ln (2-y) & =x+C \\
\ln (2-y) & =-x-C \\
2-y & =e^{-x-C} \\
y & =2-e^{-x-C} \\
y & =2+A e^{-x}
\end{aligned}
$$

for some constant A. Substituting $t=0$ gives

$$
1=y(0)=2+A e^{0}=2+A \quad \Longrightarrow \quad A=-1 .
$$

So the solution is

$$
y(x)=2-e^{-x}
$$

(b) Sketch the slope field of the equation and your solution from part (a).

At each point (x, y) we draw a little line of slope $2-y$:

Problem 3. Consider the differential equation $d y / d x=y^{2}$.
(a) Find a formula for the solution with $y(0)=1$.

We use separation of variables:

$$
\begin{aligned}
d y / d x & =y^{2} \\
\frac{d y}{y^{2}} & =d x \\
\int \frac{d y}{y^{2}} & =\int d x+C \\
-\frac{1}{y} & =x+C \\
y & =-\frac{1}{x+C}
\end{aligned}
$$

for some constant C. Substituting $t=0$ gives

$$
1=y(0)=-1 /(0+C)=-1 / C \quad \Longrightarrow \quad C=-1 .
$$

So the solution is

$$
y(x)=-\frac{1}{x-1}=\frac{1}{1-x} .
$$

(b) Sketch the slope field of the equation and your solution from part (a).

At each point (x, y) we draw a little line of slope y^{2} :

Note that the solution with $y(0)=1$ has a vertical asymptote at $x=1$. We know this from the formula in part (a). It would be difficult to see this just by looking at the slope field.

Problem 4. Consider the differential equation $d y / d x=x+y$.
(a) Find a formula for the solution with $y(0)=1$.

We use the method of integrating factors. First we write the equation as

$$
\begin{gathered}
\frac{d y}{d x}-1 y=x \\
\frac{d y}{d x}+P(x) y=Q(x)
\end{gathered}
$$

where $P(x)=-1$ and $Q(x)=x$. The integrating factor is

$$
\rho(x)=\exp \left(\int P(x) d x\right)=\exp \left(\int-1 d x\right)=\exp (-x)=e^{-x} .
$$

Multiply both sides by $\rho(x)=e^{-x}$ and observe that the left side simplifies:

$$
\begin{aligned}
y^{\prime}-y & =x \\
e^{-x}\left(y^{\prime}-y\right) & =x e^{-x} \\
e^{-x} y^{\prime}-e^{-x} y & =x e^{-x} \\
\left(e^{-x} y\right)^{\prime} & =x e^{-x} .
\end{aligned}
$$

Now integrate both sides:

$$
\begin{aligned}
e^{-x} y & =\int x e^{-x} d x+C \\
e^{-x} y & =-(x+1) e^{-x}+C \\
y & =\frac{-(x+1) e^{-x}+C}{e^{-x}} \\
y & =-x-1+C e^{x}
\end{aligned} \quad \text { integration by parts }
$$

for some constant C. Substituting $y(0)=1$ gives

$$
1=y(0)=-0-1+C e^{0}=-1+C \quad \Longrightarrow \quad C=2 .
$$

So the solution is

$$
y(x)=-x-1+2 e^{x} .
$$

(b) Sketch the slope field of the equation and your solution from part (a).

At every point (x, y) we draw a little line of slope $x+y$:

Problem 5. Consider the differential equation $x^{\prime \prime}(t)-2 x^{\prime}(t)+2 x(t)=0$.
(a) Find a formula for the general solution.

First we look for solutions of the form $x(t)=e^{\lambda t}$:

$$
\begin{aligned}
x^{\prime \prime}(t)-2 x^{\prime}(t)+2 x(t) & =0 \\
\lambda^{2} e^{\lambda t}-2 \lambda e^{\lambda t}+2 e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}-2 \lambda+2\right) & =0 \\
\lambda^{2}-2 \lambda+2 & =0 .
\end{aligned}
$$

The solution of this "characteristic equation" is

$$
\lambda_{1}, \lambda_{2}=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i .
$$

Hence the general solution of the differential equation is

$$
\begin{aligned}
x(t) & =c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& =c_{1} e^{(1+i) t}+c_{2} e^{(1-i) t} \\
& =c_{1} e^{t} e^{i t}+c_{2} e^{t} e^{-i t} \\
& =e^{t}\left(c_{1} e^{i t}+c_{2} e^{-i t}\right)
\end{aligned}
$$

for some constants c_{1} and c_{2}. After applying Euler's formula we can write this as

$$
x(t)=e^{t}(A \cos t+B \sin t)
$$

for some constants A and B.
(b) Find the specific solution with $x(0)=1$ and $x^{\prime}(0)=2$.

To solve for A and B we first substitute $t=0$ into $x(t)$:

$$
1=x(0)=e^{0}(A \cos 0+B \sin 0)=A .
$$

Then we compute $x^{\prime}(t)$ using the product rule and substitute $t=0$:

$$
\begin{aligned}
x(t) & =e^{t}(\cos t+B \sin t) \\
x^{\prime}(t) & =e^{t}(\cos t+B \sin t)+e^{t}(-\sin t+B \cos t) \\
x^{\prime}(0) & =e^{0}(\cos 0+B \sin 0)+e^{0}(-\sin 0+B \cos 0) \\
2 & =1(1+0)+1(0+B) \\
2 & =1+B \\
B & =1 .
\end{aligned}
$$

So the solution is

$$
x(t)=e^{t}(\cos t+\sin t)
$$

