1. Slope Fields. Just sketch. Don't solve.
(a) Sketch the slope field of $d y / d x=y$ and the two solutions with $y(0)=1,-1$.
(b) Sketch the slope field of $d y / d x=x$ and the two solutions with $y(0)=1,-1$.
(c) Sketch the slope field of $d y / d x=5-y$ and the two solutions with $y(0)=4,6$.
(d) Sketch the slope field of $d y / d x=y(5-y)$ and the three solutions with $y(0)=-1,1,6$.
2. Direct Integration. Solve the initial value problems.
(a) $x^{\prime \prime}=5 ; x(0)=1, x^{\prime}(0)=3$
(b) $x^{\prime \prime}=t ; x(0)=1, x^{\prime}(0)=3$
(c) $x^{\prime}=\sin t ; x(0)=1$
(d) $x^{\prime}=e^{3 t} ; x(0)=4$
3. Free Fall (No Air Resistance). Suppose that the height of a projectile near the surface of a planet satisfies $h^{\prime \prime}(t)=-1$. Suppose the projectile is launched from a height $h(0)=1$ with initial speed $h^{\prime}(0)=4($ up $)$. When does the projectile hit the ground $(h=0)$?
4. Separation of Variables. Solve the initial value problems.
(a) $d y / d x=2 y-3 ; y(0)=1$
(b) $d y / d x=y^{2} ; y(0)=1$
(c) $d y / d x=x y ; y(0)=1$
(d) $d y / d x=x / y ; y(0)=1$
(e) $d y / d x=y(1-y) ; y(0)=1 / 2 .\left[\right.$ Hint: $\left.\frac{1}{y(1-y)}=\frac{1}{y}+\frac{1}{1-y}.\right]$
5. Newton's Law of Cooling. Suppose the temperature of a cup of coffee satisfies $u^{\prime}(t)=$ $5-u(t)$ and $u(0)=7$. Find a formula for $u(t)$ and compute the limit of $u(t)$ as $t \rightarrow+\infty$.
6. Free Fall (Air Resistance). Suppose the velocity of a projectile near the surface of a planet satisfies $d v / d t=-1-v$. Suppose the projectile is dropped, so that $v(0)=0$. Find a formula for $v(t)$ and compute the limit of $v(t)$ as $t \rightarrow+\infty$.
7. Integration Factors. Solve the initial value problems.
(a) $x^{\prime}+x=1 ; x(0)=4$
(b) $x^{\prime}+x=t ; x(0)=4$
(c) $x^{\prime}=t x+t ; x(0)=4$

8. Trigonometry.

(a) Express $3 \cos t+4 \sin t$ in the form $C \cos (t-\alpha)$.
(b) Express $(2+i) e^{i t}+(2-i) e^{-i t}$ in the form $A \cos t+B \sin t$.
9. Linear, Homogeneous, Constant Coefficients. Solve the initial value problems.
(a) $y^{\prime \prime}-y=0 ; y(0)=1 ; y^{\prime}(0)=2$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0 ; y(0)=1 ; y^{\prime}(0)=2$
(c) $y^{\prime \prime}+4 y^{\prime}+5 y=0 ; y(0)=1 ; y^{\prime}(0)=2$
10. Damped Oscillations. The equation $m x^{\prime \prime}+\gamma x^{\prime}+k x=0$ represents a damped oscillator with mass $m>0$, stiffness $k>0$ and friction $\gamma>0$. Assume that $\gamma^{2}-4 m k<0$ so the characteristic equation $m \lambda^{2}+\gamma \lambda+k=0$ has complex roots. In this case make a rough sketch of the solution with $x(0)=1$ and $x^{\prime}(0)=1$. (You do not need to compute a formula.)

Solutions.

1. Slope Fields.

(a)

(b)

(c)

(d)

2. Direct Integration.

(a) $x(t)=(5 / 2) t^{2}+3 t+1$
(b) $x(t)=(1 / 6) t^{3}+3 t+1$
(c) $x(t)=2-\cos t$
(d) $x(t)=e^{3 t} / 3+11 / 3$
3. Free Fall (No Air Resistance). The solution of $h^{\prime \prime}(t)=-1$ with $h(0)=1$ and $h^{\prime}(0)=4$ is

$$
h(t)=-\frac{1}{2} t^{2}+4 t+1
$$

The solution of $h(t)=0$ is $t=4 \pm 3 \sqrt{2}$. Only positive time is physically relevant, so the solution is $t=4+3 \sqrt{2}$.
4. Separation of Variables.
(a) $y(x)=3 / 2-e^{2 x} / 2$
(b) $y(x)=1 /(1-x)$
(c) $y(x)=e^{x^{2} / 2}$
(d) $y(x)=\sqrt{x^{2}+1}$
(e) $y(x)=1 /\left(1+e^{-x}\right)$
5. Newton's Law of Cooling. The solution of $u^{\prime}(t)=5-u(t)$ with $u(0)=7$ is

$$
u(t)=5+2 e^{-t} .
$$

Since $e^{-t} \rightarrow 0$ we note that $u(t) \rightarrow 5$ as $t \rightarrow \infty$. (The temperature of the coffee approaches the room temperature 5.)
6. Free Fall (Air Resistance). The solution of $d v / d t=-1-v$ with $v(0)=0$ is

$$
v(t)=-1+e^{-t}
$$

Since $e^{-t} \rightarrow 0$ we note that $v(t) \rightarrow-1$ as $t \rightarrow \infty$. (The velocity approaches the terminal velocity -1 .)

7. Integration Factors.

(a) $x(t)=1+3 e^{-t}$
(b) $x(t)=t-1+5 e^{-t}$
(c) $x(t)=-1+5 e^{t^{2} / 2}$

8. Trigonometry.

(a) The general formulas for $A \cos t+B \sin t=C \cos (t-\alpha)$ are $A=C \cos \alpha$ and $B=$ $C \sin \alpha$, which imply that $C=\sqrt{A^{2}+B^{2}}$ and $\alpha=\tan ^{-1}(B / A)$. In our case we have $A=3$ and $B=4$, so that

$$
3 \cos t+4 \sin t=5 \cos \left(t-\tan ^{-1}(4 / 3)\right) .
$$

(b) Recall Euler's formulas:

$$
\begin{aligned}
e^{i t} & =\cos t+i \sin t \\
e^{-i t} & =\cos t-i \sin t
\end{aligned}
$$

Hence

$$
\begin{aligned}
(2+i) e^{i t} & +(2-i) e^{-i t} \\
= & (2+i)(\cos t+i \sin t)+(2-i)(\cos t-i \sin t) \\
= & 2(\cos t+i \sin t) \\
& +i(\cos t+i \sin t) \\
& +2(\cos t-i \sin t) \\
& -i(\cos t-i \sin t) \\
= & 2 \cos t+2 i \sin t \\
& +i \cos t-\sin t \\
& +2 \cos t-2 i \sin t \\
& -i \cos t-\sin t \\
= & 4 \cos t-2 \sin t .
\end{aligned}
$$

9. Linear, Homogeneous, Constant Coefficients.

(a) The characteristic equation of $y^{\prime \prime}-y=0$ is $\lambda^{2}-1=0$ which has solutions $\lambda= \pm 1$. So the general solution is

$$
y(x)=A e^{t}+B e^{-t} .
$$

Substituting $y(0)=1$ into $y(x)$ gives $1=A+B$ and substituting $y^{\prime}(0)=2$ into $y^{\prime}(t)=A e^{t}-B e^{-t}$ gives $2=A-B$. Putting these together gives $A=3 / 2$ and $B=-1 / 2$, hence

$$
y(x)=\frac{3}{2} e^{t}-\frac{1}{2} e^{-t} .
$$

(b) The characteristic equation of $y^{\prime \prime}+4 y^{\prime}+4 y=0$ is $\lambda^{2}+4 \lambda+4=0$, which factors as $(\lambda+2)^{2}=0$. Since $\lambda=-2$ is a repeated root, the general solution is

$$
y(x)=A e^{-2 x}+B x e^{-2 x} .
$$

Substituting $y(0)=1$ into $y(x)$ gives $1=A$ and substituting $y^{\prime}(0)=2$ into

$$
y^{\prime}(x)=-2 e^{-2 x}+B e^{-2 x}+B x\left(-2 e^{-2 x}\right)
$$

gives $2=-2+B$, hence $B=4$. The solution is

$$
y(x)=e^{-2 x}+4 x e^{-2 x}
$$

(c) The characteristic equation of $y^{\prime \prime}+4 y^{\prime}+5 y=0$ is $\lambda^{2}+4 \lambda+5=0$. The quadratic formula gives $\lambda=-2 \pm i$. The general solution in complex form is

$$
y(x)=c_{1} e^{(-2+i) t}+c_{2} e^{(-2-i) t},
$$

which can also be expressed in real form as

$$
y(x)=e^{-2 t}(A \cos t+B \sin t) .
$$

Substituting $y(0)=1$ into $y(x)$ gives $1=A$ and substituting $y^{\prime}(0)=2$ into

$$
y^{\prime}(x)=-2 e^{-2 x}(1 \cos t+B \sin t)+e^{-2 x}(-1 \sin t+B \cos t)
$$

gives $2=-2+B$, hence $B=4$. The solution is

$$
y(x)=e^{-2 t}(\cos t+4 \sin t)
$$

10. Damped Oscillations. Complex roots mean oscillation. The exact formulas for the amplitude and phase are complicated, but it's easy to make a rough sketch:

