Math 310
Fall 2023

Exam 2
Fri Dec 1

No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each
page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Rectangle.

(a) Integrate f(z,y) = x 4+ y over the rectangle with —1 <z <2and 1 <y < 3.
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Remark: We could view this as the volume of the region above the rectangle in the
x,y-plane with —1 < x <2 and 1 <y < 3 and below the surface z = = + y.

(b) Compute the volume of the 3D region above the square in the z,y-plane with
0<z<1land 0 <y <1, and below the surface z = ny.

We can view 22y dxdy as the volume

of a skinny column above the point (z,y,0),

where 2y is the height of the column and dxdy are the area of the base. Hence

Volume = / / (skinny columns)
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Alternatively, some students parametrized the 3D region by 0 <2 <1,0<y <1

and 0 < z < 22y and then computed

Volume = / / / 1dxdydz
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= same as before.

Here is a picture of the 3D region:
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2. Polar and Cylindrical Coordinates.

a) Use polar coordinates to integrate f(x,y) = x° + y~ over the unit disk z° 4y~ < 1.
Use pol di i Zpy? he unit disk 22 +¢? < 1

Let © = rcosf and y = rsiné so that 22 + 32 = r? and dxdy = rdrdf. The unit
disk is parametrized by 0 < r <1 and 0 < 0 < 27, so that
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(b) Use cylindrical coordinates to integrate f(z,y,z) = 22 4+ y? + 22 over the cylinder
satisfying 22 + 92 < 1land 0 < z < 1.

Let 2 = rcosf and y = rsinf so that r? = 22 + 42 and daxdydz = r drdfdz. The
cylinder is parametrized by 0 <r < 1,0 <0 <27 and 0 < z < 1, so that

/// (2% +9? + 2%) dzdydz

cylinder
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= (r*+2%) - rdrdfdz
cylinder

= /// (r3 + r2?) drdfdz
cylinder



3. Surface Area. Consider the following parametrized surface in 3D:

r(u,v) = (u,v,u* +uv) with0<u<land0<v<I1.
(a) Compute the tangent vectors r,, and r,, and the normal vector r, X r,.

We have r,, = (1,0,2u + v), r, = (0,1, u), and

ry X ry = (—2u—wv,—u,l).

(b) Use your answer from part (a) to set up an integral to compute the area of the
surface and simplify as much as possible. [This integral is too difficult to evaluate.]

Hence the surface area is
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This cannot be evaluated by hand. My computer gives 1.91994. Here is a picture:

4. Green’s Theorem. Consider the vector field F(z,y) = (P(z,y), Q(z,y)) = (—y3/3,23/3).



(a) Integrate the scalar curl(F) = Q, — P, over the unit disk 2 + y? < 1.

Since Q, — Py = 32 /3 — (—3y?/3) = 2? + y?, this problem is the same as Problem
2(a). The answer is /2.

(b) Set up the line integral of the vector field F around the circle r(t) = (cost,sint) for
0 <t <27, and simplify as much as possible. [This integral is difficult to evaluate
directly, but Green’s Theorem tells us that (a) and (b) have the same answer.]

The definition of the line integral gives

2w r
/F eTds= /0 F(r(t)) e ||1"$;|| ' (t)]| dt
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:/0 F(r(t)) er'(t)dt

27
= / F(cost,sint) e (—sint,cost) dt
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27
= / (—sin®t/3,cos> t/3) @ (—sint, cost) dt
0
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I guess this could be evaluated by hand, but it would take a while. The answer is
7/2. Here is a picture of the disk and the vector field F = (—y3/3, 23/3):
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5. Conservative Vector Fields. Consider the vector field F(z,y) = (P, Q) = (xy?, 2%y).
Note that this field is conservative because (), = 2xy = P,.

(a) Find a scalar function f(z,y) such that Vf(z,y) = F(z,y). [Hint: Compute the
line integral of F along any parametrized path ending at the point (x,y).]



Let f(z,y) be the line integral of F along the path (zt,yt) for 0 < ¢ < 1:
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= / 1<xy2t3,x2yt3> o (z,y)dt
0

1
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1
= 2z2y? - / 3 dt
0
=227y - (1/4)
= 2%y?/2.
Then we check that Vf = V(2%y?/2) = (232, 2%y) = F as desired.
(b) Use your answer from part (a) and the Fundamental Theorem of Line Integrals to

compute the line integral of F along the path r(t) = (1 +t,/t) for 1 <t < 2.

Consider the path r(t) = (1 +¢,+/t). (This is different from the path in part (a).)
Since F = V f, the Fundamental Theorem of Line Integrals tells us that
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(We could also compute this without using the Fundamental Theorem, but it would
take longer.) Here is a picture of the vector field F = (zy?, 2%y) and the path r:
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