
Math 310 Exam 2
Fall 2023 Fri Dec 1

No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each
page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Rectangle.

(a) Integrate f(x, y) = x+ y over the rectangle with −1 ≤ x ≤ 2 and 1 ≤ y ≤ 3.
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Remark: We could view this as the volume of the region above the rectangle in the
x, y-plane with −1 ≤ x ≤ 2 and 1 ≤ y ≤ 3 and below the surface z = x+ y.

(b) Compute the volume of the 3D region above the square in the x, y-plane with
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and below the surface z = x2y.

We can view x2y dxdy as the volume of a skinny column above the point (x, y, 0),
where x2y is the height of the column and dxdy are the area of the base. Hence
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Alternatively, some students parametrized the 3D region by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and 0 ≤ z ≤ x2y and then computed
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∫∫∫
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= same as before.

Here is a picture of the 3D region:

2. Polar and Cylindrical Coordinates.

(a) Use polar coordinates to integrate f(x, y) = x2 + y2 over the unit disk x2 + y2 ≤ 1.

Let x = r cos θ and y = r sin θ so that x2 + y2 = r2 and dxdy = r drdθ. The unit
disk is parametrized by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, so that∫∫
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∫∫
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(b) Use cylindrical coordinates to integrate f(x, y, z) = x2 + y2 + z2 over the cylinder
satisfying x2 + y2 ≤ 1 and 0 ≤ z ≤ 1.

Let x = r cos θ and y = r sin θ so that r2 = x2 + y2 and dxdydz = r drdθdz. The
cylinder is parametrized by 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1, so that∫∫∫
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3. Surface Area. Consider the following parametrized surface in 3D:

r(u, v) = 〈u, v, u2 + uv〉 with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

(a) Compute the tangent vectors ru and rv, and the normal vector ru × rv.

We have ru = 〈1, 0, 2u+ v〉, rv = 〈0, 1, u〉, and

ru × rv = 〈−2u− v,−u, 1〉.

(b) Use your answer from part (a) to set up an integral to compute the area of the
surface and simplify as much as possible. [This integral is too difficult to evaluate.]

Hence the surface area is∫∫
1‖ru × rv‖ dudv =
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=
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This cannot be evaluated by hand. My computer gives 1.91994. Here is a picture:

4. Green’s Theorem. Consider the vector field F(x, y) = 〈P (x, y), Q(x, y)〉 = 〈−y3/3, x3/3〉.



(a) Integrate the scalar curl(F) = Qx − Py over the unit disk x2 + y2 ≤ 1.

Since Qx−Py = 3x2/3− (−3y2/3) = x2 + y2, this problem is the same as Problem
2(a). The answer is π/2.

(b) Set up the line integral of the vector field F around the circle r(t) = 〈cos t, sin t〉 for
0 ≤ t ≤ 2π, and simplify as much as possible. [This integral is difficult to evaluate
directly, but Green’s Theorem tells us that (a) and (b) have the same answer.]

The definition of the line integral gives∫
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I guess this could be evaluated by hand, but it would take a while. The answer is
π/2. Here is a picture of the disk and the vector field F = 〈−y3/3, x3/3〉:

5. Conservative Vector Fields. Consider the vector field F(x, y) = 〈P,Q〉 = 〈xy2, x2y〉.
Note that this field is conservative because Qx = 2xy = Py.

(a) Find a scalar function f(x, y) such that ∇f(x, y) = F(x, y). [Hint: Compute the
line integral of F along any parametrized path ending at the point (x, y).]



Let f(x, y) be the line integral of F along the path 〈xt, yt〉 for 0 ≤ t ≤ 1:
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=
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= x2y2/2.

Then we check that ∇f = ∇(x2y2/2) = 〈xy2, x2y〉 = F as desired.

(b) Use your answer from part (a) and the Fundamental Theorem of Line Integrals to
compute the line integral of F along the path r(t) = 〈1 + t,

√
t〉 for 1 ≤ t ≤ 2.

Consider the path r(t) = 〈1 + t,
√
t〉. (This is different from the path in part (a).)

Since F = ∇f , the Fundamental Theorem of Line Integrals tells us that∫
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(We could also compute this without using the Fundamental Theorem, but it would
take longer.) Here is a picture of the vector field F = 〈xy2, x2y〉 and the path r:


