Problem 1. Describing Lines in \mathbb{R}^{2} and \mathbb{R}^{3}. In each part, there are infinitely many correct ways to express the answer.
(a) Find a parametrization for the line in \mathbb{R}^{2} passing through points $(3,0)$ and $(1,1)$.
(b) Eliminate the parameter to find the equation of the line from part (a).
(c) Find a parametrization for the line in \mathbb{R}^{3} passing through points $(1,-1,1)$ and $(0,3,3)$.
(d) Eliminate the parameter to find the equations of two planes in \mathbb{R}^{3} whose intersection is the line from part (c).

Problem 2. A Plane in \mathbb{R}^{3}. The following three points in \mathbb{R}^{3} determine a plane:

$$
P=(1,0,0), \quad Q=(1,-1,0), \quad R=(1,2,3) .
$$

(a) Find a vector that is perpendicular to this plane. [Hint: Use the cross product.]
(b) Use your answer from part (a) to find the equation of the plane. [Recall: The plane in \mathbb{R}^{3} that passes through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and is perpendicular to the vector $\langle a, b, c\rangle$ has the equation $\langle a, b, c\rangle \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$.]

Problem 3. The Intersection of Two Planes in \mathbb{R}^{3}. The following system of two linear equations in three unknowns represents the intersection of two planes in \mathbb{R}^{3} :

$$
\left\{\begin{array}{c}
2 x+y-z=3 \\
x-y+2 z=1
\end{array}\right.
$$

(a) Express the intersection as a parametrized line in \mathbb{R}^{3}. [Hint: There are many ways to express the answer. I think the easiest way is to let $t=z$ be the parameter. Then solve for x and y in terms of t.]
(b) The two planes have normal vectors $\mathbf{u}=\langle 2,1,-1\rangle$ and $\mathbf{v}=\langle 1,-1,2\rangle$. Compute the cross product $\mathbf{u} \times \mathbf{v}$. How is this related to your answer from part (a)?

Problem 4. Projectile Motion. A projectile of mass m is launched from the point $(0,0)$ with an initial speed of v, at an angle of θ above the horizontal. Let $\mathbf{r}(t)=(x(t), y(t))$ be the position of the particle at time t.
(a) Neglecting air resistance, Galileo tells us that the acceleration is $\mathbf{r}^{\prime \prime}(t)=\langle 0,-g\rangle$ for some constant $g>0 .{ }^{1}$ Use this to find the position $\mathbf{r}(t)$. [Hint: Integrate $\mathbf{r}^{\prime \prime}(t)$ twice, using the initial conditions $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}^{\prime}(0)=\langle v \cos \theta, v \sin \theta\rangle$.]
(b) Show that the projectile travels horizontal distance $v^{2} \sin (2 \theta) / g$ before hitting the ground. [Hint: Set $y(t)=0$ and solve for t.]
(c) Find the value of θ that maximizes the horizontal distance traveled. [Hint: Think of the distance as a function of θ. Compute $d / d \theta$.]

Problem 5. Derivatives of Dot Products and Cross Products. Let f,g: $\mathbb{R} \rightarrow \mathbb{R}^{3}$ be any ${ }^{2}$ two parametrized paths in \mathbb{R}^{3}. Then we have the following "product rules":

$$
\begin{aligned}
{[\mathbf{f}(t) \bullet \mathbf{g}(t)]^{\prime} } & =\mathbf{f}(t) \bullet \mathbf{g}^{\prime}(t)+\mathbf{f}^{\prime}(t) \bullet \mathbf{g}(t), \\
{[\mathbf{f}(t) \times \mathbf{g}(t)]^{\prime} } & =\mathbf{f}(t) \times \mathbf{g}^{\prime}(t)+\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)
\end{aligned}
$$

[^0](a) Let $\mathbf{r}(t)$ be the trajectory of a particle traveling on the surface of a sphere centered at $(0,0,0)$. In this case, prove that $\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=0$ for all t. [Hint: By assumption we have $\|\mathbf{r}(t)\|=c$ for some constant c independent of t. Use the fact that $\|\mathbf{r}(t)\|^{2}=\mathbf{r}(t) \bullet \mathbf{r}(t)$.]
(b) Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the trajectory of a particle in space, and suppose that we have $\mathbf{r}^{\prime \prime}(t)=c(t) \mathbf{r}(t)$ for some scalar function $c: \mathbb{R} \rightarrow \mathbb{R}$. In this case, prove that
$$
\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]^{\prime}=\langle 0,0,0\rangle \text { for all } t .
$$
[Hint: Recall that we have $\mathbf{v} \times \mathbf{v}=\langle 0,0,0\rangle$ for any vector $\mathbf{v} \in \mathbb{R}^{3}$.]
Problem 6. Universal Gravitation. Choose a coordinate system with a star at $(0,0,0)$ and let $\mathbf{r}(t)$ be the position of a planet at time t. Newton tells us that the planet feels a gravitational force $\mathbf{F}(t)$ pointed directly toward the sun. Specifically, we have
$$
\mathbf{F}(t)=-\frac{G M m}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t)
$$
where M is the mass of the star, m is the mass of the planet and G is a universal constant.
(a) Use Newton's Second Law, $\mathbf{F}(t)=m \mathbf{r}^{\prime \prime}(t)$, to show that $\mathbf{r}^{\prime \prime}(t)=\left(-G M /\|\mathbf{r}(t)\|^{3}\right) \mathbf{r}(t)$.
(b) The vector $\mathbf{h}(t):=\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)$ is called angular momentum. Use part (a) and Problem $5(\mathrm{~b})$ to prove that $\mathbf{h}^{\prime}(t)=\langle 0,0,0\rangle$ for all t. It follows that $\mathbf{h}(t)$ is a constant vector.
(c) Let's say that $\mathbf{h}=\left\langle h_{1}, h_{2}, h_{3}\right\rangle$ is the constant angular momentum vector of two-body system. Explain why the planet always stays within the plane $h_{1} x+h_{2} y+h_{3} z=0$. This plane is called the ecliptic.

[^0]: ${ }^{1}$ In particular, the acceleration does not depend on the mass m.
 ${ }^{2}$ We assume that the derivatives $\mathbf{f}^{\prime}(t)$ and $\mathbf{g}^{\prime}(t)$ exist.

