
Math 309 Summer B 2018
Homework 3 Drew Armstrong

1. Poker Hands. A standard deck contains 52 cards. Half the cards are red and half are
black. A “poker hand” consists of 5 cards chosen at random from the deck.

(a) How many different poker hands are there?
(b) How many poker hands contain all red cards?
(c) How many poker hands contain 1 red and 4 black cards? [Hint: Choose the red card

first, then choose the black cards.]

(a) The cards are unordered and may not be repeated. So the number of poker hands is(
52

5

)
=

52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
= 2, 598, 960.

(b) The number of ways to choose 5 red cards is(
26

5

)
=

26 · 25 · 24 · 23 · 22

5 · 4 · 3 · 2 · 1
= 65, 780.

(c) There are 26 ways to choose a red card and there are
(
26
4

)
ways to choose 4 black cards.

The total number of choices is

26×
(

26

4

)
= 26× 26 · 25 · 24 · 23

4 · 3 · 2 · 1
= 388, 700.

Remark: More generally, the number of poker hands with k red and 5− k black cards is(
26

k

)
×
(

26

5− k

)
.

By summing over all possible values of k we obtain an interesting identity:

(total # poker hands) =
5∑

k=0

(# hands with k red cards)

(
52

5

)
=

5∑
k=0

(
26

k

)(
26

5− k

)
.

Even more generally, suppose there are n cards in the deck. Suppose that r cards are red and
b cards are black, so that r + b = n, and suppose that a poker hand consists of h cards drawn
at random. Then our identity becomes(

n

h

)
=

h∑
k=0

(
r

k

)(
b

h− k

)
.

2. Double Counting. In this problem you will give two proofs of the identity

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

(a) Prove the identity using pure algebra. [Hint: n! = n× (n− 1)!]



(b) In a certain classroom of n students we want to choose a committee of k students, one
of which will be the president of the committee. Prove the identity by counting the
possible choices in two different ways. [Hint: Will you choose the president before or
after choosing the committee members?]

(a) Pure algebra:

k

(
n

k

)
=

k

k!
· n!

(n− k)!
=

1

(k − 1)!
· n · (n− 1)!

(n− k)!
= n · (n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
.

(b) Counting argument: Suppose we want to choose a committee of k students from a class-
room of n students. One committee member will be the president. On the one hand, there
are

(
n
k

)
ways to choose the committee and then k ways to choose the president, for a total of

k

(
n

k

)
choices.

On the other hand, suppose we choose the president first. There are n ways to do this. Then
we must choose the remaining k − 1 committee members from the remaining n− 1 students,
and there are

(
n−1
k−1

)
ways to do this. In total, we have

n

(
n− 1

k − 1

)
choices.

Since these two formulas count the same objects, they must be equal.

3. Trinomial Coefficients. Consider integers i, j, k ≥ 0 such that i + j + k = n, and let N
be the number of words that can be made with the letters

a, a, . . . , a︸ ︷︷ ︸
i copies

, b, b, . . . , b︸ ︷︷ ︸
j copies

, c, c, . . . , c︸ ︷︷ ︸
k copies

.

(a) Explain why n! = N × i!× j!× k!.
(b) How many words can be made from the letters b, a, n, a, n, a?

(a) Double counting: Suppose that the letters are labeled as

a1, a2, . . . , ai, b1, b2, . . . , bj , c1, c2, . . . , ck.

Since these n letters are distinct, the number of ways to arrange them is n!. On the other
hand, suppose that we start with one of the N unlabeled arrangements. Then there are i!
ways to put labels on the “a”s, j! ways to put labels on the “b”s and k! ways to put labels on
the “c”s, for a total of

N × i!× j!× k! arrangements.

(b) If we have i = 1 copy of “b,” j = 3 copies of “n” and k = 2 copies of “n,” then the number
of ways to arrange them is

N =
(i + j + k)!

i!× j!× k!
=

6!

1!× 2!× 3!
= 60.

Remark: More generally, consider an alphabet a1, a2, . . . , a` of length `. The number of words
that can be made containing ik copies of the letter “ak” is

(i1 + i2 + · · ·+ i`)!

i1!× i2!× · · · × i`!
.



4. Falling Factorial. For any number z and for any integer k ≥ 0 we define the “falling
factorial” notation (z)k := z(z − 1)(z − 2) · · · (z − k + 1). If n ≥ 0 is an integer, show that(

n

k

)
=

(n)k
k!

.

Pure algebra: If n is a positive whole number then n! exists and we can write

n!

k!× (n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)
((((((((((((((

(n− k)(n− k − 1) · · · 3 · 2 · 1

k!×
((((((((((((((

(n− k)(n− k − 1) · · · 3 · 2 · 1

=
n(n− 1)(n− 2) · · · (n− k + 1)

k!

=
(n)k
k!

.

5. Newton’s Binomial Theorem. Consider any integer k ≥ 0. Based on Problem 4, Isaac
Newton defined the notation (

z

k

)
:=

(z)k
k!

for any number z (not just positive whole numbers), and he showed that for any number x
with |x| < 1 the following infinite series is convergent:

(1 + x)z = 1 +

(
z

1

)
x +

(
z

2

)
x2 +

(
z

3

)
x3 + · · · .

(a) For any integers n, k ≥ 1 show that(
−n
k

)
= (−1)k

(
n + k − 1

k

)
.

(b) Use Newton’s formula to obtain an infinite series expansion for (1 + x)−2.

(a) Suppose that n is a positive whole number. Then by definition we have(
−n
k

)
=

(−n)k
k!

=
(−n)(−n− 1)(−n− 2) · · · (−n− k + 1)

k!

=
(−1)(n)(−1)(n + 1)(−1)(n + 2) · · · (−1)(n + k − 1)

k!

=
(−1)k(n + k − 1) · · · (n + 2)(n + 1)(n)

k!

=
(−1)k(n + k − 1) · · · (n + 2)(n + 1)(n)

((((((((((((
(n− 1)(n− 2) · · · 3 · 2 · 1

k!×
((((((((((((
(n− 1)(n− 2) · · · 3 · 2 · 1

= (−1)k · (n + k − 1)!

k!(n− 1)!

= (−1)k
(
n + k − 1

k

)
.



(b) In the special case n = 2 the formula from part (a) gives(
−2

k

)
= (−1)k

(
2 + k − 1

k

)
= (−1)k

(
k + 1

k

)
= (−1)k(k + 1).

Then Newton’s formula tells us that

(1 + x)−2 = 1 +

(
−2

1

)
x +

(
−2

2

)
x2 +

(
−2

3

)
x3 + · · ·

(1 + x)−2 = 1− 2x + 3x2 − 4x3 + · · ·

Remark: Here’s an alternate way to get the same answer. Start with the “geometric series:”

(1− x)−1 = 1 + x + x2 + x3 + x4 + · · · .
Differentiate both sides by x to get

(1− x)−2 = 0 + 1 + 2x + 3x2 + 4x3 + · · ·
Then substitute x 7→ −x to get

(1− (−x))−2 = 1 + 2(−x) + 3(−x)2 + 4(−x)3 + · · ·
(1 + x)−2 = 1− 2x + 3x2 − 4x3 + · · · .


