1. Various Kinds of First and Second Derivatives in \mathbb{R}^{3}. For any scalar field $f(x, y, z)$ we define a vector field $\operatorname{Grad}(f)$ and a scalar field Laplacian (f) by

$$
\begin{aligned}
\operatorname{Grad}(f) & =" \nabla f "=\left\langle f_{x}, f_{y}, f_{z}\right\rangle, \\
\operatorname{Laplacian}(f) & =" \nabla^{2} f "=f_{x x}+f_{y y}+f_{z z} .
\end{aligned}
$$

and for any vector field $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ we define a vector field $\operatorname{Curl}(\mathbf{F})$ and a scalar field $\operatorname{div}(\mathbf{F})$ by

$$
\begin{aligned}
\operatorname{Curl}(\mathbf{F}) & =" \nabla \times \mathbf{F} "=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle, \\
\operatorname{Div}(\mathbf{F}) & =" \nabla \bullet \mathbf{F} "=P_{x}+Q_{y}+R_{z} .
\end{aligned}
$$

(a) For any scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ check that $\operatorname{Curl}(\operatorname{Grad}(f))=\langle 0,0,0\rangle$.
(b) For any vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ check that $\operatorname{Div}(\operatorname{Curl}(\mathbf{F}))=0$.
(c) For any scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ check that $\operatorname{Div}(\operatorname{Grad}(f))=\operatorname{Laplacian}(f)$.
2. Conservative Vector Fields. Consider the vector field

$$
\mathbf{F}(x, y, z)=\langle 2 x+y, x+z, y\rangle .
$$

(a) Check that the curl is zero: $\nabla \times \mathbf{F}(x, y, z)=\langle 0,0,0\rangle$.
(b) It follows from (a) that there exists a scalar field $f(x, y, z)$ satisfying $\nabla f(x, y, z)=$ $\mathbf{F}(x, y, z)$. Find one example of such a field. [Hint: Integrate \mathbf{F} along an arbitrary path starting at some arbitrary point and ending at the point (x, y, z). For the purpose of this calculation let x, y, z be constant.]
3. Green's Theorem on a Rectangle. Consider the vector field $\mathbf{F}(x, y)=\left\langle y^{2}, x^{2}\right\rangle$.
(a) Compute the scalar curl of \mathbf{F}.
(b) Integrate the scalar curl of \mathbf{F} over the rectangle with $0 \leq x \leq 2$ and $0 \leq y \leq 1$.
(c) Let $C_{1}, C_{2}, C_{3}, C_{4}$ be the four sides of the rectangle, oriented counterclockwise. Integrate \mathbf{F} along each of these curves and add the results. Check that your answers to (a) and (b) are the same. [Hint: You can parametrize the four sides by

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =(0,0)+t(2,0), \\
\mathbf{r}_{2}(t) & =(2,0)+t(0,1), \\
\mathbf{r}_{3}(t) & =(2,1)+t(-2,0), \\
\mathbf{r}_{4}(t) & =(0,1)+t(0,-1),
\end{aligned}
$$

each with $0 \leq t \leq 1$.]
4. Stokes' Theorem on a Pringle. Consider the constant vector field $\mathbf{F}(x, y, z)=\langle-y, x, 1\rangle$ and the pringle-shaped surface D defined by

$$
\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, u^{2} \cos v \sin v\right\rangle,
$$

with $0 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
(a) Compute the curl $\nabla \times \mathbf{F}(x, y, z)$.
(b) Compute the flux of the curl $\nabla \times \mathbf{F}$ across the pringle:

$$
\begin{aligned}
\iint_{D}(\nabla \times \mathbf{F}) \bullet \mathbf{N} d A & =\iint(\nabla \times \mathbf{F})(\mathbf{r}(u, v)) \bullet \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& =\iint(\nabla \times \mathbf{F})(\mathbf{r}(u, v)) \bullet\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
\end{aligned}
$$

[Hint: From the previous homework we have $\mathbf{r}_{u} \times \mathbf{r}_{v}=\left\langle-u^{2} \sin v,-u^{2} \cos v, u\right\rangle$.]
(c) Let $C=\partial D$ be the boundary curve of the pringle. Compute the circulation of \mathbf{F} around C. Check that your answers to (b) and (c) are the same. [Hint: If $\mathbf{r}(t)$ is a parametrization of C then the circulation is defined by

$$
\begin{aligned}
\int_{C} \mathbf{F} \bullet \mathbf{T} d s & =\int \mathbf{F}(\mathbf{r}(t)) \bullet \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

You can take $\mathbf{r}(t)=\langle\cos t, \sin t, \cos t \sin t\rangle$ with $0 \leq t \leq 2 \pi$. At the very end you will need the trig identity $2 \cos ^{2} t=1+\cos (2 t)$.]

