1. Slope Fields. Just sketch. Don't solve.
(a) Sketch the slope field of $d y / d x=y$ and the two solutions with $y(0)=1,-1$.
(b) Sketch the slope field of $d y / d x=x$ and the two solutions with $y(0)=1,-1$.
(c) Sketch the slope field of $d y / d x=5-y$ and the two solutions with $y(0)=4,6$.
(d) Sketch the slope field of $d y / d x=y(5-y)$ and the three solutions with $y(0)=-1,1,6$.
2. Direct Integration. Solve the initial value problems.
(a) $x^{\prime \prime}=5 ; x(0)=1, x^{\prime}(0)=3$
(b) $x^{\prime \prime}=t ; x(0)=1, x^{\prime}(0)=3$
(c) $x^{\prime}=\sin t ; x(0)=1$
(d) $x^{\prime}=e^{3 t} ; x(0)=4$
3. Free Fall (No Air Resistance). Suppose that the height of a projectile near the surface of a planet satisfies $h^{\prime \prime}(t)=-1$. Suppose the projectile is launched from a height $h(0)=1$ with initial speed $h^{\prime}(0)=4($ up $)$. When does the projectile hit the ground $(h=0)$?
4. Separation of Variables. Solve the initial value problems.
(a) $d y / d x=2 y-3 ; y(0)=1$
(b) $d y / d x=y^{2} ; y(0)=1$
(c) $d y / d x=x y ; y(0)=1$
(d) $d y / d x=x / y ; y(0)=1$
(e) $d y / d x=y(1-y) ; y(0)=1 / 2 .\left[\right.$ Hint: $\left.\frac{1}{y(1-y)}=\frac{1}{y}+\frac{1}{1-y}.\right]$
5. Newton's Law of Cooling. Suppose the temperature of a cup of coffee satisfies $u^{\prime}(t)=$ $5-u(t)$ and $u(0)=7$. Find a formula for $u(t)$ and compute the limit of $u(t)$ as $t \rightarrow+\infty$.
6. Free Fall (Air Resistance). Suppose the velocity of a projectile near the surface of a planet satisfies $d v / d t=-1-v$. Suppose the projectile is dropped, so that $v(0)=0$. Find a formula for $v(t)$ and compute the limit of $v(t)$ as $t \rightarrow+\infty$.
7. Integration Factors. Solve the initial value problems.
(a) $x^{\prime}+x=1 ; x(0)=4$
(b) $x^{\prime}+x=t ; x(0)=4$
(c) $x^{\prime}=t x+t ; x(0)=4$

8. Trigonometry.

(a) Express $3 \cos t+4 \sin t$ in the form $C \cos (t-\alpha)$.
(b) Express $(2+i) e^{i t}+(2-i) e^{-i t}$ in the form $A \cos t+B \sin t$.
9. Linear, Homogeneous, Constant Coefficients. Solve the initial value problems.
(a) $y^{\prime \prime}-y=0 ; y(0)=1 ; y^{\prime}(0)=2$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0 ; y(0)=1 ; y^{\prime}(0)=2$
(c) $y^{\prime \prime}+4 y^{\prime}+5 y=0 ; y(0)=1 ; y^{\prime}(0)=2$
10. Damped Oscillations. The equation $m x^{\prime \prime}+\gamma x^{\prime}+k x=0$ represents a damped oscillator with mass $m>0$, stiffness $k>0$ and friction $\gamma>0$. Assume that $\gamma^{2}-4 m k<0$ so the characteristic equation $m \lambda^{2}+\gamma \lambda+k=0$ has complex roots. In this case make a rough sketch of the solution with $x(0)=1$ and $x^{\prime}(0)=1$. (You do not need to compute a formula.)

