
MTH 309: Discrete Mathematics Fall 2022
Course Notes Drew Armstrong

Discrete Mathematics is not a very precise term; it just means Not Calculus. When Calcu-
lus was first developed in the mid-1600s it unleashed a revolution in applied mathematics.
Culturally, however, one could say that Calculus became too successful, to the point that it
crowded other ideas out of the curriculum.

In the mid-1900s there was backlash when people realized that Calculus is not very helpful
for some modern problems, including the design and programming of electronic computers.
At this point there was a concerted effort to bring discrete methods into the undergraduate
curriculum. But how should one organize this material? In the United States it seems that
we have settled on three courses:

• linear algebra,

• probability and statistics,

• discrete mathematics.

The third course is the kind that you are taking right now. I interpret the scope of this course
as: “discrete methods that are particularly useful for computer science, but do not fit within
linear algebra or probability and statistics”. Here are the broad ideas that we will cover:

• induction and recurrence,

• logic and boolean algebra,

• arithmetic on a computer,

• methods of counting,

• graphs, networks, trees.

So that’s what I mean by Discrete Mathematics.

Contents

1 Induction and Recursion 2
1.1 Steiner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Principle of Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sums of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Pascal’s Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Worked Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Boolean Algebra 29
2.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Logic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Abstract Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Worked Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Arithmetic 65
3.1 The Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 The Well-Ordering Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 The Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Base b Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Introduction to Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Worked Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Principles of Counting 100
4.1 Counting Ordered Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Counting Unordered Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Proof by Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4 The Multinomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5 Newton’s Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.7 Worked Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Graph Theory 130
5.1 Definitions and Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Paths and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Circuits and Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5 Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.6 Counting Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.7 Worked Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

1 Induction and Recursion

1.1 Steiner’s Problem

As motivation for the basic ideas of induction and recursion, we will start by considering the
following geometrical problems posed by Jakob Steiner in 1826.1

1Einige Gesetze über die Theilung der Ebene und des Raumes, Journal für die reine und angewandte Math-
ematik (1826), Vol 1, page 349–364.
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Steiner’s Problem (1826)

(1) Find the maximum number of regions that can be formed by n lines in the plane.

(2) Find the maximum number of regions that can be formed by n planes in space.

Equivalently, we can write these as follows:

(1) How many pieces can be obtained from n cuts of a round pizza?

(2) How many pieces can be obtained from n cuts of a spherical cheese?

We will begin with the first problem and come back to the second problem later. How does
one begin to solve a problem like this? First, we give the solution a name:

Ln :“ max # regions formed by n lines in the plane.

Mathematics has borrowed the symbol “:“” from the Pascal programming language. It means
“is defined by to be”. Now that the solution has a name, our goal is to solve for Ln. This
could mean several things:

• give an algorithm to compute Ln,

• give a fast algorithm to compute Ln,

• give a formula for Ln,

• give a nice formula for Ln,

• etc.

To analyze any discrete problem we always begin with experiments. Obviously we have
L0 “ 1 and L1 “ 2. The following diagram shows that L2 “ 4:

At this point we might make the following guess (“conjecture”):

Ln “ 2n ?
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We test the conjecture by continuing the experiment:

It seems that L3 “ 7 ‰ 23. So our guess was wrong. After some more experiments we obtain
the following table of observations:

n 0 1 2 3 4 5 6

Ln 1 2 4 7 11 16 ?

It is difficult to guess a formula for this, but we do observe the following pattern:

Ln “ Ln´1 ` n for all n ě 1.

Now there are two issues:

• Why is this true? (Maybe you already have an idea.)

• Can we use it to solve for Ln?

We’ll deal with the second issue first because it’s more interesting. The sequence of numbers
L0, L1, L2, . . . is completely determined by the following initial condition and recurrence
relation:

Ln “

#

1 if n “ 0,

Ln “ Ln´1 ` n if n ě 1.

Let’s see what happens if we expand the recurrence:

L0 “ 1,

L1 “ L0 ` 1 “ 1` 1,

L2 “ L1 ` 2 “ p1` 1q ` 2,

L3 “ L2 ` 3 “ p1` 1` 2q ` 3,

L4 “ L3 ` 4 “ p1` 1` 2` 3q ` 4,
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...

Ln “ Ln´1 ` n

“ p1` 1` 2` 3` ¨ ¨ ¨ ` pn´ 1qq ` n

“ 1` p1` 2` 3` ¨ ¨ ¨ ` nq

“ 1`
n
ÿ

k“1

k.

Yay, we have obtained a formula for Ln:

Ln “ 1`
n
ÿ

k“1

k.

But is this a “good formula”? Right now it seems like there is no better way to compute Ln

than to add up the numbers 1` 2` 3` ¨ ¨ ¨ ` n and then add 1 to the result. That could take
a while. Luckily, there is a shortcut.

Sum of Consecutive Integers

For all integers n ě 1 we have

n
ÿ

k“1

k “ 1` 2` ¨ ¨ ¨ ` n “
npn` 1q

2
.

We can prove this with a clever trick.

Proof. Let Spnq “ 1 ` 2 ` ¨ ¨ ¨ ` n denote the sum of the first n integers. Now consider the
quantity 2 ¨ Spnq:

2 ¨ Spnq “ Spnq ` Spnq “
p1 `2 ` ¨ ¨ ¨ `nq

`pn `pn´ 1q ` ¨ ¨ ¨ `1q.

By arranging the terms vertically instead of horizontally we obtain

2 ¨ Spnq “

ˆ

1
`n

˙

`

ˆ

2
`pn´ 1q

˙

` ¨ ¨ ¨ `

ˆ

n
`1

˙

“ pn` 1q ` pn` 1q ` ¨ ¨ ¨ ` pn` 1q
looooooooooooooooooooomooooooooooooooooooooon

n times

“ n ¨ pn` 1q,

5



and hence

2 ¨ Spnq “ npn` 1q

Spnq “ npn` 1q{2.

˝

Then by applying this theorem we obtain a “closed formula” for the maximum number of
regions formed by n lines in the plane:2

Ln “ 1`
n
ÿ

k“1

k “ 1`
npn` 1q

2
“
n2 ` n` 2

2
.

I call this a “closed formula” because it involves a fixed number of operations. There is no
summation or product symbol, and no “dot dot dot”.

Finally, let us return to the issue of why the recurrence Ln “ Ln´1 ` n is correct. The idea
of the proof is easy to explain: Suppose we already have n lines dividing the plane into Ln

regions. After deleting one of the lines we will have n ´ 1 lines cutting the plane into Ln´1

regions. By putting the nth line back we will obtain one new region for each of the Ln´1

regions that the nth line intersects. For example, see the following diagram:

On the left we have 3 lines and L3 “ 7 regions. On the right we see that the 4-th line cuts
through 4 regions, adding 4 more to the total: L4 “ L3 ` 4 “ 7 ` 4 “ 11. In general, when
we add the nth line it will cut through all n ´ 1 of the previous lines, and hence it will cut
through n of the previous regions, adding n regions to the total: Ln “ Ln´1 ` n. I think it
would be too much work to turn this into a formal proof, so let’s not bother.

Instead, let’s return to Steiner’s second problem. Define the following notation:3

Kn :“ max # regions formed by n planes in space.

2Remark: It follows from this formula that n2
` n` 2 is always an even number. Do you see why?

3The notation Ln was for “lines”. The notation Kn is for “Kugel” (ball/sphere) or “Käse” (cheese).
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It’s much harder to draw 3D pictures, but you can probably convince yourself of the following:

n 0 1 2 3 4

Kn 1 2 4 8 ?

You might again conjecture the following pattern:

Kn “ 2n ?

But again you would be wrong. Try as you might, you will not be able to get 16 pieces of
cheese from 4 cuts. It turns out that the maximum is K4 “ 15. How do I know this?

Suppose that you have 3 planes dividing space into 8 regions, as follows:

If we add a 4th plane then we will obtain one new region for each old region that the new
plane passes through. But it is impossible to cut through all 8 regions at the same time; the
best we can do is 7. Indeed, the 3 original planes will form 3 lines in the 4th plane, and we
already know the best solution to this problem is L3 “ 7. In general, I claim that we have the
following recurrence:

Kn “

#

1 if n “ 0,

Kn´1 ` Ln´1 if n ě 1.

It’s not so important that you believe me. Let’s just use this recurrence to solve for Kn. We
start by expanding the first few terms until we see a pattern:

K0 “ 1,

K1 “ 1` L0,

K2 “ K1 ` L1 “ p1` L0q ` L1,

K3 “ K2 ` L2 “ p1` L0 ` L1q ` L2,

K4 “ K3 ` L3 “ p1` L0 ` L1 ` L2q ` L3,

...

Kn “ Kn´1 ` Ln´1

“ p1` L0 ` L2 ` L3 ` ¨ ¨ ¨ ` Ln´2q ` Ln´1

“ 1` pL0 ` L1 ` L2 ` ¨ ¨ ¨ ` Ln´1q

“ 1`
n´1
ÿ

k“0

Lk.

7



Then we apply our previous formula Lk “ pk
2 ` k ` 2q{2 to obtain

Kn “ 1`
n´1
ÿ

k“0

k2 ` k ` 2

2

“ 1`
1

2

˜

n´1
ÿ

k“0

k2 `

n´1
ÿ

k“0

k `
n´1
ÿ

k“0

2

¸

.

Two of these sums can be simplified. We know that

n´1
ÿ

k“0

2 “ 2` 2` ¨ ¨ ¨ ` 2
loooooooomoooooooon

n times

“ 2n

and
n´1
ÿ

k“0

k “ 0` 1` 2` ¨ ¨ ¨ ` pn´ 1q “
pn´ 1qppn´ 1q ` 1q

2
“
npn´ 1q

2
.

Thus we obtain

Kn “ 1`
1

2

˜

n´1
ÿ

k“0

k2 `

n´1
ÿ

k“0

k `
n´1
ÿ

k“0

2

¸

“ 1`
1

2

˜

n´1
ÿ

k“0

k2 `
npn´ 1q

2
` 2n

¸

“
1

2

n´1
ÿ

k“0

k2 `
npn´ 1q

4
` n` 1.

But now we are stuck. In order to go further we need a closed formula for the sum of
consecutive squares:

n´1
ÿ

k“0

“ 02 ` 12 ` 22 ` ¨ ¨ ¨ ` pn´ 1q2 “ 12 ` 22 ` ¨ ¨ ¨ ` pn´ 1q2 “ ?

I will tell you the answer next time.

1.2 The Principle of Induction

I have learned from experience that most students do not understand the principle of induction
on the first try. For this reason I like to discuss it early and often.

Principle of Induction

Let P pnq be a sequence of mathematical statements4 and suppose that the following two
properties hold:

• Base Case. P pbq is a true statement for some specific b.
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• Induction Step. If n ě b then the truth of P pnq implies the truth of P pn` 1q.

Then we conclude that P pnq is true for all n ě b.

Here is the most famous example. Consider the following sequence of statements:

P pnq :“ “1` 2` ¨ ¨ ¨ ` n “
npn` 1q

2
”.

Last time I showed you a clever trick to prove that P pnq is true for all n ě 1. But what if we
can’t find a clever trick? Then we can still prove the statement “by induction”.

Proof by Induction. The base case is b “ 1. Note that P pbq is a true statement because

P pbq “ P p1q “ “1 “
1 ¨ 2

2
” “ “1 “ 1”.

Now we fix some integer n ě 1 and assume for induction that P pnq is a true statement. In
other words, we assume that

1` 2` ¨ ¨ ¨ ` n
X
“

npn` 1q

2
.

In this (hypothetical) case, we want to prove that P pn ` 1q is also true. In other words, we
want to prove that the following equation is true:

1` 2` ¨ ¨ ¨ ` pn` 1q
?
“
pn` 1qppn` 1q ` 2q

2
“
pn` 1qpn` 2q

2
.

How? In this example we have very few ingredients to work with. After some trial and error
you will discover the following argument:

1` 2` ¨ ¨ ¨ ` pn` 1q “ 1` 2` ¨ ¨ ¨ ` n` pn` 1q

“ p1` 2` ¨ ¨ ¨ ` nq ` pn` 1q

“
npn` 1q

2
` pn` 1q

“ pn` 1q
´n

2
` 1

¯

“
pn` 1qpn` 2q

2
.

In other words, P pn` 1q is true. Since we have verified that the sequence P pnq satisfies both
properties (the base case and the induction step), we conclude that the statement P pnq is true
for all n ě b “ 1. ˝

What did we just do? Here is an informal discussion:

4A mathematical statement is a sentence that is either “true” or “false”. Some sentences (for example: “the
weather is nice today”) are not mathematical statements. We will discuss this in the next chapter.
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• After some experiments we might guess that the statement P pnq “ “1 ` 2 ` ¨ ¨ ¨ ` n “
npn` 1q{2” is true for all positive whole numbers n.

• We check by hand that the statements P p1q, P p2q, . . . , P p10q are all true.

• Just to be sure, we have our computer check that the statements P p1q, P p2q, . . .
P p1000000q are all true. But this is still not a proof. Maybe the statement P p100001q
is false?

• So we set up our computer to keep checking every statement P p1q, P p2q, P p3q, . . . and
never stop. Eventually the computer will melt. Suppose that P pnq is the last statement
the computer checked before it melted.

• This n is a big number, but we still don’t know for sure if P pn` 1q is a true.

• Now the induction step takes over. Even if we don’t know the exact value of n we can
write an abstract proof to show that P pnq implies P pn` 1q. Since the argument works
for any value of n we conclude that the statements are true forever.

• Summary: The base case is a computer that verifies enough statements to get us started.
But all the computers in the world can only check a finite number of cases. The induction
step is an abstract argument that takes us from there to infinity.

If you didn’t like that, here is a picture:

• The sequence of statements is a row of dominoes.

• The base case is your finger, which knocks down at least one domino.

• The induction step is gravity, which guarantees that the dominoes keep falling forever.

To practice the concept, you should use induction to prove the following theorem. The proof
is “exactly the same” as the proof for the sum of consecutive integers. Next time I’ll tell you
where this formula comes from.
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Sum of Consecutive Squares

For all integers n ě 1 we have

n
ÿ

k“1

k2 “ 12 ` 22 ` ¨ ¨ ¨ ` n2 “
npn` 1qp2n` 1q

6
.

Finally, we obtain a closed formula for the maximum number of regions formed by n planes in
space, or the maximum number of pieces that can be made from n cuts of a spherical cheese:

Kn “
1

2

«

n´1
ÿ

k“0

k2

ff

`
npn´ 1q

4
` pn` 1q

“
1

2

„

pn´ 1qppn´ 1q ` 1qp2pn´ 1q ` 1q

6



`
npn´ 1q

4
` pn` 1q

“
1

2
¨
npn´ 1qp2n´ 1q

6
`
npn´ 1q

4
` pn` 1q

“ pn´ 1q

„

1

2
¨
np2n´ 1q

6
`
n

4



` pn` 1q

“ pn´ 1q

„

2n2 ´ n` 3n

12



` pn` 1q

“ pn´ 1q

„

2npn` 1q

12



` pn` 1q

“
pn´ 1qnpn` 1q

6
` pn` 1q

“ pn` 1q

„

npn´ 1q

6
` 1



“
pn` 1qpn2 ´ n` 6q

6
.

1.3 Sums of Powers

Last time I showed you a mysterious formula for the sum of consecutive squares, and you
proved it by induction. Today I’ll show you where the formula comes from. It turns out that
naming things is the key to the problem.

Sum of Consecutive p-th Powers

11



We will use the following notation for the sum of the first n consecutive p-th powers:

Sppnq :“
n
ÿ

k“1

kp “ 1p ` 2p ` 3p ` ¨ ¨ ¨ ` np.

We could also define these numbers by the following initial condition and recurrence:

Sppnq :“

#

1 if n “ 1,

Sppn´ 1q ` np if n ě 2.

In order to practice this notation, let me show you yet another proof of the identity

S1pnq “
npn` 1q

2
.

Proof. The trick is to expand the sum S2pn` 1q in two different ways. On the one hand, we
have the basic recurrence:

S2pn` 1q “ 12 ` 22 ` ¨ ¨ ¨ ` pn` 1q2 “ p12 ` 22 ` ¨ ¨ ¨n2q ` pn` 1q2 “ S2pnq ` pn` 1q2.

On the other hand, we can change the index of summation as follows:

S2pn` 1q “
n`1
ÿ

k“1

k2

“

n
ÿ

`“0

p`` 1q2 ` :“ k ´ 1

“

n
ÿ

`“0

p`2 ` 2`` 1q

“

n
ÿ

`“0

`2 ` 2 ¨
n
ÿ

`“0

``
n
ÿ

`“0

1.

In the first two sums we can change the lower limit from ` “ 0 to ` “ 1 because the ` “ 0
terms are zero. Then we have names for all three terms:

S2pn` 1q “
n
ÿ

`“0

`2 ` 2 ¨
n
ÿ

`“0

``
n
ÿ

`“0

1

“

n
ÿ

`“1

`2 ` 2 ¨
n
ÿ

`“1

``
n
ÿ

`“0

1

“ S2pnq ` 2 ¨ S1pnq ` pn` 1q.
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Finally, we equate the two expressions for S2pn` 1q to obtain

S2pnq ` 2 ¨ S1pnq ` pn` 1q “ S2pnq ` pn` 1q2

�
��S2pnq ` 2 ¨ S1pnq ` pn` 1q “��

�S2pnq ` pn` 1q2

2 ¨ S1pnq ` pn` 1q “ pn` 1q2

2 ¨ S1pnq “ pn` 1q2 ´ pn` 1q

2 ¨ S1pnq “ ppn` 1q ´ 1qpn` 1q

2 ¨ S1pnq “ npn` 1q

S1pnq “ npn` 1q{2.

It was lucky that the unknown term S2pnq appeared on both sides. ˝

Now let’s use “exactly the same trick” to prove the formula

S2pnq “
npn` 1qp2n` 1q

6
.

Proof. We will expand S3pn` 1q in two different ways. On the one hand, we have

S3pn` 1q “ S3pnq ` pn` 1q3.

On the other hand, we have

S3pn` 1q “
n`1
ÿ

k“1

k3

“

n
ÿ

`“0

p`` 1q3 ` :“ k ´ 1

“

n
ÿ

`“0

p`3 ` 3`2 ` 3`` 1q

“

n
ÿ

`“0

`3 ` 3 ¨
n
ÿ

`“0

`2 ` 3 ¨
n
ÿ

`“0

``
n
ÿ

`“0

1

“

n
ÿ

`“1

`3 ` 3 ¨
n
ÿ

`“1

`2 ` 3 ¨
n
ÿ

`“1

``
n
ÿ

`“0

1

“ S3pnq ` 3 ¨ S2pnq ` 3 ¨ S1pnq ` pn` 1q.

In the third line we used the algebraic identity p` ` 1q3 “ `3 ` 3`2 ` 3` ` 1. I will show you
a quick way to compute this next time. Finally, we equate the two expressions for S3pn` 1q
and plug in the known value of S1pnq to obtain

S3pnq ` 3 ¨ S2pnq ` 3 ¨ S1pnq ` pn` 1q “ S3pnq ` pn` 1q3
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��
�S3pnq ` 3 ¨ S2pnq ` 3 ¨ S1pnq ` pn` 1q “��

�S3pnq ` pn` 1q3

3 ¨ S2pnq ` 3 ¨ S1pnq ` pn` 1q “ pn` 1q3

3 ¨ S2pnq “ pn` 1q3 ´ pn` 1q ´ 3 ¨ S1pnq

3 ¨ S2pnq “ pn` 1q3 ´ pn` 1q ´ 3 ¨
npn` 1q

2

3 ¨ S2pnq “
pn` 1q

2

“

2pn` 1q2 ´ 2´ 3n
‰

3 ¨ S2pnq “
pn` 1q

2

“

2pn2 ` 2n` 1q ´ 2´ 3n
‰

3 ¨ S2pnq “
pn` 1q

2

“

2n2 ` n
‰

3 ¨ S2pnq “
npn` 1qp2n` 1q

2

S2pnq “
npn` 1qp2n` 1q

6
.

It was lucky that the unknown term S3pnq appeared on both sides. ˝

In the previous section we saw that this formula helps to solve Steiner’s 1826 problem on
the maximum number of regions formed by n planes in space. But the original motivation
to consider sums of p-th powers comes from the early history of Calculus. In the year 1636,
Pierre de Fermat stated the following result in a letter to Gilles de Roberval.

Fermat’s Theorem (1636)

Let p be a positive integer. The area under the graph of the “higher parabola” y “ xp

from x “ 0 to x “ a is equal to ap`1{pp` 1q. In modern terminology we would say that

ż

xp dx “
xp`1

p` 1
.

This was significant because it was the first major progress on the theory of integrals since the
classical work of Archimedes. To illustrate Fermat’s method we will consider the case of the
ordinary parabola5 y “ x2. In order to compute the area under y “ x2 we divide the interval
between x “ 0 and x “ a into n equal pieces. Then on each piece we draw a rectangle of
width a{n with height roughly equal to the height of the graph:

5This case was known to Archimedes, but the method is new.
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Note that the k-th rectangle has height pka{nq2 and hence

parea of k-th rectangleq “ pbaseqpheightq “ pa{nqpka{nq2 “
a3

n3
¨ k2.

Using our formula for S2pnq gives the total area of all n rectangles:

ptotal area of rectanglesq “
n
ÿ

k“1

parea of k-th rectangleq

“

n
ÿ

k“1

a3

n3
¨ k2

“
a3

n3
¨

n
ÿ

k“1

k2

“
a3

n3
¨
npn` 1qp2n` 1q

6
.

Note that the area of the rectangles is approximately equal to the area under the curve.
Furthermore, the approximation is more accurate for large values of n. In order to see what
happens as n grows, it is more convenient to rewrite our formula for S2pnq as follows:

S2pnq “
npn` 1qp2n` 1q

6
“

1

3
n3 `

1

2
n2 `

1

6
n.

Then we have

ptotal area of rectanglesq “
a3

n3
¨

ˆ

1

3
n3 `

1

2
n2 `

1

6
n

˙

“
a3

3
`

1

2n
`

1

6n2
.
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Note that the quantity in the box goes to zero as n goes to infinity. Fermat concluded that in
the limit we must have

ptotal area of rectanglesq Ñ parea under the curveq,

a3

3
`

1

2n
`

1

6n2
Ñ

a3

3
` 0.

Actually, Fermat did not need a closed form for S2pnq; he only needed to know that

S2pnq “
n3

3
` lower terms.

More generally, Fermat’s theorem is equivalent to the fact that

Sppnq “
np`1

p` 1
` lower terms.

In the meantime, curious mathematicians such as Johann Faulhaber (Academia Algebræ, 1631)
were trying to find a closed formula for the sum of p-th powers. This can be accomplished
with “exactly the same trick” that we used above, i.e., by expanding the sum Sp`1pn` 1q in
two different ways and then by solving for the unknown Sppnq. The resulting formula is not
pretty and it also contains two pieces of undefined notation, but I will include it here for the
curious. It was first written down in this form by Jakob Bernoulli (published posthumously
in the Ars Conjectandi, 1731).

Bernoulli’s Formula (1731)

For all positive integers n and p we have

Sppnq “ 1p ` 2p ` ¨ ¨ ¨ ` np “
np`1

p` 1
`

p´1
ÿ

k“1

ˆ

p` 1

k

˙

¨Bk ¨ n
p`1´k.

The expression in the box are the “lower terms” that Fermat did not need to compute.

The first undefined piece of notation is the sequence of Bernoulli numbers, which were invented
by Bernoulli for exactly this purpose:

n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 1
2

1
6 0 ´1

30 0 1
42 0 ´1

30 0 5
66

Don’t be discouraged if you can’t see a pattern here. The recurrence is very complicated:

Bn :“

#

1 if n “ 0,

1´
řn´1

k“0
1

n´k`1 ¨
`

n
k

˘

¨Bk if n ě 1.
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The second undefined piece of terminology are the numbers
`

n
k

˘

, which occur in Bernoulli’s
formula and in the recurrence for the Bernoulli numbers. These numbers are the subject of
the next section.

1.4 Pascal’s Triangle

The numbers
`

n
k

˘

appearing in Bernoulli’s formula have many different interpretations. The
easiest way to define them is by recurrence.

Definition of Pascal’s Triangle

For all integers 0 ď k ď n we define the number
`

n
k

˘

by the following boundary condi-
tions and recurrence relation:

ˆ

n

k

˙

:“

$

&

%

1 if k “ 0 or k “ n,
ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

otherwise.

We think of these numbers as forming an infinite triangular array with 1s down the sides,
where each number inside the triangle is defined as the sum of the two numbers above it:

`

0
0

˘

`

1
0

˘ `

1
1

˘

`

2
0

˘ `

2
1

˘ `

2
2

˘

`

3
0

˘ `

3
1

˘ `

3
2

˘ `

3
3

˘

`

4
0

˘ `

4
1

˘ `

4
2

˘ `

4
3

˘ `

4
4

˘

“

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

These numbers have been known in many times and places. The name Pascal’s triangle comes
from French mathematician Blaise Pascal, who wrote a systematic work on these numbers in
1654 (Treatise on the arithmetical triangle).6 Pascal’s primary motivation was the study of
probability and games of chance, but he also included a section on the sums of p-th powers.

We will have much more to say about Pascal’s triangle in Chapter 4. For now let me give you
two algebraic interpretations of the numbers

`

n
k

˘

, both of which can be proved by induction.
The first interpretation explains why we call these numbers binomial coefficients.

6The symbol
`

n
k

˘

for these numbers was introduced much later by von Ettingshausen, Die combinatorische
Analysis als Vorbereitungslehre zum Studium der theoretischen höhern Mathematik (1826), page 30.
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The Binomial Theorem

Let x be any number and observe the following expansions:

p1` xq0 “ 1,

p1` xq1 “ 1` x,

p1` xq2 “ 1` 2x` x2,

p1` xq3 “ 1` 3x` 3x2 ` x3,

p1` xq4 “ 1` 4x` 6x2 ` 4x3 ` x4.

After a while you may notice that the coefficients in these expansions are the same as
the entries of Pascal’s Triangle. To be specific, the coefficient of xk in the expansion of
p1` xqn is equal to the k-th entry in the n-th row of Pascal’s Triangle:

p1` xqn “
n
ÿ

k“0

ˆ

n

k

˙

xk.

Proof. Let 0 ď k ď n be whole numbers and let cpn, kq be the coefficient of xk in the
expansion of p1 ` xqn. In order to prove that cpn, kq “

`

n
k

˘

it is enough to show that these
numbers satisfy the same boundary conditions and recurrence.

• Boundary Conditions. Note that we always have

p1` xqn “ 1x0 `middle terms` 1xn.

In other words we have cpn, 0q “ cpn, nq “ 1.

• Recurrence Relation. Now let 0 ă k ă n and consider the following algebraic identity:

p1` xqn “ p1` xqp1` xqn´1

p1` xqn “ xp1` xqn´1 ` p1` xqn´1.

Now let’s compute the coefficient of xk on each side. By definition we know that cpn, kq
is the coefficient of xk in p1 ` xqn. By definition we also know that cpn ´ 1, kq is the
coefficient of xk in p1` xqn´1. And what about xp1` xqn´1? We observe that

xp1` xqn´1 “ x
”

cpn´ 1, 0qx0 ` ¨ ¨ ¨ ` cpn´ 1, k ´ 1qxk´1 ` ¨ ¨ ¨ ` cpn´ 1, n´ 1qxn´1
ı

xp1` xqn´1 “ cpn´ 1, 0qx1 ` ¨ ¨ ¨ ` cpn´ 1, k ´ 1qxk ` ¨ ¨ ¨ ` cpn´ 1, n´ 1qxn,

hence the coefficient of xk in xp1` xqn´1 is cpn´ 1, k ´ 1q. In summary, we have

pcoefficient of xk in p1` xqnq “ pcoefficient of xk in xp1` xqn´1 ` p1` xqn´1q,

cpn, kq “ cpn´ 1, k ´ 1q ` cpn´ 1, kq.
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˝

The next algebraic interpretation gives a “closed formula” for
`

n
k

˘

in terms of “factorials”.

Closed Formula for Binomial Coefficients

For all integers n ě 0 we define the factorial by the following recurrence:

n! :“

#

1 if n “ 0,

n ¨ pn´ 1q! if n ě 1.

In other words, we have 0! “ 1 and

n! “ npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1 for n ě 1.

I claim that the binomial coefficients satisfy the following formula:

ˆ

n

k

˙

“
n!

k!pn´ kq!
.

Proof. Let 0 ď k ď n. Again, it suffices to show that this formula satisfies the same boundary
conditions and recurrence:

• Boundary Conditions. If k “ 0 or n “ 0 then since 0! “ 1 we have

n!

0!pn´ 0q!
“

n!

0!n!
“
n!

n!
“ 1 and

n!

n!pn´ nq!
“

n!

n!0!
“
n!

n!
“ 1.

• Recurrence Relation. Now let 0 ă k ă n. In the following calculation we use the
identities k! “ kpk´1q! and pn´kq! “ pn´kqpn´k´1q! to find a common denominator
for the sum of fractions:

pn´ 1q!

pk ´ 1q!ppn´ 1q ´ pk ´ 1qq!
`

pn´ 1q!

k!pn´ 1´ kq!

“
pn´ 1q!

pk ´ 1q!pn´ kq!
`

pn´ 1q!

k!pn´ k ´ 1q!

“
k

k
¨

pn´ 1q!

pk ´ 1q!pn´ kq!
`

pn´ 1q!

k!pn´ k ´ 1q!
¨
n´ k

n´ k

“ k ¨
pn´ 1q!

k!pn´ kq!
`
pn´ 1q!

k!pn´ kq!
¨ pn´ kq

“
kpn´ 1q!` pn´ kqpn´ 1q!

k!pn´ kq!
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“
p�k ` n´�kqpn´ 1q!

k!pn´ kq!

“
npn´ 1q!

k!pn´ kq!

“
n!

k!pn´ kq!
.

˝

The binomial coefficients are extremely useful for simplifying complicated formulas. For a
striking example of this, let’s return to Steiner’s problem. Recall that we have proved the
following facts:

Ln “ pmax # regions formed by n lines in the planeq “
n2 ` n` 2

2
,

Kn “ pmax # regions formed by n planes in spaceq “
pn` 1qpn2 ´ n` 6q

6
.

Do you see a pattern? Actually, Steiner expressed these formulas in a slightly different way:

Ln “
npn´ 1q

2 ¨ 1
` n` 1,

Kn “
npn´ 1qpn´ 2q

3 ¨ 2 ¨ 1
`
npn´ 1q

2 ¨ 1
` n` 1.

We can make this even cleaner with the following trick.

Alternative Formula for Binomial Coefficients

By canceling the factor pn´ kq! from the numerator and denominator, we obtain

ˆ

n

k

˙

“
n!

k!pn´ kq!

“
npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 1q

((((
((((

((((
((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

kpk ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1 ¨
((((

(((
((((

(((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

“
npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 1q

kpk ´ 1qpk ´ 2q ¨ ¨ ¨ 1
.

Then Steiner’s formulas become

Ln “

ˆ

n

2

˙

`

ˆ

n

1

˙

`

ˆ

n

0

˙

,
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Kn “

ˆ

n

3

˙

`

ˆ

n

2

˙

`

ˆ

n

1

˙

`

ˆ

n

0

˙

.

Now do you see a pattern? In the year 1826 there was no such thing as “4-dimensional space”.
However, in the 1840s, a younger colleague and fellow Swiss geometer of Steiner’s named
Ludwig Schläfli was bold enough to state Steiner’s result in full generality.7

The Steiner-Schläfli Theorem (1850)

The maximum number of regions formed by n hyperplanes8 in d-dimensional space is

ˆ

n

d

˙

`

ˆ

n

d´ 1

˙

`

ˆ

n

d´ 2

˙

` ¨ ¨ ¨ `

ˆ

n

1

˙

`

ˆ

n

0

˙

.

Furthermore, the maximum number of bounded regions is

ˆ

n

d

˙

´

ˆ

n

d´ 1

˙

`

ˆ

n

d´ 2

˙

´ ¨ ¨ ¨ ` p´1qd´1

ˆ

n

1

˙

` p´1qd
ˆ

n

0

˙

.

For the purpose of this theorem we define the symbol
`

n
k

˘

to be zero whenever k ą n.
You will investigate the case d ą n on the homework.

For example, let d “ 2 and n “ 4. By looking at the 4-th row of Pascal’s triangle we find that
4 lines can divide the plane into

ˆ

4

2

˙

`

ˆ

4

1

˙

`

ˆ

4

0

˙

“ 6` 4` 1 “ 11 regions.

Furthermore, among these 11 regions the number that are bounded is

ˆ

4

2

˙

´

ˆ

4

1

˙

`

ˆ

4

0

˙

“ 6´ 4` 1 “ 3.

Here is a picture:

7Schläfli, Theorie der vielfachen Kontinuität (1850), Section 16.
8A hyperplane is a flat pd ´ 1q-dimensional subset of d-dimensional space. It can be used to cut the space

into two pieces.
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For another example, let d “ 4 and n “ 6. Then Schläfli’s formula tells us that 6 hyperplanes
in 4-dimensional space can form at most

ˆ

6

4

˙

`

ˆ

6

3

˙

`

ˆ

6

2

˙

`

ˆ

6

1

˙

`

ˆ

6

0

˙

“ 15` 20` 15` 6` 1 “ 57 total regions

and
ˆ

6

4

˙

´

ˆ

6

3

˙

`

ˆ

6

2

˙

´

ˆ

6

1

˙

`

ˆ

6

0

˙

“ 15´ 20` 15´ 6` 1 “ 5 bounded regions.

You can decide for yourself whether this makes any sense.

1.5 Worked Exercises

1.1. Simplify the following sum as much as possible:

n
ÿ

k“0

pk ` 1qpk ` 2q

2
“ ?

Solution. Recall that we have the following formulas:

n
ÿ

k“0

k2 “

n
ÿ

k“1

k2 “
npn` 1qp2n` 1q

6
,

n
ÿ

k“0

k “
n
ÿ

k“1

k “
npn` 1q

2
,

n
ÿ

k“0

“ n` 1.

By combining these formulas we obtain

n
ÿ

k“0

pk ` 1qpk ` 2q

2
“

1

2

n
ÿ

k“0

pk ` 1qpk ` 2q

“
1

2

n
ÿ

k“0

pk2 ` 3k ` 2q
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“
1

2

«

n
ÿ

k“0

k2 ` 3
n
ÿ

k“0

k ` 2
n
ÿ

k“0

1

ff

“
1

2

„

npn` 1qp2n` 1q

6
` 3

npn` 1q

2
` 2pn` 1q



“
n` 1

2

„

np2n` 1q

6
` 3

n

2
` 2



“
n` 1

2

„

2n2 ` n` 9n` 12

6



“
n` 1

2

„

2n2 ` 10n` 12

6



“
n` 1

6

“

n2 ` 5n` 6
‰

“
n` 1

6
pn` 2qpn` 3q

“
pn` 1qpn` 2qpn` 3q

6
.

Just for fun, we can express this result in terms of binomial coefficients:

n
ÿ

k“0

ˆ

k ` 2

2

˙

“

ˆ

n` 3

3

˙

.

Maybe we will see a generalization of this identity later.

1.2. Find a closed formula for the sum of the first n odd numbers:

1` 3` 5` 7` ¨ ¨ ¨ ` p2n´ 1q “ ?

Solution. We have

1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “
n
ÿ

k“1

p2k ´ 1q

“ 2
n
ÿ

k“1

k ´
n
ÿ

k“1

1

“ 2
npn` 1q

2
´ n

“ npn` 1q ´ n

“ n2.

You could also guess the answer by experiment and then prove it by induction. Consider the
statement

P pnq “ “1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “ n2”.
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• Base Case. P p1q “ “1 “ 12” is a true statement.

• Induction Step. Fix n ě 1 and assume for induction that P pnq is true. Then we have

1` 3` 5` ¨ ¨ ¨ ` p2pn` 1q ´ 1q “ 1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q ` p2pn` 1q ´ 1q

“ n2 ` p2pn` 1q ´ 1q

“ n2 ` 2n` 1

“ pn` 1q2,

and hence P pn` 1q is also true.

1.3. For any integers 1 ď a ď b, find a closed formula for the sum of all integers between
them:

a` pa` 1q ` ¨ ¨ ¨ ` pb´ 1q ` b “ ?

Solution. This is a difference of two sums that you already know:

a` pa` 1q ` ¨ ¨ ¨ ` pb´ 1q ` b “ p1` 2` ¨ ¨ ¨ ` bq ´ p1` 2` ¨ ¨ ¨ ` pa´ 1qq

“
bpb` 1q

2
´
pa´ 1qa

2
.

We can also write this as

b
ÿ

k“a

k “
b
ÿ

k“1

k ´
a´1
ÿ

k“1

k “
bpb` 1q

2
´
pa´ 1qa

2
.

Compare this to the “continuous version”:

ż b

a
x dx “

b2

2
´
a2

2
.

1.4. The sequence of factorials 0!, 1!, 2!, . . . is defined by the following initial condition and
recurrence relation:

n! :“

#

1 if n “ 0,

pn´ 1q! ¨ n if n ě 1.

Prove by induction that we have

n! ą 2n for all n ě 4.

Solution. Consider the statement P pnq “ “n! ą 2n”.

• Base Case. We observe that P p4q “ “24 ą 16” is a true statement.
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• Induction Step. Now fix n ě 4 and assume for induction that P pnq “ “n! ą 2n” is true.
In this case we have

pn` 1q! “ pn` 1q ¨ n! by definition

ą pn` 1q ¨ 2n because P pnq is true

ą 2 ¨ 2n because n` 1 ą 2

“ 2n`1,

and hence P pn` 1q is also true.

1.5. The Fibonacci sequence F0, F1, F2, . . . is defined by the following initial conditions and
recurrence relation:

Fn :“

$

’

&

’

%

0 if n “ 0,

1 if n “ 1,

Fn´1 ` Fn´2 if n ě 2.

Let ϕ :“ p1 `
?

5q{2 be the golden ratio, which satisfies ϕ2 “ ϕ ` 1 (check it if you don’t
believe me). Prove by induction that we have

ϕn´2 ă Fn ă ϕn´1 for all n ě 3.

[Hint: Use strong induction with two base cases.]

Induction can be stated in many equivalent ways. Here is the principle of “strong induction”.

Principle of Strong Induction

Let P pnq be a sequence of mathematical statements and suppose that the following two
properties hold:

• Base Case. P pbq is a true statement for some specific b.

• Induction Step. If the statements P pbq, P pb` 1q, . . . , P pnq are true then the state-
ment P pn` 1q is also true.

Then we conclude that P pnq is true for all n ě b.

Sadly, this form of induction is still not strong enough to solve the exercise. Since the Fibonacci
numbers are defined by the “second-order recurrence” Fn “ Fn´1`Fn´2 we will need to check
two base cases to get the induction started. Consider the statement

P pnq “ “ϕn´2 ă Fn ă ϕn´1”.
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• Base Cases. Since ϕ “ p1`
?

5q{2 « 1.61 we observe that P p3q and P p4q are both true:

P p3q “ “ϕ1 ă F3 ă ϕ2” “ “1.61 ă 2 ă 2.61”, X

P p4q “ “ϕ2 ă F4 ă ϕ3” “ “2.61 ă 3 ă 4.24”. X

• Induction Step. Now fix some n ě 4 and assume for induction that the statements
P p3q, P p4q, . . . , P pnq are all true. In particular, we assume that the statements P pn´1q
and P pnq are both true:

P pn´ 1q “ “ϕn´3 ă Fn´1 ă ϕn´2”, X

P pnq “ “ϕn´2 ă Fn ă ϕn´1”. X

By adding these two inequalities and using the identity ϕ` 1 “ ϕ2 we obtain

ϕn´2 ` ϕn´3 ă Fn ` Fn´1 ă ϕn´1 ` ϕn´2,

ϕn´3pϕ` 1q ă Fn`1 ă ϕn´2pϕ` 1q,

ϕn´3 ¨ ϕ2 ă Fn`1 ă ϕn´2 ¨ ϕ2,

ϕn´1 ă Fn`1 ă ϕn,

and hence P pn` 1q is also true.

Here is a picture of the first few Fibonacci numbers stuck between the curves ϕn´1 and ϕn´2:

1.6. Use induction to verify the following formula:

13 ` 23 ` ¨ ¨ ¨ ` n3 “
n2pn` 1q2

4
for all n ě 1.
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Solution. This one is straightforward algebra.

• Base Case. When n “ 1 we have 13 “ 12¨22

4 .

• Induction Step. Fix some n ě 1 and assume for induction that

13 ` 23 ` ¨ ¨ ¨ ` n3 X
“

n2pn` 1q2

4
.

In this case we want to prove that

13 ` 23 ` ¨ ¨ ¨ ` pn` 1q3
?
“
pn` 1q2pn` 2q2

4
.

To see this, we observe that

13 ` 23 ` ¨ ¨ ¨ ` pn` 1q3 “ 13 ` 23 ` ¨ ¨ ¨ ` n3 ` pn` 1q3

“
n2pn` 1q2

4
` pn` 1q3

“
pn` 1q2

4

“

n2 ` 4pn` 1q
‰

“
pn` 1q2

4

“

n2 ` 4n` 4
‰

“
pn` 1q2pn` 2q2

4
. X

Remark: It is a bit strange that

13 ` 23 ` ¨ ¨ ¨ ` n3 “ p1` 2` ¨ ¨ ¨ ` nq2 .

I don’t know any good reason for this identity.

1.7. Let
`

n
k

˘

be the entry in the n-th row and k-th diagonal of Pascal’s triangle. The binomial
theorem tells us that for any number x and for any whole number n ě 0 we have

p1` xqn “
n
ÿ

k“0

ˆ

n

k

˙

xk.

Use this fact to simplify the following sums as much as possible:

n
ÿ

k“0

ˆ

n

k

˙

“ ? and
n
ÿ

k“0

p´1qk
ˆ

n

k

˙

“ ?

Solution. Substituting x “ 1 into the binomial theorem gives

p1` xqn “

ˆ

n

0

˙

`

ˆ

n

1

˙

x`

ˆ

n

2

˙

x2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

xn,
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p1` 1qn “

ˆ

n

0

˙

`

ˆ

n

1

˙

1`

ˆ

n

2

˙

12 ` ¨ ¨ ¨ `

ˆ

n

n

˙

1n,

2n “

ˆ

n

0

˙

`

ˆ

n

1

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ `

ˆ

n

n

˙

.

Substituting x “ ´1 into the binomial theorem gives

p1` xqn “

ˆ

n

0

˙

`

ˆ

n

1

˙

x`

ˆ

n

2

˙

x2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

xn,

p1´ 1qn “

ˆ

n

0

˙

`

ˆ

n

1

˙

p´1q `

ˆ

n

2

˙

p´1q2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

p´1qn,

0 “

ˆ

n

0

˙

´

ˆ

n

1

˙

`

ˆ

n

2

˙

´ ¨ ¨ ¨ ` p´1qn
ˆ

n

n

˙

.

We can use these formulas to investigate the Steiner-Schläfli Theorem when the dimension
of the space is greater than or equal to the number of cuts. Suppose that we make n cuts
of a d-dimensional space with d ě n, and recall that we define

`

n
k

˘

“ 0 for all k ą n. Then
according to the theorem the maximum number of regions is

d
ÿ

k“0

ˆ

n

k

˙

“

n
ÿ

k“0

ˆ

n

k

˙

“ 2n.

If d ě n then the maximum number of bounded regions is

˘

d
ÿ

k“0

p´1qk
ˆ

n

k

˙

“ ˘

n
ÿ

k“0

p´1qk
ˆ

n

k

˙

“ 0.

In other words: If n ď d then it is possible to obtain 2n regions from n cuts of d-dimensional
space. If n ą d then the number of regions is less than 2n. If n ď d then it is impossible to
obtain a bounded region of d-dimensional space from n cuts.

Here are two extra challenge problems.

1.8. In Schläfli’s book he actually states that the number of bounded regions is
`

n´1
d

˘

. Prove
that this agrees with the formula I stated above:

ˆ

n´ 1

d

˙

“

ˆ

n

d

˙

´

ˆ

n

d´ 1

˙

`

ˆ

n

d´ 2

˙

´ ¨ ¨ ¨ ` p´1qd´1

ˆ

n

1

˙

` p´1qd
ˆ

n

0

˙

.

1.9. In Problem 1.1 we disovered the identity
řn

k“0

`

k`2
2

˘

“
`

n`3
3

˘

. Prove in general that

n
ÿ

k“0

ˆ

k ` d

d

˙

“

ˆ

n` d` 1

d` 1

˙

for any d ě 0.

Wikipedia calls this the “hockey stick identity”. The cases d “ 0, 1, 2 are already known to
us.
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2 Boolean Algebra

To a first degree of approximation, an electronic computer is just a box with m wires going
in and n wires coming out:

Each wire can only carry two signals: 0 (represented by low voltage) or 1 (represented by high
voltage). Suppose that our computer is designed to add two numbers from the range 0 to 7.
Using binary arithmetic, we could encode the input with 6 wires and the output with 4 wires.
To compute “6 ` 5” we would input 110101. Then the correct output would be 1011, which
corresponds to “11”. We will discuss the details in Section 2.4.

The attempt to build a mechanical (or electronic) computer was always tied to the philosophy
of language. The mathematician and philosopher Wilhelm Gottfried Leibniz9 had a lifelong
dream to develop a “calculus of logic”, to convert human thought into mechanical calculation.
To this end he designed a mechanical calculator in 1672. He later also advocated the use
of binary arithmetic based on the hexagrams of the ancient Chinese I Ching. Our modern
notation for the calculus of logic is based on the works of George Boole from the 1850s.

In this chapter I will introduce the language of Boolean algebra and explain how it is applied
to the design of simple computers. Boolean algebra comes in three basic flavors:

• set theory,

• logic,

• binary arithmetic.

We will treat these in order.

2.1 Set Theory

The language of set theory is the basic foundation for both logic and mathematics. Because
the concept of a set is so fundamental we don’t want to get too specific about it. (Mention
Cantor.)

9Leibniz was a co-inventor of the Calculus along with Isaac Newton.
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Definition of Sets

A set is a “collection of things”. It has just one attribute, called membership. If S is a
set we will use the notation

x P S

to denote that “thing x is a member (or element) of the set S”.10

A set with finitely many elements can be described using curly braces:

S “ t1, 2, 4, appleu.

Observe that 1 P S and 2 P S, but 3 R S and orange R S. The members of a set are not
ordered:

t1, 3, 2u “ t1, 2, 3u.

And sets do not care about repetition:

t1, 3, 2, 3u “ t1, 2, 3u.

Indeed, we are only allowed to ask of a set whether the statement “x P S” is true or false.
There is no way to ask if an element is repeated, or if one element comes before another.

A set can have other sets as members, for example:

S “ t1, t2u, t2, t3, 4uuu.

In this case we have 1 P S but 2 R S. However, we do have t2u P S. Think of this as bags
within bags. There is also a set corresponding to an empty bag. We call it the empty set and
we write it like this:

H :“ tu.

Often we consider sets of numbers. Here are some of our favorites:11

• The set of natural numbers
N “ t0, 1, 2, 3, 4, . . .u.

• The set of integers
Z “ t. . . ,´3,´2,´1, 0, 1, 2, 3, . . .u.

• The set of rational numbers

Q “
"

0, 1,´1,
1

2
,
´1

2
, 2,´2, 3,´3,

1

3
,
´1

3
,
1

4
,
´1

4
,
2

3
,
´2

3
, . . .

*

It’s okay if you don’t see the pattern here. I’m sure you know what I’m talking about.

10The membership symbol “P” is based on the Greek letter “ε”, which stands for “element”.
11N is for “natural”, Z is for “Zahlen” (German for numbers), Q is for “quotients” and R is for “real”.

30



• The set of real numbers
R “ t0, 1,

?
2, e, π, . . .u.

Hmm. The set of real numbers is actually pretty hard to describe. I’m not going to
define it in this class.

It is impossible to discuss sets for long without mentioning logic. The concept of “subset” is
based on the words “if . . . then”.

Definition of Subsets

Given two sets A,B we say that A is a subset of B if for any thing x the following holds:

if x P A then x P B.

In this case we will write A Ď B. I claim that H Ď A is true for any set A. Does that
make sense to you? It depends a bit on how you interpret the words “if . . . then”.

Example: Find all of the subsets of t1, 2, 3u.

Answer: There are 8 “ 23 subsets. In fact, we can interpret each subset as a “binary string
of length 3”. The symbol 1 in the i-th position means that we include i in the subset and the
symbol 0 means that we do not include i. The number of binary strings is 23 because there
are 2 choices for each symbol:

subset binary string

t1, 2, 3u 111
t1, 2u 110
t1, 3u 101
t2, 3u 011
t1u 100
t2u 010
t3u 001
H 000

We can also use logical statements to implicitly define the elements of a subset.

Set Builder Notation

Let S be a set and for each element x P S let P pxq be a logical statement. Then we
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define the following subset of S:

tx P S : P pxqu “ the set of x P S such that P pxq is true.

For example, here is how we define the set of “even numbers”:

tn P Z : n is a multiple of 2u.

To be more formal we can use the logical symbol D, which means “there exists”:

tn P Z : Dk P Z, n “ 2ku “ tn P Z : there exists some k P Z such that n “ 2ku

But now we have to be careful. With the definitions I just gave it is easy to write down
nonsensical statements (also called paradoxes). The first such paradox was discovered by
Bertrand Russell in 1901.

Russell’s Paradox (1901)

Let S be the set of all sets and consider the following set:

R :“ tA P S : A R Au “ the set of all A such that A is not a member of itself.

Take a moment to convince yourself that the statement “R P R” is complete nonsense.

The lessons that we take from Russell’s Paradox are the following:

• There is no set of all sets.

• A set cannot be an element of itself.

Unfortunately this makes the subject too technical for us. In order to avoid any complication
we will adopt the following very strong assumption.

The Hypothesis of a Finite Universe

Let U be a fixed set with finitely many elements. From now on we will assume that every
set A under discussion is a subset of U :
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Now we can comfortably discuss the “Boolean algebra” of sets. For any two sets A,B Ď U we
define the union

AYB :“ tx P U : x P A or x P Bu Ď U

and the intersection
AXB :“ tx P U : x P A and x P Bu Ď U.

Here are some helpful pictures, called Venn diagrams:

For any set A Ď U we also define the complement:

A1 :“ tx P U : x R Au Ď U.

The notation A1 makes no sense unless we have a specific universal set in mind. Picture:
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But do these pictures and formulas really define anything? Certainly a computer would not
understand either language. So how would we explain the algebra of sets to a computer? We
have a couple of options.

The first is to represent each subset as a binary string. Then the three operations Y,X,1

are easy to formalize. For example, let U “ t1, 2, 3, 4, 5, 6, 7u with A “ t1, 3, 5, 7u and B “

t4, 5, 6, 7u. Then the intersection is the “componentwise multiplication” of binary strings:

t1, 3, 5, 7u X t4, 5, 6, 7u “ t5, 7u,
1010101 X 0001111 “ 0000101.

On the other hand, we could use a computer to encode the algebraic rules that the operations
Y,X,1 are supposed to satisfy.

Algebraic Properties of Sets (Boolean Algebra)

Let U be a finite universal set. Then for all subsets A,B,C Ď U we have

(1) Associative Laws

AY pB Y Cq “ pAYBq Y C

AX pB X Cq “ pAXBq X C

(2) Commutative Laws

AYB “ B YA

AXB “ B XA

(3) Algebraic Properties of H and U

AYH “ A

AX U “ A

(4) Algebraic Properties of Complement

AYA1 “ U

AXA1 “ H

(5) Distributive Laws

AY pB X Cq “ pAYBq X pAY Cq

AX pB Y Cq “ pAXBq Y pAX Cq

The first four rules are mostly obvious, but we should use Venn diagrams to convince ourselves
that the distributive laws are true. We can draw the sets A,B,C Ď U as follows:
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Then the first distributive law is proved by the following diagrams:

You should verify the second distributive law for yourself. I remember the distributive laws
by thinking about addition and multiplication of numbers:

aˆ pb` cq “ paˆ bq ` paˆ cq.

However, this analogy is limited because there is a symmetry between Y and X that does not
exist between ` and ˆ. Indeed, the other distributive law for numbers is false:

a` pbˆ cq ‰ pa` bq ˆ pa` cq.

There are infinitely many more algebraic properties of sets, but it turns out that any true
formula involving the operations Y,X,1 can be derived from the 5 basic rules above. In the
next section we will discuss the important de Morgan’s Law:

pAYBq1 “ A1 XB1 and pAXBq1 “ A1 YB1.

2.2 Logic

It is impossible to discuss set theory without also discussing logic. For example, we already
used the logical operations “FOR ALL”, “IF. . . THEN”, “OR”, “AND” and “NOT” when we
defined the basic operations on sets:

“A Ď B” “ “FOR ALL x P U, IF x P A THEN x P B,”
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AYB “ tx P U : x P A OR x P Bu,

AXB “ tx P U : x P A AND x P Bu,

A1 “ tx P U : NOT x P Au.

You didn’t get confused at the time because you thought I was speaking English. But these
words in capital letters are not English at all. They are formal mathematical concepts that
need to be defined precisely. We will do that in this section.

Just as sets are the basic objects of set theory, statements are the main objects of logic. Since
these two concepts are so basic it is hard to define them precisely. Recall that I defined a set
as a “collection of things”. The definition of statements is similarly vague.

Definition of Statements

A statement12 is a “sentence that has a definite truth value”. To be more precise, we say
that P is a statement if

P “ T or P “ F, but not both.

The symbols T and F are supposed to represent “true” and “false”.

This definition necessarily restricts the domain of logic because most (all?) English sentences
are not statements. Here are some examples:

• Let n P Z be an integer. The sentence

P ““n is even”

is a statement. I don’t know if “n is even”“ T or “n is even”“ F , but it is definitely
one of them, and not both. You can think of P as a Boolean variable: P P tT, F u.

• The following sentence is not a statement:

“today is a nice day”

You and I might agree that “today is a nice day”“ T , but someone else might disagree
with us and we have no basis on which to prove them wrong. Statements can only be
discussed in a context where there are clear rules for deciding on the correct answer.

• The sentences “1` 2 “ 3” and “1` 2 “ 4” are both statements because

“1` 2 “ 3” “ T and “1` 2 “ 4” “ F.

• What about this one?
12When we are being careful we will call this a mathematical statement, or a logical statement.
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“this sentence is not a statement”

We will try to avoid sentences like this.

Now we are ready to define the basic operations of logic. If P and Q are statements, then the
following expressions are also statements:

P OR Q, P ANDQ, NOT P.

We just have to decide what their truth values should be for the different values of P and Q.
Since P P tT, F u there are only 4 “ 22 possible ways to define NOT P :

P p1q p2q p3q p4q

T T T F F
F T F T F

Which of these most closely agrees with your understanding of the word “NOT”? I agree that
the correct answer is (3). Furthermore, since P,Q P tT, F u there are exactly 16 “ 24 different
ways to define the statement P OR Q:

P Q p1q p2q p3q p4q p5q ¨ ¨ ¨ p16q

T T T T T T T ¨ ¨ ¨ F
T F T T T T F ¨ ¨ ¨ F
F T T T F F T ¨ ¨ ¨ F
F F T F T F T ¨ ¨ ¨ F

Which of these most closely agrees with your understanding of the word “OR”? This time it
will take you longer to decide, but eventually you will agree with me that the correct answer is
(2). The expression P ANDQ must also be defined by one of these 16 columns. After thinking
for a bit we arrive at the following definition.

Definition of OR,AND,NOT Using Truth Tables

Let P,Q P tT, F u be statements. Then the statement NOT P is defined as follows:

P NOT P

T F
F T
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Furthermore, the statements P OR Q and P ANDQ are defined as follows:

P Q P OR Q P ANDQ

T T T T
T F T F
F T T F
F F F F

These kinds of arrays are called truth tables. You can think of NOT as a “flipper”, OR
as a “T -detector”, and AND as an “F -detector”.

If we identify the logical operations OR,AND,NOT with the set operations Y,X,1 then I claim
that the algebra of logic satisfies exactly the same rules as the algebra of sets. As an exercise
in these definitions, let us verify the second distributive law:

P AND pQ OR Rq “ pP ANDQq OR pP ANDRq

Since there are exactly 8 “ 23 ways to choose the values of P,Q,R P tT, F u our truth table
must have 8 rows:13

P Q R Q OR R P AND pQ OR Rq P ANDQ P ANDR pP ANDQq OR pP ANDRq

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

We observe that the fifth and eighth columns are equal.

As you can see, the word notations OR,AND,NOT get to be quite cumbersome. Therefore
we will adopt the following symbolic notations from now on:

OR “ _, AND “ ^ and NOT “  .

Let us return to de Morgan’s Law using this new language.

De Morgan’s Law

13The ordering of the rows doesn’t matter but you should try to be consistent.
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For all statements P and Q I claim that

 pP _Qq “  P ^ Q and  pP ^Qq “  P _ Q.

You will prove these identities on the homework using a truth table. But I claim that the
identities are obvious if we look at them from a certain point of view. The key is to first
generalize the statement by induction. For any sequence of statements P1, P2, . . . , Pn I claim
that the following properties hold:

 pP1 _ P2 _ ¨ ¨ ¨ _ Pnq “  P1 ^ P2 ^ ¨ ¨ ¨ ^  Pn,

 pP1 ^ P2 ^ ¨ ¨ ¨ ^ Pnq “  P1 _ P2 _ ¨ ¨ ¨ _  Pn.

Proof by Induction. The proof is the same for both statements, so we will only prove the
first. Let’s say that the base case is n “ 2, which you have already proved. Now fix some
n ě 2 and assume for induction that

 pP1 _ P2 _ ¨ ¨ ¨ _ Pnq “  P1 ^ P2 ^ ¨ ¨ ¨ ^  Pn.

For convenience let us define Q :“ P1 _ P2 _ ¨ ¨ ¨ _ Pn. Then we also have

 pP1 _ P2 _ ¨ ¨ ¨ _ Pn`1q “  pQ_ Pn`1q

“  Q^ Pn`1 case n “ 2

“  pP1 _ P2 _ ¨ ¨ ¨ _ Pnq ^  Pn`1

“  P1 ^ P2 ^ ¨ ¨ ¨ ^  Pn ^ Pn`1.

˝

Let’s think a bit about the compound statements:

n
ł

i“1

Pi :“ P1 _ P2 _ ¨ ¨ ¨ _ Pn,

n
ľ

i“1

Pi :“ P1 ^ P2 ^ ¨ ¨ ¨ ^ Pn.

I claim that these are easier than they look. Indeed, since OR “ _ is a “T -detector”, the
compound statement

P1 OR P2 OR ¨ ¨ ¨ OR Pn “ P1 _ P2 _ ¨ ¨ ¨ _ Pn

has the value T when at least one of the statements Pi is true. We have a special notation
for this, called the existential quantifier D:

n
ł

i“1

Pi “ pDi P t1, 2, . . . , nu, Piq
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“ “there exists some i P t1, 2, . . . , nu such that Pi is true”.

Similarly, since AND “ ^ is an “F -detector”, the compound statement

P1 ANDP2 AND ¨ ¨ ¨ ANDPn “ P1 ^ P2 ^ ¨ ¨ ¨ ^ Pn

has the value T only if all of the statements Pi are true. To express this we use the universal
quantifier @:

n
ľ

i“1

Pi “ p@i P t1, 2, . . . , nu, Piq

“ “for all i P t1, 2, . . . , nu the statement Pi is true”.

And what does this have to with de Morgan’s Law? By rewriting the extended de Morgan’s
Law in terms of the quantifiers D and @ we obtain the following:

 

˜

n
ł

i“1

Pi

¸

“

n
ľ

i“1

 Pi,

 pDi P t1, . . . , nu, Piq “ p@i P t1, . . . , nu, Piq,

“there does not exist any i such that Pi is true” “ “Pi is false for all i”.

The other version says:

 

˜

n
ľ

i“1

Pi

¸

“

n
ł

i“1

 Pi,

 p@i P t1, . . . , nu, Piq “ pDi P t1, . . . , nu, Piq,

“it is not the case that Pi is true for all i” “ “there exists some i such that Pi is false”.

When you put it like that, de Morgan’s Law seems pretty obvious. The following definition
formalizes this intuition.

Quantifiers and de Morgan’s Law

Let S be a set and for each element x P S let P pxq be a statement. Then we define the
existential (D) and universal (@) quantifiers as follows:

rDx P S, P pxqs “ “there exists some x P S such that P pxq is true”,

r@x P S, P pxqs “ “P pxq is true for all x P S”,

Then we have the following abstract version of de Morgan’s Law:

 rDx P S, P pxqs “ r@x P S, P pxqs ,
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 r@x P S, P pxqs “ rDx P S, P pxqs .

We have now defined five logical operators:

OR “ _, AND “ ^, NOT “  , EXISTS “ D, FORALL “ @.

And we have discussed the “algebraic relations” among them; namely, the five basic rules of
Boolean algebra together with de Morgan’s Law ( D “ @ ). But we still have not formalized
the words “IF . . .THEN”. I will just tell you the definition and then try to explain it.

Definition of Material Implication

Let P and Q be statements. Then we define a new statement P ñ Q with the following
truth table:

P Q P ñ Q

T T T
T F F
F T T
F F T

In words, we will read this as

P ñ Q “ “IF P THEN Q” “ “P IMPLIES Q”.

Don’t hurt your brain trying to make sense of this in terms of English. I think it only makes
sense if we translate the definition into set theory. Let A,B Ď U be subsets of the universal
set. Recall that the notion of “subset” is defined in terms of the universal quantifier (@) and
material implication (ñ):

“A Ď B” “ “FORALL x P U, x P A IMPLIES x P B2,

“A Ď B” “ “@x P U, x P Añ x P B”.

Then applying de Morgan’s Law gives

 “A Ď B” “ “@x P U, x P Añ x P B”,

“A Ę B” “ “Dx P U, px P Añ x P Bq”.

On the other hand, it is pretty clear that we should have

“A Ę B” “ “EXISTS x P U, x P A AND NOT x P Bq”,
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“A Ę B” “ “Dx P U, x P A^ x P B”.

Indeed, consider the following diagram:

By comparing the two expressions for “A Ę B” we must have

 px P Añ x P Bq “ x P A^ x P B,

and more generally for any two statements P,Q we should have

 pP ñ Qq “ P ^ Q,

P ñ Q “  pP ^ Qq

“  P _ p Qq de Morgan’s Law

“  P _Q.

Does this agree with the definition of P ñ Q that I gave above? Let’s check the truth table:

P Q  P  P _Q P ñ Q

T T F T T
T F F F F
F T T T T
F F T T T

Yes it does. I don’t ask you to feel that this is true.14 I just ask you to memorize the Boolean
definition of implication:

P ñ Q :“  P _Q.

2.3 Functions

We have seen the definition of the “logical connectives” OR,AND,NOT in terms of truth
tables, but in order to apply these to the design of computers we need to think of them as
certain kinds of functions. In order to give the formal definition I must first define a new
construction on sets.

14The definition of implication is the place where formal logic diverges most from natural languages such as
English. The biggest controversy has to do with the implications pF ñ T q “ T and pF ñ F q “ T . In practice
these will never come up.
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Definition of the Cartesian Product of Sets

Let S and T be sets. For any two elements s P S and t P T we may consider the ordered
pair ps, tq. This is sort of like a set with two elements, but where order matters. Then
we define the Cartesian product of S and T as the set of ordered pairs:

S ˆ T :“ tps, tq : s P S and t P T u.

For example, let S “ ta, bu and T “ tp, q, ru. Then the Cartesian product is given by

S ˆ T “ tpa, pq, pa, qq, pa, rq, pb, pq, pb, qq, pb, rqu.

Sometimes it is more meaningful to think of this set as a “rectangular array”:

If S and T are finite sets, then by counting the cells in the rectangle we obtain

#pS ˆ T q “ #S ¨#T.

This explains why we call it the Cartesian product. Now I can give the formal definition of
a function.

Definition of Functions

Let S and T be sets and let us think of each element ps, tq P S ˆ T of the Cartesian
product as an “arrow” from s to t. Let f Ď S ˆ T be a set of arrows and consider the
following four properties:

(1) For each s P S there exists at most one t P T such that ps, tq P f .

(2) For each s P S there exists at least one t P T such that ps, tq P f .

(3) For each t P T there exists at most one s P S such that ps, tq P f .

(4) For each t P T there exists at least one s P S such that ps, tq P f .

We say that f is a function if it satisfies (1) and (2). In this case, for each s P S there
exists exactly one t P T such that ps, tq P f . Since this element t is unique we will give
it a special name:

fpsq “ t ðñ ps, tq P f.
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If f Ď S ˆ T is a function then we will write f : S Ñ T . If f (1),(2),(3) we call it an
injective function (or one-to-one). If f satisfies (1),(2),(4) we call it a surjective function
(or onto). Finally, if f satisfies all four properties (1), (2), (3), (4) then we call it a
bijective function (or a one-to-one correspondence).

That definition is a lot to unpack, so let us look at some examples. First consider the sets
S “ ta, b, cu and T “ tp, q, r, su. Then the following set of arrows f Ď S ˆ T is a function:

Indeed, the numbers on the left show that each element of S has exactly one arrow. This
allows us to write fpaq “ r, fpbq “ r and fpcq “ p. However, the following set of arrows
g Ď S ˆ T is not a function:

In this case g satisfies (2) but it does not satisfy (1). Indeed, the 2 on the left indicates that
there are two arrows coming out of a. This means that we cannot define gpaq uniquely.

Now let’s look at different kinds of functions. In order to determine if a function f : S Ñ T
is injective or surjective we count the arrows coming into each element of T . If all of the
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numbers are ď 1 then the function is injective. If all of the numbers are ě 1 then the function
is surjective. If all of the numbers are “ 1 then the function is bijective:

You may have noticed that the size of the sets puts restrictions on the kinds of functions that
can exist. You will prove the following properties on the homework:

• If there exists an injection S Ñ T then #S ď #T .

• If there exists a surjection S Ñ T then #S ě #T .

• If there exists a bijection S Ñ T then #S “ #T .

Sometimes this is a very convenient way to prove that two sets have the same size. For
example, on the homework you will prove that for any set S there exists a bijection between
the following two sets:

tsubsets of Su ÐÑ tfunctions S Ñ tT, F uu.
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Then you will use this bijection to conclude that

#tsubsets of Su “ #tfunctions S Ñ tT, F uu “ 2#S .

Sometimes the Cartesian product set S ˆ T can be visualized. In this case we can visualize
a function f : S Ñ T as a subset of S ˆ T . For example, let R be the set of real numbers
and let f : RÑ R be the function defined by the formula fpxq :“ x2 ´ 2. Then each “arrow”
px, x2 ´ 2q of the function corresponds to a “point” in the Cartesian plane R2 :“ Rˆ R:

f “ tpx, x2 ´ 2q : x P Ru Ď Rˆ R.

You are probably familiar with this set as the graph of the function. In this case the graph
looks like a parabola:

If f Ď RˆR is an arbitrary set of points in the Cartesian plane then we can rephrase the four
properties as follows:

(1) Each vertical line intersects f in at most one point.

(2) Each vertical line intersects f in at least one point.

(3) Each horizontal line intersects f in at most one point.

(4) Each horizontal line intersects f in at least one point.

If (1) and (2) hold (called the “vertical line test”) then f is the graph of a function. The
“horizontal line test” tells us if this function is injective or surjective. In the case of f “
tpx, x2 ´ 2q : x P Ru we see that the function is not injective because many horizontal lines
intersect the graph in two points. Furthermore, this function is not surjective because many
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horizontal lines intersect the graph in zero points.15 If follows that the function fpxq “ x2´ 2
is not invertible. We can generalize this situation as follows.

Existence of Inverse Functions

Let S and T be sets and consider a function with graph f Ď SˆT . We define the “inverse
graph” by reversing all the arrows:

f´1 :“ tpt, sq : ps, tq P fu Ď T ˆ S.

But the set f´1 is not always the graph of a function T Ñ S. I claim that

f´1 is the graph of a function ðñ f is the graph of a bijective function.

In other words, the function f is invertible if and only if it is bijective.

Proof. Since f is a function S Ñ T we know that (1) and (2) hold. Then we have

f´1 is a function ðñ (3) and (4) hold

ðñ f is bijective.

˝

Finally, let us return to the “logical connectives” OR,AND,NOT. These are examples of
functions defined between sets of the form

tT, F un “ tT, F u ˆ tT, F u ˆ ¨ ¨ ¨ ˆ tT, F u
looooooooooooooooooomooooooooooooooooooon

n times

“ tordered words of length n from the alphabet tT, F uu.

Definition of Boolean Functions

A Boolean function with m inputs and n outputs is defined as a function from the set
tT, F um to the set tT, F un:

f : tT, F um Ñ tT, F un.

15Sometimes we improve the properties of a graph by restricting the domain and codomain. For example,
“tangent function” tan : R Ñ R is not actually a function because it is not defined when x “ π{2 ` kπ. It
becomes a function (in fact, a bijective function) when we restrict the domain to tan : p´π{2, π{2q Ñ R. The
function sin : R Ñ R is not surjective or injective. We can make it both by restricting the domain and the
codomain to sin : r´π{2, π{2s Ñ r´1, 1s.
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For example, here are our three favorite Boolean functions:

And what does the graph of a Boolean function look like? In fact, the graph of a Boolean
function is just a truth table. Think about it.

2.4 Logic Circuits

At the beginning of this chapter I drew a picture of a simple computer:

Now I can tell you that a simple computer is the same thing as a Boolean function with m
inputs and n outputs. However, instead of the set tT, F u to represent true and false, we use
the set t1, 0u to represent high voltage and low voltage.

In this section I will show you how to build a useful computer. The simplest thing we might
want to do is add two numbers. Let x, y P t0, 1u be any two “1-bit numbers”. Then we have
the following table:

x y x` y

1 1 ?
1 0 1
0 1 1
0 0 0
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Unfortunately, there is no amount of voltage that can represent the number 2. Instead we will
use the following scheme, which was advocated by Leibniz in the early 1700s.

Binary Expansion

Let n ě 0 be any non-negative integer. Then there exists a unique sequence of numbers
r0, r1, r2, . . . from the set t0, 1u such that

n “
8
ÿ

i“0

ri ¨ 2
i “ r0 ` 2r1 ` 4r2 ` 8r3 ` ¨ ¨ ¨ .

In this case we will write
n “ p¨ ¨ ¨ r3r2r1r0q2

and call this the binary expansion of n. (Compare this to the usual decimal expansion,
which uses the base 10 instead of 2.) The number ri is called the i-th bit of n (short for
binary digit). As with the decimal notation, we can stop after the highest non-zero bit.

Proof. We will prove a more general result in the next chapter. ˝

For example, here are the binary expansions of the numbers 0 through 7. Maybe you recognize
these expansions from our constant use of truth tables:

number binary expansion

7 p111q2
6 p110q2
5 p101q2
4 p100q2
3 p011q2
2 p010q2
1 p001q2
0 p000q2

From now on we will omit the parentheses and the subscript 2 from the notation. Now we see
that the sum of two “1-bit numbers” can be a “2-bit number”:

1` 1 “ 10.

Here is the full table:
x y x` y

1 1 10
1 0 01
0 1 01
0 0 00
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Technically speaking, this table is the graph of a binary function ` : t0, 1u2 Ñ t0, 1u2 with 2
inputs and 2 outputs. Here is a picture:

Now we want to build this computer. In other words, we want to find a Boolean expression
for each bit of the output. The first bit is easy; it’s just x ^ y, which can also be thought of
as binary multiplication:

x y x^ y xy 1st bit of x` y

1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

The second bit is harder. It can be thought of as binary addition, or addition mod 2. We will
denote this with the special symbol ‘:

x y x‘ y 2nd bit of x` y

1 1 0 0
1 0 1 1
0 1 1 1
0 0 0 0

But we would prefer to express this in terms of the standard functions _,^, . We can do
this by thinking of the truth table as a Venn diagram:

If we think of x and y as sets, then the two shaded regions are x X y1 and x1 X y, hence the
name of the shaded area is px X y1q Y px1 Y yq. Alternatively, we can express this region as
pxY yq X pxX yq1. Thus we have the following two expressions:

x‘ y “ px^ yq _ p x^ yq

“ px_ yq ^  px^ yq.
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In terms of logic we call this the exclusive or function:

P XORQ :“ pP AND NOT Qq OR pQAND NOT P q

:“ pP OR QqAND NOT pP ANDQq

“ “P or Q but not both”.

Next let me show you how to draw pictures of these functions.

Pictures for Boolean Functions (Logic Gates)

We have the following pictures for the three basic Boolean functions:

These pictures are called logic gates. Presumably and electrical engineer would know
how to build physical versions of these.

We can wire together logic gates to create a picture of any Boolean function. For example,
here are two different pictures of the XOR function:
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Pictures of this kind are called logic circuits. Finally, we can draw a logic circuit for the binary
adder:

We have designed our first computer, but it is pretty humble. Let me end this section by
showing you how to add three bits instead of two! Since the largest sum of three bits is
1` 1` 1 “ 11, this will be a Boolean function with 3 inputs and 2 outputs:

x y z x` y ` z

1 1 1 11
1 1 0 10
1 0 1 10
1 0 0 01
0 1 1 10
0 1 0 01
0 0 1 01
0 0 0 00

Here are Venn diagrams for the 1st bit and the 0th bit of x` y ` z:

There are many ways to express these in terms of _,^, but the easiest method is called the
disjunctive normal form. Here we just name the shaded regions and then sum them up:16

1st bit “ px^ y ^ zq _ px^ y ^ zq _ px^ y ^ zq _ p x^ y ^ zq,

16The name “disjunctive normal form” comes from the fact that _ is sometimes called “disjunction”. There
is also a “conjunctive normal form” which expressed the unshaded regions of the Venn diagram.

52



2nd bit “ px^ y ^ zq _ px^ y ^ zq _ p x^ y ^ zq _ p x^ y ^ zq.

In order to simplify the diagram we will use the fact that _ and ^ are associative operations
to define extended AND and OR gates. For example, here is an AND gate with three inputs:

Finally, we can draw a logic circuit for the sum of three bits:
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On the homework you will draw a more efficient version of this circuit.

2.5 Abstract Boolean Algebra

We have seen three languages that satisfy the same abstract properties:

• the algebra of sets,

• the algebra of logic,

• binary arithmetic.

The contribution of George Boole in the 1850s was to recognize the common features of these
three languages. Within a few generations, other mathematicians such as Charles Saunders
Peirce and Ernst Schröder formalized Boole’s ideas to obtain the following definition.

Definition of Abstract Boolean Algebra

A Boolean algebra is a set B together with three functions

_ : B ˆB Ñ B called join,

^ : B ˆB Ñ B called meet,

 : B Ñ B called complement,

and two special elements 0 ‰ 1 P B called zero and one, which satisfy the following rules:

(1) Associaive Laws. For all , a, b, c P B we have

a^ pb^ cq “ pa^ bq ^ c

a_ pb_ cq “ pa_ bq _ c

(2) Commutative Laws. For all a, b P B we have

a_ b “ b_ a

a^ b “ b^ a

(3) Properties of 0 and 1. For all a P B we have

a_ 0 “ a

a^ 1 “ a

(4) Properties of Complement. For all a P B we have

a_ a “ 1

a^ a “ 0

(5) Distributive Properties. For all a, b, c P B we have
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a_ pb^ cq “ pa_ bq ^ pa_ cq

a^ pb_ cq “ pa^ bq _ pa^ cq

What are the advantages of this very abstract definition? There are at least two. The first
advantage is that computers don’t understand human things like Venn diagrams and logical
arguments. The language of Boolean algebra is purely formal and easy to teach to a computer.
The second advantage is that it allows us humans to make fewer mistakes by converting the
analysis of arguments into the mechanical manipulation of symbols.

Beginning with the five axioms, we can prove other properties, called theorems. A theorem
is any true equation that can be obtained by successively applying the axioms. To end this
chapter I will show you a formal proof of de Morgan’s Laws. In order to shorten the process
let me make first make the following observation.

The Duality Principle

We observe that the five rules of Boolean algebra remain the same after we switch

_ Ø ^ and 0 Ø 1.

Thus any theorem obtained from the axioms is still true after we make these switches.
This gives us two theorems for the price of one proof.

(6) Idempotence. For all a P B we have

a_ a “ a

a^ a “ a

Proof. In view of the Duality Principle, we need only prove the first statement. At each step
I will quote the rule that I used:

a “ a_ 0 p3q

“ a_ pa^ aq p4q

“ pa_ aq ^ pa_ aq p5q

“ pa_ aq ^ 1 p4q

“ a_ a p3q

˝

(7) Complementarity of 0 and 1. We have
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 0 “ 1

 1 “ 0

Proof. Again, we only need to prove the first statement:

 0 “  0_ 0 p3q

“ 0_ 0 p2q

“ 1 p4q

˝

(8) I don’t have a good name for this. For all a P B we have

a_ 1 “ 1

a^ 0 “ 0

Proof. We have

a_ 1 “ a_ pa_ aq p4q

“ pa_ aq _  a p1q

“ a_ a p6q

“ 1 p4q

˝

Notice that we used (6) in the proof of (8). That’s okay. Each theorem is considered as a new
rule that we can use in future proofs.

(9) Absorption Properties. For all a, b P B we have

a_ pa^ bq “ a

a^ pa_ bq “ a

Proof. We have

a_ pa^ bq “ pa^ 1q _ pa^ bq p3q

“ a^ p1_ bq p5q

“ a^ 1 p2q, p8q

“ a p3q

˝

(10) Cancellation. For all a, b, c P B we have
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a^ c “ b^ c and a_ c “ b_ c imply a “ b.

Proof. To begin, we assume that a^ c “ b^ c and a_ c “ b_ c. It follows that

a “ a_ pa^ cq p9q

“ a_ pb^ cq by assumption

“ pa_ bq ^ pa_ cq p5q

“ pa_ bq ^ pb_ cq by assumption

“ b_ pa^ cq p2q, p5q

“ b_ pb^ cq by assumption

“ b p9q

˝

(11) Uniqueness of Complements. For all a, b P B we have

a^ b “ 0 and a_ b “ 1 imply b “  a.

Then by setting a “  b we obtain b “   b.

Proof. To begin, we assume that a^ b “ 0 and a_ b “ 1. Then we have

a^ b “ 0 by assumption

“ a^ a p4q

and

a_ b “ 1 by assumption

“ a_ a p4q

It follows from (10) that b “  a. Finally, since (4) tell us that  b^ b “ 0 and  b_ b “ 1, we
conclude that b “   b. ˝

(12) De Morgan’s Laws. For all a, b P B we have

 pa_ bq “  a^ b

 pa^ bq “  a_ b

Proof. By the Duality Principle we only need to prove the first statement  pa_bq “  a^ b.
By (11) it is enough to show that pa _ bq ^ p a ^  bq “ 0 and pa _ bq _ p a ^  bq “ 1. To
establish these two equations, note that

pa_ bq ^ p a^ bq “ rp a^ bq ^ as _ rp a^ bq ^ bs p2q, p5q
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“ r b^ pa^ aqs _ r a^ pb^ bqs p1q, p2q

“ p b^ 0q _ p a^ 0q p4q

“ 0_ 0 p8q

“ 0 p3q or p6q

and

pa_ bq _ p a^ bq “ rpa_ bq _  as ^ rpa_ bq _  bs p5q

“ rpa_ aq _ bs ^ rpb_ bq _ as p1q, p2q

“ p1_ bq ^ p1_ aq p4q

“ 1^ 1 p2q, p8q

“ 1 p3q or p6q

˝

That may have seemed extremely technical, but even this proof is still expressed in a language
that is readable by humans. If we don’t care about readability, then the whole business of
Boolean algebra can be expressed in terms of the NAND operator

a Ò b :“  pa^ bq “ “NOT (a AND b)”.

You will prove on the homework that every Boolen function can be expressed purely in terms of
NAND. What happens if we express the axioms in terms of NAND? Apparently, it is possible
to define Boolean algebra with just one axiom:17

ppa Ò bq Ò cq Ò pa Ò ppa Ò cq Ò aqq “ c.

2.6 Worked Exercises

2.1. Use a truth table to verify de Morgan’s laws:

 pP ^Qq “  P _ Q and  pP _Qq “  P ^ Q.

Solution. Observe that the 4th and 7th columns in each truth table are are equal:

P Q P _Q  pP _Qq  P  Q  P ^ Q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

17This is called Wolfram’s axiom.
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P Q P ^Q  pP ^Qq  P  Q  P _ Q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

2.2. Compute the disjunctive normal form of the following Boolean function. Use this to
draw a circuit diagram for the function.

P Q R fpP,Q,Rq

T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F T

Solution. We can view the truth table as a Venn diagram:

Note that there are four shaded regions corresponding to T . We name each region using ^, 
and then we combine them using _:

fpP,Q,Rq “ pP ^Q^ Rq _ pP ^ Q^Rq _ p P ^Q^ Rq _ p P ^ Q^ Rq.

Here is a picture of the corresponding logic circuit:
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Maybe we could simplify this circuit, but not very much.

2.3. Let B be a Boolean algebra. For all P,Q P B we define the Sheffer stroke as follows:

P Ò Q :“  pP ^Qq.

Use abstract Boolean algebra to prove the following identities. Don’t use truth tables!

(a)  P “ P Ò P

(b) P _Q “ pP Ò P q Ò pQ Ò Qq

(c) P ^Q “ pP Ò Qq Ò pP Ò Qq

In logic the Sheffer stroke is called NAND. Since any circuit can be built from OR, AND,
NOT gates (by the disjunctive normal form) it follows that any circuit can be built entirely
from NAND gates. This is how solid state drives work.

Solution. (a) From property (6) of Boolean algebras we have P ^ P “ P . Hence

P Ò P “  pP ^ P q “  P.

(b) By combining (a), (11) and (12) we obtain

pP Ò P q Ò pQ Ò Qq “ p P q Ò p Qq

“  p P ^ Qq

“   P _  Q

“ P _Q.
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(c) By combining (a) and (11) we obtain

pP Ò Qq Ò pP Ò Qq “  pP Ò Qq “  p pP ^Qqq “ P ^Q.

Application: Here are the standard logic gates in terms of NAND gates:

2.?. Given x, y, z P t0, 1u let b1, b0 P t0, 1u be defined by x`y` z “ b1`2b0. Use truth tables
or Boolean algebra to show that

b0 “ x‘ y ‘ z and b1 “ px^ yq _ px^ zq _ py ^ zq.

Use these formulas to draw a simpler circuit to compute the sum of three bits.

2.4. Let f : S Ñ T be a function of finite sets and for all t P T define the number

dptq :“ #ts P S : fpsq “ tu.

We say that f is injective if dptq ď 1 for all t P T , surjective if dptq ě 1 for all t P T and
bijective if dptq “ 1 for all T .

(a) If f : S Ñ T is injective prove that #S ď #T .

(b) If f : S Ñ T is subjective prove tha #S ě #T .
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(c) If f : S Ñ T is bijective prove that #S “ #T .

[Hint: Observe that
ř

tPT dptq “ #S because
ř

tPT dptq is the total number of arrows and a
function has exactly one arrow for each element of the domain S.]

(a) If f : S Ñ T is injective then since dptq ď 1 for all t P T we have

#S “
ÿ

tPT

dptq ď
ÿ

tPT

1 “ #T.

(b) If f : S Ñ T is surjective then since dptq ě 1 for all t P T we have

#S “
ÿ

tPT

dptq ě
ÿ

tPT

1 “ #T.

(a) If f : S Ñ T is bijective then since dptq “ 1 for all t P T we have

#S “
ÿ

tPT

dptq “
ÿ

tPT

1 “ #T.

Alternatively, since f is both injective and surjective we have #S ď #T and #S ě #T , hence
#S “ #T .

2.5. Let S and T be finite sets. Explain why there are #T#S different functions from S to T .

To define a function we need to specify an element fpsq P T for each element s P S. Since
there are #T possible choices for each fpsq and since these choices are completely arbitrary,
the total number of choices is

#T ˆ#T ˆ ¨ ¨ ¨ ˆ#T
looooooooooooomooooooooooooon

#S times

“ p#T q#S .

2.6. This problem is about counting subsets.

(a) Explicitly write down all of the subsets of t1, 2, 3u.

(b) Explicitly write down all of the functions t1, 2, 3u Ñ tT, F u.

(c) For any finite set S describe a bijection between the subsets of S and the functions from
S Ñ tT, F u.

(d) Combine Exercises 2.4(c), 2.5 and 2.6(c) to count the subsets of S.

(a) Here are the subsets:
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(b) Here are the functions:

(c) Note that there is a bijection (one-to-one correspondence) between the subsets (a) and the
functions (b). More generally, let S be any finite set. Then for any subset A Ď S we define a
function fA : S Ñ tT, F u as follows:

fApsq :“

#

T if s P A,

F if s R A.

Conversely, for any function f : S Ñ tT, F u we define a subset Sf Ď S as follows:

Sf :“ ts P S : fpsq “ T u.
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Since the functions A ÞÑ fA and f ÞÑ Sf are inverses we obtain a bijection

tsubsets of Su ÐÑ tfunctions S Ñ tT, F uu.

(d) Finally, by combining 2.4(c), 2.5 and 2.6(c) we obtain

#tsubsets of Su “ #tfunctions S Ñ tT, F uu “ p#tT, F uq#S “ 2#S .

Intuition: A subset of S is just a sequence of binary choices. For each of the #S elements we
need to decide if it is “in” or “out”. The total number of choices is

2ˆ 2ˆ ¨ ¨ ¨ ˆ 2
loooooooomoooooooon

#S times

“ 2#S .

2.7. This problem is about bijections from a set to itself. These are called permutations.

(a) How many functions are there from t1, 2, 3u to t1, 2, 3u? (Don’t write them down.)

(b) How many of the functions from part (a) are bijections? Write them all down.

(c) If S is a set of size n, tell me the number of bijections S Ñ S.

(a) From Exercise 2.5 we know that the number of functions t1, 2, 3u Ñ t1, 2, 3u is

p#t1, 2, 3uqp#t1,2,3uq “ 33 “ 27.

(b) The number of bijections t1, 2, 3u Ñ t1, 2, 3u is 6. Here they are:

(c) If #S “ n then the number of bijections S Ñ S is n!. Indeed, let S “ t1, 2, . . . , nu. If
f : S Ñ S is a bijection then we have n ways to choose the number fp1q. Say fp1q “ i. Then
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since f is injective we must have fp2q ‰ i. Thus there are only n´1 ways to choose fp2q. Say
fp2q “ j ‰ i. Again, since f is injective we must have fp3q “ k R ti, ju. Thus there are only
n´ 2 ways to choose fp3q. Continuing in this way, we find that the total number of choices is

n
loomoon

1st choice

ˆ n´ 1
loomoon

2nd choice

ˆ n´ 2
loomoon

3rd choice

ˆ ¨ ¨ ¨ ˆ 1
loomoon

nth choice

“ n!.

3 Arithmetic

In the previous chapter we discussed the foundations of logic and their application to the
design of computers. But what will you do with a computer? In this chapter we will discuss
the concept of “numbers” and I will present some the basic algorithms of arithmetic. The
principle of induction will again play a central role.

This chapter also contains a short introduction to “number theory”, which used to be called
“higher arithmetic”. This is the study of prime numbers and divisibility. Since the early
1600s, number theory was regarded as recreational mathematics. Since the 1970s, it plays a
central role in public key cryptography. I will present the most famous cryptosystem (the RSA
cryptosystem) and the mathematical theorem that makes it work (Fermat’s Little Theorem).

3.1 The Integers

We all have an intuitive understanding of numbers, but in this section I will give a formal
definition. To be specfic, I will give you a list of axioms for the so-called “integers”:

Z “ t. . . ,´2,´1, 0, 1, 2, . . .u.

These axioms emerged in the 1880s in the work of Richard Dedekind18 and Giuseppe Peano.19

(Note that this was a few decades after George Boole’s work on symbolic logic.) Most of
the following rules are obvious, but pay close attention to axiom (6), called the well-ordering
principle. This axiom is logically equivalent to the principle of induction and we will discuss
it further in the next section.

Definition of Integers

The system of integers pZ,“,ă,`,ˆ, 0, 1q consists of

a set Z,

an equivalence relation “ “ ” Ď Z2,20

an order relation “ ă ” Ď Z2,

two binary operations `,ˆ : Z2 Ñ Z called addition and multiplication,

18Dedekind, Was sind und was sollen die Zahlen [What are numbers and what should they be?] (1888).
19Peano, Arithmetices principia, nova methodo exposita [The principles of arithmetic presented by a new

method] (1889).
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two special elements 0, 1 P Z called zero and one,

which satisfy the following rules:

(1) Definition of “ and ă. For all a, b, c P Z we have

a “ a

a “ b implies b “ a

a “ b implies a` c “ b` c and ac “ bc

a “ b and b “ c imply a “ c

a ă b and b ă c imply a ă c

exactly one of a ă b, a “ b or b ă a is true21

(2) Properties of Addition. For all a, b, c P Z we have

a` 0 “ a

a` b “ b` a

a` pb` cq “ pa` bq ` c

there exists “´ a” P Z such that a` p´aq “ 0

(3) Properties of Multiplication. For all a, b, c P Z we have

1a “ a

ab “ ba

apbcq “ pabqc

(4) The Distributive Law. For all a, b, c P Z we have

apb` cq “ ab` ac

(5) Laws of Order. For all a, b, c P Z we have

0 ă 1

a ă b implies a` c ă b` c

if a ă b and 0 ă c then ac ă bc.

(6) The Well-Ordering Principle. Any non-empty set of integers that is bounded below
has a least element. To be precise: We say that S Ď Z is bounded below if Db P Z
satisfying b ď a for all a P S. If such b exists and if S ‰ H then there exists a least
element m P S satisfying m ď a for all a P S.22
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You may feel that some important properties are missing, but I claim that every true fact
about whole numbers is implied by these axioms. To show you how this works, I will develop
the theory up to the point of “multiplicative cancellation”.

Throughout the proofs I will use the property (1) without comment. I will also often use the
commutative laws a` b “ b` a and ab “ ba without comment.

(7) Uniqueness of Negatives. For all a P Z the element ´a is unique. In other words, if b P Z
satisfies a` b “ 0 then b “ ´a. It follows from this that ´p´bq “ b.

Proof. Suppose that we have a` b “ 0. Then I claim that b “ ´a. Indeed,

a` b “ a` p´aq

p´aq ` pa` bq “ p´aq ` pa` p´aqq

pp´aq ` aq ` b “ pp´aq ` aq ` p´aq p2q

0` b “ 0` p´aq p2q

b “ ´a p2q

For the second statement we put a :“ ´b. Then a` b “ 0 implies b “ ´a “ ´p´bq. ˝

Property (7) allows us to define subtraction: for all a, b P Z we set

“a´ b” :“ a` p´bq.

(8) Additive Cancellation. For all a, b, c P Z we have

a` c “ b` c implies a “ b.

Proof. If a` c “ b` c then we have

a` c “ b` c

pa` cq ´ c “ pb` cq ´ c

a` pc´ cq “ b` pc´ cq p2q

a` 0 “ b` 0 p2q

a “ b p2q

20A general relation R on Z is a subset R Ď ZˆZ. We will use that notation aRb to indicate that pa, bq P R.
21This is called the law of trichotomy.
22Some authors say smallest element instead of least element, but I think this might cause confusion. For

example, the set t´2,´1, 3, 5u has least element ´2, whereas you might say that ´1 is the smallest element
because its absolute value is smallest. For me, “least” means “furthest to the left” on the number line.
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˝

(9) Multiplication by Zero. For all a P Z we have 0a “ 0.

Proof. We have

0` 0 “ 0 p2q

ap0` 0q “ a0

a0` a0 “ a0 p4q

a0` a0 “ a0` 0 p2q

a0 “ 0 p8q

˝

(10) Multiplication and Negation. For all a, b P Z we have

ap´bq “ p´aqb “ ´pabq

p´aqp´bq “ ab

Proof. To prove that ap´bq “ ´pabq we observe that

b` p´bq “ 0 p2q

apb` p´bqq “ a0

apb` p´bqq “ 0 p9q

ab` ap´bq “ 0 p4q

ap´bq “ ´pabq p7q

Then p´aqb “ ´pabq follows by reversing the roles of a and b. For the second statement we
apply the first statement twice and then (7) to obtain

p´aqp´bq “ ´pap´bqq “ ´p´pabqq “ ab.

So far we have not mentioned the order relation “ă”. Let’s do that now.

(11) Order and Negation. For all a, b, c P Z we have

a ă b implies ´b ă ´a

a ă b and c ă 0 implies bc ă ac

68



Proof. For the first statement, assume that a ă b. Then we have

a ă b

a` p´aq ă b` p´aq p5q

0 ă b´ a

But then ´a ă ´b is impossible because it would imply

´a ă ´b

´a` b ă ´b` b p5q

b´ a ă 0

Similarly, ´a “ ´b is impossible because it would imply

´a “ ´b

´p´aq “ ´p´bq p7q

a “ b p7q

Since ´a ă ´b and ´a “ ´b are both false we conclude that ´b ă ´a. For the second
statement assume that a ă b and c ă 0. Then since ´0 “ 0 we have 0 “ ´0 ă ´c and hence

a ă b

ap´cq ă bp´cq p5q

´pacq ă ´pbcq p10q

´p´pbcqq ă ´p´pacqq

bc ă ac p7q

˝

(12) Product of Nonzero Integers is Nonzero. For all a, b P Z we have

a ‰ 0 and b ‰ 0 imply ab ‰ 0.

Proof. Let a ‰ 0 and b ‰ 0. There are four cases:

• If 0 ă a and 0 ă b then (5) and (9) imply 0 “ 0b ă ab, hence ab ‰ 0.

• If 0 ă a and b ă 0 then (5) and (9) imply ba ă 0a “ a, hence ab ‰ 0.

• If a ă 0 and 0 ă b then (5) and (9) imply ab ă 0b “ 0, hence ab ‰ 0.

• If a ă 0 and b ă 0 then (5) and (11) imply 0 “ 0b ă ab, hence ab ‰ 0.
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˝

Finally, we come to the desired result.

(13) Multplicative Cancellation. For all a, b, c P Z we have

ac “ bc and c ‰ 0 imply a “ b.

Proof. If ac “ bc and c ‰ 0 then we have

ac “ bc

ac´ bc “ bc´ bc

pa´ bqc “ 0 p2q, p4q

a´ b “ 0 p12q

pa´ bq ` b “ 0` b

a “ b p2q

˝

Remark: You may think that multiplicative cancellation is easy; if ac “ bc and c ‰ 0 then
just divide both sides by c to get a “ b. The problem with this argument is that the integers
don’t come with a division operation. For example, it is not always possible to divide by 2
since n{2 is not always an integer. Below we will discuss the more general concept of “division
with remainder”.

In the future you may quote any of these properties without proof.

3.2 The Well-Ordering Principle

Observe that we did not use property (6) in any of the proofs of the last section. So why is
this rule even necessary? Because there exist alternative number systems that satisfy all of
the rules (1)–(5) but do not satisfy the well-ordering principle. For example, the system of
rational numbers:

pQ,“,ă,`,ˆ, 0, 1q.

I didn’t give a formal definition of this system, but you can assume for now that it satisfies
properties (1) through (5). However, I claim that Q does not satisfy the well-ordering principle.

Proof. Consider the set of positive rational numbers:

S “
!a

b
: a, b P Z, a ě 0, b ą 0

)

Ď Q.
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This set is not empty (because 1{1 P S) but it does not have a least element. Indeed, if you
think that ε P S is the least element then you are wrong because

0 ă
ε

2
ă ε.

˝

The reason that well-ordering failed here is because we were able squeeze an extra fraction in
between 0 and ε. The next theorem shows that this does not happen for integers.

There are Gaps Between Integers

There do not exist any integers between 0 and 1. More generally, there do not exist any
integers a, b P Z such that

a ă b ă a` 1.

Proof. Let S “ tn P Z : n ą 0u be the set of positive natural numbers. Since this set is not
empty (indeed, we have 1 P S) the well-ordering principle says that there exists a least positive
integer m P S. I claim that m “ 1.

In order to prove this, we will assume for contradiction that m ‰ 1. Then from trichotomy
we must have m ă 1 or 1 ă m. But 1 ă m is impossible because m is the least positive
integer. Therefore we must have m ă 1. Now multiply each of the inequalities 0 ă m and
m ă 1 by the positive number m to obtain

0 ă m

0m ă m2

0 ă m2
and

m ă 1

m2 ă 1m

m2 ă m.

We conclude that m2 is a positive integer that is to the left of m. Contradiction. Thus we
have shown that m “ 1 is the least positive integer. In other words, there are no integers
between 0 and 1.

Next assume for contradiction that there exist integers a, b P Z satisfying a ă b ă a ` 1. By
subtracting a from all three expressions we obtain

a ă b ă a` 1
0 ă b´ a ă 1,

which contradicts our previous result. ˝

You might be surprised that this basic fact does not follow from the properties (1)–(5). It
was the essential insight of Dedekind and Peano in the 1880s that the well-ordering principle
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(or its cousin the principle of induction) is an essential property of “whole numbers”. The
following is another important consequence of well-ordering that is crucial to the analysis of
algorithms. We will use it in the next section.

A Decreasing and Bounded Sequence of Integers Must Stop

There does not exist an infinite decreasing sequence of integers that is bounded below.
In other words, suppose that the sequence r0, r1, r2, . . . P Z satisfies ri ě b for all i. Then
it is impossible to have ri ą ri`1 for all i.

Proof. Assume for contradiction that we have ri ą ri`1 ě b for all i ě 0. Now define the set

S “ tr0, r1, r2, . . .u Ď Z.

Since this set is nonempty and bounded below by b, the well-ordering principle tells us that
there exists a least element m P S. By definition this element must have the form m “ rk for
some k. But then we have m “ rk ą rk`1 ě b, which implies that rk`1 is a smaller element
of S. Contradiction. ˝

Similarly, one can prove that an increasing sequence of integers that is bounded above must
stop. To end this section, let me officially state the relationship between well-ordering and
induction.

Three Versions of Induction

The following three statements are logically equivalent.

Induction. Let P pnq be a statement depending on n P Z. If P pbq is true and if

@n ě b, P pnq ñ P pn` 1q

then P pnq is true for all n ě b.

Strong Induction. Let P pnq be a statement depending on n P Z. If P pbq is true and if

@n ě b, rP pbq ^ P pb` 1q ^ ¨ ¨ ¨ ^ P pnqs ñ P pn` 1q

then P pnq is true for all n ě b.
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Well-Ordering. Let S Ď Z be a set of integers. If S ‰ H and if there exists b P Z with
b ď a for all a P S then there exists m P S with m ď a for all a P S.

You definitely would not like to see a proof of this. Instead, see Exercise 3.2 below for an
example comparing induction and well-ordering. We will see more examples in the chapter on
graph theory.

3.3 The Division Algorithm

In this section we will discuss our first official algorithm and we will prove that it works.

Division With Remainder

Given integers n ě 0 and d ą 0 we wish to find integers q, r P Z satisfying

"

n “ qd` r,
0 ď r ă d.

I claim that the following algorithm works.

procedure: divide n by d with remainder
input: pn, dq
initialize: pq, rq :“ p0, nq
while r ě d do

q :“ q ` 1
r :“ r ´ d

output: pq, rq

Furthermore, I claim that the resulting quotient and remainder are unique.

Proof that the algorithm works. Set q :“ 0 and r :“ n and observe that n “ qd ` r. If
n ă d then this is the correct answer. Otherwise, we enter the while loop. On each iteration
the equation n “ dq ` r is preserved. Indeed, if n “ dq ` r then we also have

pq ` 1qd` pr ´ dq “ qd` r “ n.

If the while loop terminates, then we must have r ğ d and hence r ă d. Furthermore, we
must have 0 ď r because on the previous iteration we had r ě d and hence r´ d ě 0. Finally,
I claim that the while loop does indeed terminate. To see this, let us assume for contradiction
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that the algorithm goes on forever. Then since d ą 0 we obtain an infinite decreasing sequence
of integers that is bounded below by d:

r ą r ´ d ą r ´ d´ d ą r ´ d´ d´ d ą ¨ ¨ ¨ ě d.

This violates the well-ordering principle. ˝

Proof of uniqueness. Suppose that we each write our own algorithm to compute the quotient
and remainder of pn, dq. Suppose that I run my algorithm and get pq1, r1q, while you run your
algorithm and get pq2, r2q. Then I claim that we must have q1 “ q2 and r1 “ r2. To see this,
we first reiterate the definition of quotient and remainder:

"

n “ q1d` r1,
0 ď r1 ă d,

and

"

n “ q2d` r2,
0 ď r2 ă d.

In particular, we must have q1d` r1 “ n “ q2d` r2 and hence

q1d` r1 “ q2d` r2

pq1 ´ q2qd “ pr2 ´ r1q.

Our goal is to show that r1 “ r2, so let us assume for contradiction that r2 ´ r1 ‰ 0. By the
law of trichotomy this implies that r2 ´ r1 ą 0 or r1 ´ r2 ă 0. We will only treat the first
case and leave the other case to the reader. So let us assume that r2 ´ r1 ą 0. Then since
pq1´q2qd “ pr2´r1q and d ą 0 we must also have q1´q2 ą 0. Since q1´q2 is a whole number
this implies that23

1 ď q1 ´ q2

d ď pq1 ´ q2qd

d ď r2 ´ r1.

On the other hand, since 0 ď r1 and r2 ă d we have r2 ´ r1 ă d ´ r1 ď d. Combining these
inequalities gives

d ď r2 ´ r1 ă d,

which is a contradiction. Using a similar argument, the assumption r2 ´ r1 ă 0 also leads to
a contradiction. Therefore we conclude that r2 ´ r1 “ 0 and hence r1 “ r2. Finally, since
dpq1 ´ q2q “ pr2 ´ r1q “ 0 and d ‰ 0 we conclude by cancellation that q1 ´ q2 “ 0 and hence
q1 “ q2.24 ˝

For example, suppose we want to divide n “ 31 by d “ 7. Here are the steps of the algorithm:

pq, rq r ě 7 ?

p0, 31q yes
p1, 24q yes
p2, 17q yes
p3, 10q yes
p4, 3q no

23Recall, there are no integers between 0 and 1.
24Details: If ad “ bd and d ‰ 0 then cancellation says that a “ b. In this case we use a “ q1 ´ q2 and b “ 0.
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We conclude that the quotient is q “ 4 and the remainder is r “ 3. Indeed, we observe that
"

31 “ 4 ¨ 7` 3,
0 ď 3 ă 7,

as desired. Note that “division with remainder” is partly an algorithm and partly a theorem.
We will see in the next sections that it has many applications.

3.4 Base b Arithmetic

Why do we use the following ten symbols to denote numbers?

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

There is no good reason. Apparently, our common “decimal system” (also called the Hindu-
Arabic numeral system) was developed in India around 600AD and spread outward from
there. It was promoted in Europe by Leonardo of Pisa25 in the Liber Abaci (1202). The
decimal system was a huge technological advance because it comes with efficient algorithms
for the basic operations of arithmetic.

Let me remind you how this works. The basic symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are defined as
the first ten consecutive natural numbers. Compound symbols such as “512” represent a sum
of powers of ten:

“73512” “ 2 ¨ 100 ` 1 ¨ 101 ` 5 ¨ 102 ` 3 ¨ 103 ` 7 ¨ 104 ` 0 ¨ 105 ` 0 ¨ 106 ` ¨ ¨ ¨ .

But there is nothing special about “base ten”. The following theorem tells us that we can use
any base b ě 2 as the foundation for arithmetic. The base b “ 2 is particularly convenient for
implementing arithmetic on a computer.

Base b Expansion of Integers (Positional Notation)

Fix a base b ě 2 and let n ě 0 be any non-negative integer. We wish to find a sequence
of numbers r0, r1, r2, . . . , rk from the set t0, 1, . . . , b´ 1u such that

n “ r0 ` r1b` r2b
2 ` r3b

3 ` ¨ ¨ ¨ ` rkb
k.

In the following algorithm we will use the notation “a rem b” for the remainder and
“aquo b” for the quotient when a is divided by b:26

procedure: base b expansion of n
input: pn, bq
initialize:
q :“ n
k :“ 0

while q ‰ 0 do

25Leonardo of Pisa is also called “Fibonacci”.
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rk :“ q rem b
q :“ q quo b
k :“ k ` 1

output: prk, . . . , r2, r1, r0q

I claim that the output satisfies n “ r0 ` r1b` ¨ ¨ ¨ ` rkb
k. Furthermore, I claim that the

number k and the sequence r0, r1, . . . , rk are unique. In this case we will write

n “ prk ¨ ¨ ¨ r2r1r0qb.

Remark: We can also represent fractions and real numbers by allowing negative powers
of b, but we won’t pursue this here.

Proof that the algorithm works. Let me write the algorithm more explicitly. We begin
by computing q0 :“ nquo b and r0 :“ n rem b. If q0 ‰ 0 then we continue with q1 :“ q0 quo b
and r1 :“ q0 rem b. If q1 ‰ 0 then we continue to obtain

n “ bq0 ` r0 0 ď r0 ă b

q0 “ bq1 ` r1 0 ď r1 ă b

q1 “ bq2 ` r2 0 ď r3 ă b

...

qk´2 “ bqk´1 ` rk´1 0 ď rk´1 ă b

qk´1 “ b0` rk 0 ď rk ă b

If the procedure never terminates then since b ą 1 we must have

qi “ bqi`1 ` ri`1 ą qi`1 ` ri`1 ě qi`1 for all i.

But then we obtain an infinite decreasing sequence of positive integers

q0 ą q1 ą q2 ą ¨ ¨ ¨ ą 0,

which violates the well-ordering principle. Thus the procedure must terminate. Finally, we
check that the answer is correct:

n “ q0b` r0

“ pq1b` r1qb` r0

“ q1b
2 ` r1b` r0

“ pq2b` r2qb
2 ` r1b` r0

“ q2b
3 ` r2b

2 ` r1b` r0

26Some programming languages use a mod b instead of a rem b.
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...

“ qk´1b
k ` rk´1b

k´1 ` ¨ ¨ ¨ ` r2b
2 ` r1b` r0

“ p0b` rkqb
k ` rk´1b

k´1 ` ¨ ¨ ¨ ` r2b
2 ` r1b` r0

“ rkb
k ` rk´1b

k´1 ` ¨ ¨ ¨ ` r2b
2 ` r1b` r0.

˝

Alternate proof of existence. Alternatively, we can prove by induction that every positive
integer has a base b expansion. We begin by observe that 0 and 1 have base b expansions:

0 “ 0` 0b` 0b2 ` ¨ ¨ ¨ ,

1 “ 1` 0b` 0b2 ` ¨ ¨ ¨ .

Now I just have to tell you how to “add 1”. For example, in base 10 we have

15299999` 1 “ 15300000.

In other words, if there is a string of 9s on the right, then we replace each 9 by 0 and add 1
to the first digit on the left. In general, suppose that we have

n “ pb´ 1q ` pb´ 1qb` pb´ 1qb2 ` ¨ ¨ ¨ pb´ 1qbk ` rk`1b
k`1 ` rk`2b

k`2 ` ¨ ¨ ¨

with 0 ď rk`1 ă b´ 1.27 Then I claim that n` 1 has the expansion

n` 1 “ 0` 0b` 0b2 ` ¨ ¨ ¨ ` 0bk ` prk`1 ` 1qbk`1 ` rk`2b
k`2 ` ¨ ¨ ¨ ,

which is valid because rk`1 ` 1 ă b. To see this we will use the geometric series:

1` b` b2 ` ¨ ¨ ¨ ` bk “
bk`1 ´ 1

b´ 1
.

Then we have

n “ pb´ 1q ` pb´ 1qb` pb´ 1qb2 ` ¨ ¨ ¨ pb´ 1qbk ` rk`1b
k`1 ` rk`2b

k`2 ` ¨ ¨ ¨

n “ pb´ 1qp1` b` b2 ` ¨ ¨ ¨ ` bkq ` rk`1b
k`1 ` rk`2b

k`2 ` ¨ ¨ ¨

n “ pb´ 1q
bk`1 ´ 1

b´ 1
` rk`1b

k`1 ` rk`2b
k`2 ` ¨ ¨ ¨

n “ pbk`1 ´ 1q ` rk`1b
k`1 ` rk`2b

k`2 ` ¨ ¨ ¨

n` 1 “ prk`1 ` 1qbk ` rk`2b
k`2 ` ¨ ¨ ¨ .

˝

27Such an integer k must exist by well-ordering.
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Proof of uniqueness. Suppose that we have two sequences r0, r1, . . . P t0, 1, . . . , b´ 1u and
s0, s1, . . . P t0, 1, . . . , b´ 1u satisfying

r0 ` r1b` r2b
2 ` ¨ ¨ ¨ “ s0 ` s1b` s2b

2 ` ¨ ¨ ¨ .

We will prove by induction that ri “ si for all i ě 0. First we divide each side by b to obtain

r0 ` bpr1 ` r2b` ¨ ¨ ¨ q “ s0 ` bps1 ` s2b` ¨ ¨ ¨ q.

Since r0, s0 P t0, 1, . . . , b´1u the uniqueness of remainders implies that r0 “ s0. Now fix some
n and assume for induction that we have ri “ si for all 0 ď i ď n. Then we subtract the
number r0 ` ¨ ¨ ¨ rnb

n “ s0 ` ¨ ¨ ¨ snb
n from both sides and factor out bn`1 to obtain

((((
((((

((
r0 ` r1b` ¨ ¨ ¨ ` rnb

n ` rn`1b
n`1 ` ¨ ¨ ¨ “

((((
((((

(((
s0 ` s1b` ¨ ¨ ¨ ` snb

n ` sn`1b
n`1 ` ¨ ¨ ¨

rn`1b
n`1 ` rn`2b

n`2 ` ¨ ¨ ¨ “ sn`1b
n`1 ` sn`2b

n`2 ` ¨ ¨ ¨

��
�

bn`1prn`1 ` rn`2b` ¨ ¨ ¨ q “�
��bn`1psn`1 ` sn`2b` ¨ ¨ ¨ q

rn`1 ` rn`2b` rn`3b
2 ` ¨ ¨ ¨ “ sn`1 ` sn`2b` sn`3b

2 ` ¨ ¨ ¨ .

Finally, we divide both sides by b to get

rn`1 ` bprn`2 ` rn`3b` ¨ ¨ ¨ q “ sn`1 ` bpsn`2 ` sn`3b` ¨ ¨ ¨ q.

Since rn`1, sn`1 P t0, . . . , b´ 1u the uniqueness of remainders implies that rn`1 “ sn`1. ˝

For example, let us expand the decimal number 11 “ p11q10 in the bases b “ 2, 3, 4. We can
use the slow method of “repeatedly adding 1”:

base 10 base 2 base 3 base 4

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 10
5 101 12 11
6 110 20 12
7 111 21 13
8 1000 22 20
9 1001 100 21

10 1010 101 22
11 1011 102 23

We conclude that

11 “ p1011q2 “ 1 ¨ 23 ` 0 ¨ 22 ` 1 ¨ 21 ` 1 ¨ 20,

11 “ p102q3 “ 1 ¨ 32 ` 0 ¨ 31 ` 2 ¨ 30,
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11 “ p23q4 “ 2 ¨ 41 ` 3 ¨ 40.

Or we can use the faster method of “repeatedly dividing the quotient by the base”:

11 “ 5 ¨ 2` 1
5 “ 2 ¨ 2` 1
2 “ 1 ¨ 2` 0
1 “ 0 ¨ 2` 1

11 “ 3 ¨ 3` 2
3 “ 1 ¨ 3` 0
1 “ 0 ¨ 3` 1

11 “ 2 ¨ 4` 3
2 “ 0 ¨ 4` 2

Observe that the sequences of remainders give the same answer as above.

If b ą 10 then you will need to invent some new symbols. The common choice is to use
uppercase Roman letters. In the hexadecimal system (base b “ 16) we use the symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F

for the numbers zero through fifteen. Thus, for example, we have

p3B5q16 “ 3 ¨ 162 `B ¨ 161 ` 5 ¨ 160

“ 3 ¨ 256` 11 ¨ 16` 5

“ 949.

Positional notation gives us convenient algorithms for the basic operations of arithmetic. I’m
sure you have learned these algorithms in base 10 and then probably forgot them. Examples.

3.5 The Euclidean Algorithm

The Euclidean algorithm is another important number-theoretic algorithm that has nothing to
do with base b notation. It is used extensively in cryptography. The purpose of the Euclidean
algorithm is to compute the greatest common divisor of two integers a, b. More generally,
given any three integers a, b, c P Z the Euclidean algorithm can be used to find all integer
solutions x, y P Z to the equation

ax` by “ c.

Here is the fundamental definition on which everything else is based.

Definition of Divisibility

Given two integers n, d P Z with d ą 0 we define the statement “d|n” as follows:28

“d|n” ðñ “Dk P Z, dk “ n” ðñ pn rem dq “ 0

In words, we say that “d divides n” or that “n is divisible by d”.
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Remarks:

• For all n P Z we have n|n because n1 “ n (k “ 1).

• For all n P Z we have 1|n because 1n “ n (k “ n).

• For all n P Z we have n|0 because n0 “ 0 (k “ 0).

• Normally we don’t allow d “ 0. If we did then we would have 0 - n except when n “ 0
because 0k “ 0 for all k P Z. I guess we would also have 0|0, but never mind.

Next, suppose we have dk “ n for some positive d, k, n. Then it follows that

1 ď k

d ď dk

d ď n.

In other words, the divisors of n are no bigger than n. For any two positive integers a, b P Z,
it follows that the set of common divisors of a and b is bounded above by the minimum of a
and b, hence this set has a greatest element, called the “greatest common divisor”.29

Greatest Common Divisor

Let a and b be positive integers. Then we let d “ gcdpa, bq denote the greatest common
divisor of a and b. To be precise, this number satisfies the following two properties:

• d|a and d|b

• if c|a and c|b then c ď d.

We also define gcdpa, 0q “ a, since 0 is divisible by every number, so the common divisors
of a and 0 are just the divisors of a, and the greatest divisor of a is just a itself.

For example, let d “ gcdp12, 30q, so that 1 ď d ď 12. In order to compute d we can just list
the numbers up to 12 and strike out the numbers that do not divide 12 and 30:

1, 2, 3, �4, �5, 6, �7, �8, �9,��10,��11,��12.

28We could also allow d ă 0 but this won’t come up in our applications.
29The original well-ordering principle says that any non-empty set of integers that is bounded below has a

least element. Here I am using the equivalent statement that any non-empty set of integers that is bounded
above has a greatest element.
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We conclude that d “ 6. If a ą b then this algorithm computes gcdpa, bq in b steps, by listing
all the numbers up to b and striking out those that do not divide a or b.30 This is unacceptably
slow for modern cryptographic purposes, which routinely deal with integers with hundreds of
digits. Luckily, there is an infinitely better algorithm.31 This algorithm is truly ancient; it
appears in Euclid’s Elements, Book X, from approximately 300BC.

The Euclidean Algorithm

Given any integers a ą b ě 0, the following algorithm computes the greatest common
divisor gcdpa, bq.

procedure: to compute gcdpa, bq
input: pa, bq with a ą b ě 0
initialize:
r0 :“ a
r1 :“ b
k :“ 1

while rk ą 0 do
rk`1 :“ rk´1 rem rk
k :“ k ` 1

output: rk´1

The proof requires a small lemma, which you will prove on the homework.

Small Lemma

For any positive integers a, b, c, x P Z satisfying a “ bx` c we must have

gcdpa, bq “ gcdpb, cq.

Proof that the algorithm works. Let me write the algorithm more explicitly. First we
define r0 :“ a and r1 :“ b. If r1 “ 0 then we report gcdpa, bq “ r0 “ a, otherwise we divide r0

by r1 to obtain integers q2, r2 P Z satisfying
"

r0 “ r1q2 ` r2,
0 ď r ă d.

30Technically, I guess it’s 2b steps, since at each step we have to compute two divisions with remainder.
31If a ą b then Lamé’s Theorem below shows that the Euclidean Algorithm computes gcdpa, bq in less than

5 ¨ log10paq steps.
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If r2 “ 0 then we report gcdpa, bq “ r1 “ b. Otherwise, we continue to divide ri by ri`1 until
we obtain rk “ 0:

r0 “ r1q2 ` r2 0 ă r2 ă r1

r1 “ r2q3 ` r3 0 ă r3 ă r2

...

rk´3 “ rk´2qk´1 ` rk´1 0 ă rk´1 ă rk´2

rk´2 “ rk´1qk ` 0.

We know that we must eventually have rk “ 0 for some k, since otherwise we obtain an infinite
decreasing sequence of positive remainders:

r0 ą r1 ą r2 ą ¨ ¨ ¨ ą 0.

Finally, we need to check that the last nonzero remainder rk´1 is equal to gcdpa, bq. Indeed,
by repeatedly applying the Small Lemma, we have

gcdpa, bq “ gcdpr0, r1q

“ gcdpr1, r2q

...

“ gcdprk´2, rk´1q

“ gcdprk´1, rkq

“ gcdprk´1, 0q

“ rk´1.

˝

To illustrate the algorithm we compute the greatest common divisor of 3094 and 2513:

3094 “ 2513 ¨ 1 `581
2513 “ 581 ¨ 4 `189
581 “ 189 ¨ 3 `14
189 “ 14 ¨ 13 `7
14 “ 7 ¨ 2 `0

Since the last nonzero remainder is 7 we conclude that gcdp3094, 2513q “ 7. Note that
the algorithm stopped after 5 steps. This is extremely fast, since the naive method takes
2 ¨ 2513 “ 5026 steps. The following theorem proves that the running time of the Euclidean
Algorithm is always less than 5 times the number of decimal digits in the larger number.32

32Gabriel Lamé, Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur
entre deux nombres entiers (1844).
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Lamé’s Theorem (1844)

Given a ą b ě 0, the number of steps used to compute gcdpa, bq is less than

4.785 ¨ log10paq ` 1 .

Proof.33 The proof surprisingly uses the Fibonacci numbers. Recall that

Fn :“

$

’

&

’

%

0 if n “ 0,

1 if n “ 1,

Fn´1 ` Fn´2 if n ě 2.

We will prove by induction that the following statement holds for all n ě 0:

“For all integers a ą b ě 0, if the Euclidean algorithm for gcdpa, bq requires n
divisions with remainder then we must have a ě Fn`1 and b ě Fn”.

For the base case, let a ą b ě 0 and assume that we can compute gcdpa, bq using n “ 0 steps.
In this case we must have b “ 0 ě F0 and a ą b “ 0, hence a ě 1 “ F1 as desired. Now fix
some n ě 0 and assume that the statement holds for the values 0, 1, 2, . . . , n. In this case we
will show that the statement holds for n ` 1. So consider some a ą b ě 0 and assume that
it takes n` 1 divisions with remainder to compute gcdpa, bq. The first step of the Euclidean
algorithm divides a by b to get

a “ qb` r with 0 ď r ă b.

Then the algorithm proceeds recursively to compute gcdpb, rq in n steps. By induction this
implies that b ě Fn`1 and r ě Fn. Finally, since a ą b we must have q ě 1 and hence

a “ qb` r ě b` r “ Fn`1 ` Fn “ Fn`2.

We have proved that a ě Fn`2 and b ě Fn`1 as desired.

Finally, we will use the fact proved on a previous homework that Fn`1 ą ϕn´1 for all n ě 2,
where ϕ “ p1 `

?
5q{2 “ 1.61 is the golden ratio. Let a ą b ě 0 and suppose that the

computation of gcdpa, bq takes n ě 2 steps. Then we have

ϕn´1 ă Fn`1 ď a

ϕn´1 ă a

n´ 1 ă logϕpaq

n´ 1 ă log10paq{ log10pϕq

33The proof is subtle, so feel free to skip it.
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n´ 1 ă 4.785 ¨ log10paq

n ă 4.785 ¨ log10paq ` 1.

˝

Sometimes the algorithm runs faster than predicted. For example, we computed gcdp3094, 2513q
in 5 steps, whereas Lamé predicts 4.785 ¨ log10p3094q`1 « 18 steps. In general, large quotients
make the algorithm run faster than predicted. The worst case scenario is when the quotient
in each step equals 1. This occurs when we compute the gcd of two consecutive Fibonacci
numbers. Recall that the Fibonacci numbers begin as follows:

n 0 1 2 3 4 5 6 7 8

Fn 0 1 1 2 3 5 8 13 21

It turns out that the computation of gcdpFn, Fn´1q always takes exactly n ´ 1 steps, which
matches Lamé’s bound.34 For example, here is the computation of gcdpF8, F7q “ gcdp21, 8q:35

21 “ 1 ¨ 13` 8
13 “ 1 ¨ 8` 5
8 “ 1 ¨ 5` 3
5 “ 1 ¨ 3` 2
3 “ 1 ¨ 2` 1
2 “ 2 ¨ 1` 0

This special property of Fibonacci numbers is the reason for their appearance in the proof.

3.6 Introduction to Cryptography

I will end this chapter with a highly non-trivial application of arithmetic. As mentioned in
the introduction, the theory of prime numbers was long regarded as recreational mathemat-
ics. However, in the 1970s it suddenly became the basis of secure electronic communication.
Instead of describing the theory of cryptography in general, I will describe in detail the most
important cryptosystem. This system is called RSA for Rivest, Shamir and Adelman, who
published the method in 1977 and received a patent in 1983.36

First allow me to describe the system without explaining how it works.

34The answer is always 1, which is not interesting. The interesting point is the running time of the algorithm.
35The last step is a bit of an anomaly. We could make the pattern cleaner by writing 2 “ 1 ¨ 1` 1 and then

1 “ 1 ¨ 1` 0, even though that slightly breaks the definition of quotient and remainder.
36An equivalent system was developed in 1973 by Clifford Cooks, working at GCHQ (British signals intelli-

gence), which was declassified in 1997. Poor Clifford did not get rich and his name is relegated to footnotes.
For more information see The Code Book by Simon Singh.
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RSA Cryptosystem

Alice wants to receive a secret message from Bob over an insecure channel. To set up the
system Alice performs the following steps:

Setup by Alice.

• Choose two large random prime numbers p and q.37

• Compute n “ pq.

• Choose a random number e satisfying gcdpe, pp´ 1qpq ´ 1qq “ 1.

• Use the Extended Euclidean Algorithm to find integers d, k satisfying

de “ pp´ 1qpq ´ 1qk ` 1.

• Publish the numbers pn, eq as the public key.

• Keep the numbers d, p, q secret.

Now Bob uses the public key pn, eq to send a message:

Encryption by Bob.

• Convert the secret message to an integer 0 ď m ă n.38

• Compute the remainder c “ me remn.

• Send the number c to Alice.

Finally, Alice uses the private key d to decrypt the message:

Decryption by Alice.

• Compute the remainder m1 “ cd remn.

• Theorem: m1 “ m is Bob’s original message.

Suppose that Eve the eavesdropper is intercepting communications, so Eve knows the
numbers n, e and c. In principle, Eve could recover m by factoring n into pq and then
recreating Alice’s computation to obtain d. The security of the system is based on the
following assumption:

By choosing the primes p and q to be sufficiently large, it can be arranged that
Alice’s and Bob’s computations to set up and use the system are arbitrarily
cheaper than the computations necessary for Eve to factor n into pq.

No one has ever proved a theorem to this effect, but after decades of use it seems that
RSA is secure.39
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It will take the rest of the section to describe how to perform the computations and to prove
that m1 “ m. Even then we will skip some steps. First we will describe how Alice computes
d and k. Recall that for any integers a ą b ě 0, the Euclidean algorithm computes gcdpa, bq.
By slightly modifying the algorithm we can also find integers x, y P Z such that

ax` by “ gcdpa, bq.

Before giving the formal statement I will explain the intuition behind it. The idea is to consider
triples of integers px, y, rq satisfying ax` by “ r. There are two obvious such triples: p1, 0, aq
and p0, 1, bq. Furthermore, if we have two triples px, y, rq and px1, y1, r1q satisfying ax` by “ r
and ax1 ` by1 “ r1 then for any integer q, the triple

(˚) px2, y2, r2q :“ px, y, rq ´ qpx1, y1, r1q “ px´ qx1, y ´ qy1, r ´ qr1q

also satisfies

ax2 ` by2 “ apx´ qx1q ` bpy ´ qy1q

“ pax` byq ´ qpax1 ` by1q

“ r ´ qr1

“ r2.

Beginning with the obvious triples p1, 0, aq and p0, 1, bq, the goal is to repeatedly combine
these triples using (˚) until we obtain a triple of the form px, y, gcdpa, bqq, and the steps of the
Euclidean Algorithm tell us exactly how to do this.

For example, let’s take a “ 3094 and b “ 2513. In the previous section we found that
gcdp3094, 2513q “ 7. Now we will find integers x, y P Z satisfying 3094x ` 2513y “ 7. The
following table shows the steps of the computation:

x y r

1 0 3094
0 1 2513
1 ´1 581
´4 5 189
13 ´16 14
´173 213 7
359 ´442 0

Let’s name the first two rows:

px0, y0, r0q “ p1, 0, 3094q,

37Mnemonic: p is for prime, n is for number, e is for encryption, d is for decryption, m is for message, c is
for ciphertext.

38There are many standard ways to do this; for example, ASCII.
39If and when quantum computers become feasible then RSA will be broken by Shor’s factorization algorithm.
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px1, y1, r1q “ p0, 1, 2513q.

To obtain the next row we take

px2, y2, r2q “ px0, y0, r0q ´ 1px1, y1, r1q

“ p1, 0, 3094q ´ 1p0, 1, 2513q

“ p1,´1, 581q.

More generally, we define

pxn`1, yn`1, rn`1q “ pxn´1, yn´1, rn´1q ´ qn`1pxn, yn, rnq,

there the qn are the quotients produced by the Euclidean Algorithm. This guarantees that we
will eventually reach a triple of the form px, y, 7q, so that

3094x` 2513y “ 7.

From the above table we find that40

3094p´173q ` 2513p213q “ 7.

Let me remark that the solution px, yq is not unique. Indeed, the final row in the table tells
us that

3094p359q ` 2513p´442q “ 0,

and we can multiply this by any integer ` to get

3094p359`q ` 2513p´442`q “ 0.

Finally, combining the two equations gives

7 “ 7` 0

“ 3094p´173q ` 2513p213q ` 3094p359`q ` 2513p´442`q

“ 3094p´173` 359`q ` 2513p213´ 442`q,

so that px, yq “ p´173` 359`, 213´ 442`q is a solution for any ` P Z.41

Here is the official statement and its proof.

The Extended Euclidean Algorithm

Given integers a ą b ě 0, the following modified version of the Euclidean Algorithm will
find integers x, y P Z satisfying

ax` by “ gcdpa, bq.

procedure: to find x, y P Z such that ax` by “ gcdpa, bq

40This would be very difficult to find by trial and error!
41In fact this formula gives all solutions to the equation 3094x` 2513y “ 7, but we won’t prove it.
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input: pa, bq with a ą b ě 0
initialize:
r0 :“ a
r1 :“ b
k :“ 1
px0, y0q “ p1, 0q
px1, y1q “ p0, 1q

while rk ą 0 do
rk`1 :“ rk´1 rem rk
qk`1 :“ rk´1 quo rk
pxk`1, yk`1q :“ pxk, ykq ´ qk`1pxk´1, yk´1q

k :“ k ` 1
output: pxk´1, yk´1q

Proof that the algorithm works. Note that we have merely added more variables to
the usual Euclidean Algorithm, so the remainders still satisfy the property that rk “ 0 and
rk´1 “ gcdpa, bq. To prove the result we will show by (strong) induction that

(˚) axn ` byn “ rn for all 0 ď n ď k.

Then it will follow that the output pxk´1, yk´1q satisfies

axk´1 ` byk´1 “ rk´1 “ gcdpa, bq,

as desired. For the base cases we observe that

ax0 ` by0 “ a1` b0 “ a “ r0,

ax1 ` by1 “ a0` b1 “ b “ r1.

Now fix some m ě 1 and assume for induction that (˚) holds for all 0 ď n ď m. In other
words, we assume for all 0 ď n ď m that axn ` byn “ rn. In order to show that (˚) holds for
n “ m` 1, we observe from the definitions that

xm`1 “ xm ´ qm`1xm´1,

ym`1 “ ym ´ qm`1ym´1,

rm`1 “ rm ´ qm`1rm´1.

Hence we have

axm`1 ` bym`1 “ apxm ´ qmxm´1q ` bpym ´ qmym´1q

“ paxm ` bymq ´ qm`1paxm´1 ` bym´1q

“ rm ´ qm`1rm´1

“ rm`1.
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˝

This explains how Alice can find integers d, k satisfying de “ pp ´ 1qpq ´ 1qk ` 1. Since by
assumption we have gcdpe, pp´1qpq´1qq “ 1, the Extended Euclidean Algorithm will produce
integers x, y P Z satisfying

ex` pp´ 1qpq ´ 1qy “ 1.

Then we just rename them d “ x and k “ ´y. Next we will use the Extended Euclidean
Algorithm for a surprising theoretical purpose. The following famous result also goes back to
Euclid’s Elements, Book X.

Euclid’s Lemma

We say that an integer p ě 2 is prime when it has no divisors other than 1 and itself. If
p is prime then for all integers a, b P Z we have

p|pabq ùñ p|a or p|b.

Remark: This property is not true when p is not prime. For example, with p “ 4, a “ 2
and b “ 6 we have p|pabq, but p - a and p - b.

The proof is a classic. I ask my algebra students to memorize it, but you don’t have to.

Proof. Instead of proving that p|pabq implies p|a or p|b, we will prove that p|pabq and p - a
imply p|b, which is logically equivalent.42 So let us suppose that p|pabq with p prime and p - a.
In this case I claim that gcdpa, pq “ 1. Indeed, if d “ gcdpa, pq then we must have d|p, which
implies that d “ 1 or d “ p because p is prime. On the other hand, we must have d|a, which
excludes the possibility d “ p because we assumed that p - a. Hence d “ 1.

Since gcdpa, pq “ 1, the Extended Euclidean Algorithm will produce integers x, y P Z satisfying
ax` py “ 1. Finally, since p|pabq we can write ab “ pk for some k P Z, and hence

ax` py “ 1

pax` pyqb “ b

abx` pby “ b

pkx` pby “ b

ppkx` byq “ b.

It follows that p|b as desired. ˝

42The principle here is that P ñ pQ_Rq is the same as pP ^ Qq ñ R, which you can verify with a truth
table.
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Typically, Euclid’s Lemma is used43 to prove the “Fundamental Theorem of Arithmetic”,
which says that every integer has a unique factorization as a product of primes. We don’t
have any special need for that fact so I won’t prove it here. Instead I will use Euclid’s Lemma
to prove Fermat’s Little Theorem, which is the key to RSA.

For the remainder of this section it is convenient to change notation slightly, from the language
of remainders to the language of modular arithmetic.

Definition of Modular Arithmetic

Fix an integer n ě 1, which we will call the modulus. Then for any integers a, b P Z we
define the notation

a ” b pmod nq ðñ n|pa´ bq.

In this case we will say that a is congruent to b modulo n. This is equivalent to saying
that a and b have the same remainder when divided by n:

a ” b pmod nq ðñ pa remnq “ pb remnq.

The notation “”” was introduced by Gauss in the Disquisitiones Arithmeticae (1801), which
launched the modern era of number theory. It is a very convenient notation because it behaves
like an equals sign. That is, we have the following properties:

(i) For all a P Z we have a ” a pmod nq.

(ii) For all a, b P Z we have a ” b pmod nq if and only if b ” a pmod nq.

(iii) If a ” b pmod nq and b ” c pmod nq then we have a ” c pmod nq.

(iv) If a ” a1 pmod nq and b ” b1 pmod nq then we have a`b ” a1`b1 and ab ” a1b1 pmod nq.

Of course, these properties need to be checked. The first three properties are boring but the
fourth is a bit tricky. Assume that a ” a1 and b ” b1 pmod nq. By definition this means that
a´ a1 and b´ b1 are multiplies of n. Let’s say a´ a1 “ nk and b´ b1 “ n`. It follows that

ab “ pa1 ` nkqpb1 ` n`q “ a1b1 ` npa1`` kb1 ` nk`q,

which shows that ab ´ a1b1 is a multiple of n and hence ab ” a1b1 pmod nq. We will see that
this property simplifies many calculations.

Now we will state Fermat’s theorem in the language of modular arithmetic.

43Indeed, this is how Euclid used it.
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Fermat’s Little Theorem

Let a, p P Z with p ě 2 prime and p - a. Then we have

ap´1 ” 1 pmod pq.

For example, take a “ 2 and p “ 11. To see that 210 ” 1 pmod 11q we will work our way
through the powers of 2. Note that each step is based on the previous step so the numbers
never become too large. This is a consequence of property (iv) above.44 To save space, we
report the modulus only at the end of the computations.

21 ” 2,

22 ” 4,

23 ” 8,

24 ” 16 ” 5,

25 ” 24 ¨ 2 ” 5 ¨ 2 ” 10,

26 ” 25 ¨ 2 ” 10 ¨ 2 ” 20 ” 9,

27 ” 26 ¨ 2 ” 9 ¨ 2 ” 18 ” 7,

28 ” 27 ¨ 2 ” 7 ¨ 2 ” 14 ” 3,

29 ” 28 ¨ 2 ” 3 ¨ 2 ” 6,

210 ” 29 ¨ 2 ” 6 ¨ 2 ” 12 ” 1,

211 ” 210 ¨ 2 ” 1 ¨ 2 ” 2 pmod 11q.

This is quite mysterious. The powers of 2 reduced mod 11 seem to bounce around with no
obvious pattern. Yet somehow we have 210 ” 1 pmod 11q. After this the sequence of powers
will repeat because

2k`10 ” 2k ¨ 210 ” 2k ¨ 1 ” 2k pmod 11q.

For example, we can easily compute 2557 by hand:

2557 ” 210¨55`7 ” p210q55 ¨ 27 ” p1q55 ¨ 27 ” 27 ” 7 pmod 11q.

Actually Fermat did not leave behind a proof of his little theorem, and it was first proved over
100 years later by Euler.45 Today we can view Fermat’s Little Theorem as a simple theorem
of “group theory”, which is discussed in MTH 461 and MTH 561/562. If you are seriously

44This kind of simplification is what allows Alice and Bob to compute me and cd, even when the exponents
e and d are quite large.

45Scientific journals did not exist in Fermat’s time. We mostly know of his work through his correspondence
with other scientists.

91



interested in cryptography then you should definitely study groups. Here I will present Euler’s
first proof, since it uses induction and binomial coefficients. It does require one lemma, which
you will prove on the homework.

Freshman’s Dream46

Let p ě 2 be prime. Then for all integers 0 ă k ă p we have

ˆ

p

k

˙

” 0 pmod pq.

It follows from this that for all integers a, b we have

pa` bqp ” ap ` bp pmod pq.

Euler’s Proof of Fermat’s Little Theorem. Let p ě 2 be prime. We will prove by
induction that np ” n pmod pq for all n ě 1. The base case says that 1p ” 1 pmod pq, which
is true. Now fix some n ě 1 and assume that np ” n pmod pq. Then we also have

pn` 1qp ” np ` 1p Freshman’s Dream

” np ` 1 1p ” 1 pmod pq

“ n` 1 pmod pq. induction

Thus we have shown that np ” n pmod pq for all integers n ě 1. In the case p - n we will show
moreover that np´1 ” 1 pmod pq. To do this we note as in the proof of Euclid’s Lemma that
p - n implies gcdpn, pq “ 1, so from the Extended Euclidean Algorithm we can find integers
x, y P Z satisfying

nx` py “ 1.

Since p ” 0 pmod pq, this equation implies47

nx ” 1´ py

” 1´ 0y

” 1 pmod pq.

Finally, we multiply both sides of the congruence np ” n pmod pq by x to obtain

np ” n

npx ” nx

46I really don’t like this name, but it’s in Wikipedia so I’ll go with it.
47We say that x is the inverse of n mod p. This is not quite the same as division, but it is just as useful.
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np´1pnxq ” nx

np´11 ” 1

np´1 ” 1 pmod pq.

˝

It is worth isolating the last step of that proof. Given the congruence np ” n pmod pq we were
able to “divide both sides by n” to obtain np´1 ” 1 pmod pq. However, division is not always
possible in modular arithmetic. For example, we have 2 ¨ 3 ” 0 pmod 6q. Suppose we could
divide both sides by 2. Then we would obtain

3 ”
2 ¨ 3

2
”

0

2
” 0 pmod 6q,

which is false. Here is the general theorem that tells us when we can divide mod n.

Division Mod n

Consider integers a, n ě 1 and suppose that gcdpa, nq “ 1. Then it is possible to “divide
by a mod n”. To see this, we use the Extended Euclidean Algorithm to find x, y P Z
satisfying

ax` ny “ 1.

Then since n ” 0 pmod nq, reducing both sides by n gives

ax ” 1´ ny ” 1´ 0y ” 1 pmod nq.

This tells us that in some sense x ” 1{a pmod nq, so “division by by a” is the same as
“multiplication by x”.

For example, since gcdp21, 34q “ 1, we can divide both sides of the following congruence by
21 to solve for c:

21c ” 5 pmod 34q.

In order to do this, we use the Extended Euclidean Algorithm to find x, y P Z such that
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21x` 34y “ 1:48

x y r

1 0 34
0 1 21
1 ´1 13
´1 2 8
2 ´3 5
´3 5 3
5 ´8 2
´8 13 1

We conclude that 34p´8q ` 21p13q “ 1 and hence

21 ¨ 13 ” 1 pmod 34q.

Finally, we multiply both sides of the congruence 21c ” 5 pmod 34q by 13 to obtain

21c ” 5

13 ¨ 21c ” 13 ¨ 5

1c ” 65

c ” ´3

c ” 31 pmod 34q.

As you see, there are many equivalent ways to state the answer. We say that c ” 31 pmod 34q
is the standard form because 31 is a valid remainder mod 34. In summary: if 21c has remainder
5 when divided by 34 then c has remainder 31 when divided by 34.

Now we have the necessary ingredients to prove that the RSA cryptosystem works. Recall
that Bob encodes his message by raising m to the power of the encryption exponent, and
reducing mod n:

c “ me remn.

Then Alice decrypts the message by raising c to the power of the decryption exponent, and
reducing mod n:

m1 “ cd remn.

We need to prove that m1 is equal to Bob’s original message m. The keep the proof clean it
is convenient to isolate the following lemma.

Lemma for RSA

48Here I have chosen 12 and 34 to be consecutive Fibonacci numbers, so all of the quotients are 1.
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Let p, q P Z be any integers satisfying gcdpp, qq “ 1.49 Then for any integer n P Z we have

p|n and q|n ùñ ppqq|n.

The proof uses the same trick as in Euclid’s Lemma.

Proof of the lemma. Since gcdpp, qq “ 1 we can find x, y P Z such that px` qy “ 1. Now
assume that p|n and q|n; say pk “ n and q` “ n. It follows that

1 “ px` qy

n “ nppx` qyq

“ npx` nqy

“ pq`qpx` ppkqqy

“ ppqqp`x` kyq,

and hence ppqq|n. ˝

Proof that RSA works. Recall the setup:

• p and q are distinct primes, so that gcdpp, qq “ 1,

• n “ pq,

• de “ pp´ 1qpq ´ 1qk ` 1,

• c “ me remn.

Given this, our goal is to show that cd remn “ m. Translating into the language of modular
arithmetic, we will show that50

cd ” m pmod nq.

Actually, we will prove an equivalent statement. Since c ” me pmod nq, n “ pq and de “
pp´ 1qpq ´ 1qk ` 1, we observe that

cd ” m pmod nq ô n|pcd ´mq

ô n|pmde ´mq

ô ppqq|pmpmde´1 ´ 1qq

ô ppqq|pmpmpp´1qpq´1qk ´ 1qq.

That looks weird but it’s convenient for the proof. First we will show that

p|pmpmpp´1qpq´1qk ´ 1qq.

49Jargon: Such pairs of integers are called coprime, or relatively prime.
50Since 0 ď m ă n, this is equivalent to showing that m is the remainder of cd when divided by n.
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Indeed, if p|m then there is nothing to show. Otherwise, if p - m then Fermat’s Little Theorem
tells us that mp´1 ” 1 pmod pq, and hence

mpp´1qpq´1qk ” pmp´1qpq´1qk ” 1pq´1qk ” 1 pmod pq.

But this is equivalent to p|pmpp´1qpq´1qk ´ 1q, so again we have p|pmpmpp´1qpq´1qk ´ 1qq. A
similar proof shows that

q|pmpmpp´1qpq´1qk ´ 1qq.

Finally, since gcdpp, qq “ 1, the Lemma for the RSA implies that

ppqq|pmpmpp´1qpq´1qk ´ 1qq.

˝

As you see, this was not an easy proof. For the purpose of this class I will only ask you to prove
much smaller results, such as the Freshman’s Dream above. I just figured that a computer
scientist should see the details of RSA once in their life.

3.7 Worked Exercises

3.1. Here is a false proof. Find the mistake.

Claim. The following statement is true for all n ě 0:

P pnq “ “if a, b P Z satisfy a, b ě 0 and n “ maxpa, bq then a “ b”.

Proof. Clearly P p0q is true because a, b ě 0 and maxpa, bq “ 0 imply a “ b “ 0. Now fix
some n ě 0 and assume for induction that P pnq is true. In order to prove that P pn ` 1q is
also true we consider any integers with a, b ě 0 and maxpa, bq “ n ` 1. But then we have
maxpa´ 1, b´ 1q “ n and P pnq implies that a´ 1 “ b´ 1, hence a “ b. ˝

To find the mistake we will closely examine the proof that P p0q implies P p1q. So consider any
a, b ě 0 with maxpa, bq “ 1. Then certainly it is true that maxpa´ 1, b´ 1q “ 0. But it does
not necessarily follow from P p0q that a´ 1 “ b´ 1. Indeed, consider the case when a “ 0 and
b “ 1. Then maxpa, bq “ 1 and maxpa ´ 1, b ´ 1q “ 0, but a ‰ b. The problem here is that
a ´ 1 ă 0 and hence P p0q does not apply to the numbers a ´ 1 and b ´ 1. In general, our
argument that P pnq implies P pn` 1q is wrong because it might be the case that a´ 1 “ ´1
or b´ 1 “ ´1.

3.2. Given a, b P Z we define the following notation:

“a|b” “ “a divides b” “ “Dk P Z, ak “ b”.

We say that n P N is not prime if there exist a, b P Z with n “ ab and a, b P t2, 3, . . . , n´ 1u.
(We say that a and b are proper factors of n.) Now consider the following statement:
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Every natural number n ě 2 is divisible by some prime number.

(a) Prove the statement by strong induction.

(b) Prove the statement by well-ordering.

(a) Proof by Strong Induction. The base case is b “ 2. Note that P p2q is true because
2 is prime and 2|2. Now assume for induction that the statements P p2q, P p3q, . . . , P pnq are
all true. In this case we want to show that n ` 1 is has some prime factor. If n ` 1 is itself
prime then we are done because pn` 1q|pn` 1q. So let us assume that n` 1 is not prime. By
definition this means that we can write

n` 1 “ ab where a, b P t2, . . . , n´ 1u.

But then by our induction hypothesis each of a and b has a prime factor. In particular we
have p|a for some prime p. Then we can write a “ pk for some k P Z and

n` 1 “ ab “ ppkqb “ ppkbq.

It follows that p|pn` 1q, and hence n` 1 has a prime factor. ˝

(b) Proof by Well-Ordering. Consider the set of “criminals”:

S :“ tn ě 2 : n is not divisible by any primeu.

Our goal is to show that S is empty, so assume for contradiction that S is not empty. Then
since S is bounded below by 2 we know by well-ordering that there exists a least element
m P S, called a “minimal criminal”. Since m|m and since m is not divisible by any prime, we
know that m is not prime. Therefore we must have

m “ ab where a, b P t2, . . . ,m´ 1u.

But then since a ă m and b ă m we know that a and b are not criminals. In other words
each of a and b is divisible by some prime. In particular, we have p|a for some prime p. Then
we conclude as above that p|m. But this contradicts the fact that m has no prime factor. ˝

3.3. Convert the decimal number 123456789 into the following base systems:

(a) Binary t0, 1u

(b) Ternary t0, 1, 2u

(c) Hexadecimal t0, 1, . . . , 9, A,B, . . . , F u

I programmed the algorithm into my computer. Here are the results:

123456789 “ p111010110111100110100010101q2
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“ p22121022020212200q3

“ p13112330310111q4

“ p223101104124q5

“ p20130035113q6

“ p3026236221q7

“ p726746425q8

“ p277266780q9

“ p123456789q10

“ p63762A05q11

“ p35418A99q12

“ p1C767471q13

“ p12579781q14

“ pAC89BC9q15

“ p75BCD15q16

3.4. Convert the decimal numbers 12 and 23 into binary. Multiply them in binary. Then
convert the result back into decimal notation.

We have 12 “ p1100q2 and 23 “ p10111q2. Here is the multplication algorithm:

1 0 1 1 1
ˆ 1 1 0 0

0 0 0 0 0
0 0 0 0 0

1 0 1 1 1
` 1 0 1 1 1

1 0 0 0 1 0 1 0 0

The hardest part is carrying. Then we convert the result back into decimal notation:

p100010100q2 “ 1 ¨ 28 ` 1 ¨ 24 ` 1 ¨ 22

“ 256` 16` 2

“ 276.

3.5. Euclidean Algorithm.

(a) Apply the Euclidean Algorithm to compute the gcd of 3094 and 2513.
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(b) Repeat the same sequence of steps to find the continued fraction expansion of 3094{2513:

3094

2513
“ q1 `

1

q2 `
1

q3`
1

q4`¨¨¨

.

(a) We begin by dividing 3094 by 2513 to get remainder 581. Then we replace the pair
p3094, 2513q by the pair p2513, 581q and repeat:

3094 “ 1 ¨ 2513` 581

2513 “ 4 ¨ 581` 189

581 “ 3 ¨ 189` 14

189 “ 13 ¨ 14` 7

14 “ 2 ¨ 7` 0

The last nonzero remainder is 7 “ gcdp3094, 2513q.

(b) The sequence of quotients in part (a) tells us the continued fraction expansion:

3094

2513
“ 1`

1

4` 1
3` 1

13` 1
2

.

3.6.
?

2 is Irrational. If a and b are integers then the Euclidean Algorithm guarantees that
the continued fraction expansion of a{b is finite. Prove that

?
2 “ 1`

1

1`
?

2

and use this to show that the continued fraction expansion of
?

2 is infinite. It follows that?
2 is not a fraction of integers.

Note that

p
?

2´ 1qp
?

2` 1q “
?

2
2
´ 12

p
?

2´ 1qp
?

2` 1q “ 2´ 1

p
?

2´ 1qp
?

2` 1q “ 1
?

2´ 1 “
1

?
2` 1

?
2 “ 1`

1

1`
?

2
.

99



Therefore we have

?
2 “ 1`

1

1`
?

2

“ 1`
1

1` 1` 1
1`
?

2

“ 1`
1

2` 1
1`
?

2

“ 1`
1

2` 1
1`1` 1

1`
?
2

“ 1`
1

2` 1
2` 1

1`
?
2

“ 1`
1

2` 1
2` 1

2`¨¨¨

.

Since the process never stops we conclude that
?

2 is an irrational number.

4 Principles of Counting

In the first chapter we defined the numbers
`

n
k

˘

for integers n ě k ě 0 by the following
boundary conditions and recurrence relation:

ˆ

n

k

˙

:“

#

1 if k “ 0 or k “ n,
`

n´1
k´1

˘

`
`

n´1
k

˘

otherwise.

Recall that these numbers can be computed by hand via Pascal’s triangle:

`

0
0

˘

`

1
0

˘ `

1
1

˘

`

2
0

˘ `

2
1

˘ `

2
2

˘

`

3
0

˘ `

3
1

˘ `

3
2

˘ `

3
3

˘

`

4
0

˘ `

4
1

˘ `

4
2

˘ `

4
3

˘ `

4
4

˘

“

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Then we used the recursive definition to prove the following two theorems by induction:

• For any number x and for any integer n ě 0 we have

p1` xqn “

ˆ

n

0

˙

`

ˆ

n

1

˙

x` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xn´1 `

ˆ

n

n

˙

xn.
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• For any integers n ě k ě 0 we have
ˆ

n

k

˙

“
n!

k!pn´ kq!
,

where the factorial notation is defined recursively by

n! :“

#

1 if n “ 0,

n ¨ pn´ 1q! if n ě 0.

Taken together, these two theorems are often called the binomial theorem:

p1` xqn “
n
ÿ

k“0

n!

k!pn´ kq!
xk.

For this reason, the numbers
`

n
k

˘

are also called binomial coefficients.

So far all of these ideas can be viewed as pure algebra. However, when I read the symbol
`

n
k

˘

out loud I say “n choose k”. In this chapter I will explain what the word “choose” means,
and I will show you the many ways that binomial coefficients show up in counting problems.

4.1 Counting Ordered Selections

In this section and the next we will count the number of ways to choose k objects from a set
of n objects. We will get different answers, depending on whether the choices are ordered or
unordered, and whether we are allowed to select a given object more than once. However, all
of our counting methods will depend on the following fundamental principle.

The Multiplication Principle

When a sequence of choices is made, the number of possibilities multiply.

To illustrate what this means, let us count the number of ways to put the symbols a, b, c in
order. We can think of this problem as choosing 3 things from the set ta, b, cu where order
matters and repetition is not allowed. Since this is a sequence of choices we can use the
multiplication principle. There are 3 ways to choose the first thing, then there are 2 ways to
choose the second thing (because one thing is not allowed). Finally, there is only 1 way to
choose the third thing (because two things are not allowed):

3
loomoon

1st choice

ˆ 2
loomoon

2nd choice

ˆ 1
loomoon

3rd choice

“ 3 ¨ 2 ¨ 1 “ 6

These choices are called permutations. We can view each permutation as a path in a branching
tree:
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The tree structure is the reason that the possibilities multiply. On the other hand, we can
think of each permutation as an injective function from the set t1, 2, 3u to ta, b, cu where 1
gets sent to the first choice, 2 gets sent to the second choice and 3 gets sent to the third choice:

Sometimes the most difficult part of a counting problem is to recognize when two situations
are really the same.

Now let’s modify the problem to allow repeated letters. In other words, we want to choose
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3 things from the set ta, b, cu, where order maters and repetition is allowed. This time
the number of choices is

3
loomoon

1st choice

ˆ 3
loomoon

2nd choice

ˆ 3
loomoon

3rd choice

“ 33 “ 27.

We can view the choices as “words of length 3 from the alphabet ta, b, cu” or we can view
them as arbitrary functions from t1, 2, 3u to ta, b, cu (not necessarily injective). I don’t want
to draw all 27 choices, but here is a corresponding pair:

Similarly, the number of ways to choose 4 things from the set ta, b, cu when order matters and
repetition is allowed is

3
loomoon

1st choice

ˆ 3
loomoon

2nd choice

ˆ 3
loomoon

3rd choice

ˆ 3
loomoon

4th choice

“ 34 “ 81.

This is the number of arbitrary functions from t1, 2, 3, 4u to ta, b, cu, or equivalently the number
of words of length 4 from the alphabet ta, b, cu.

How about the number of ways to choose 4 things from the set ta, b, cu when order matters
and repetition is not allowed? This time the number of choices is

3
loomoon

1st choice

ˆ 2
loomoon

2nd choice

ˆ 1
loomoon

3rd choice

ˆ 0
loomoon

4th choice

“ 3 ¨ 2 ¨ 1 ¨ 0 “ 0.

In other words, it is impossible to choose 3 things from a set of 4 when repetition is not
allowed. Based on these examples we have the following two theorems.

Counting Words

Let n, k ě 0 and consider the following collections:

• Selections of k from n things when order matters and repetition is allowed.

• Words of length k from an alphabet of size n.

• Functions from a set of size k to a set of size n.

103



I claim that each of these collections is counted by the number nk.

Proof. Each object in each collection is determined by a sequence of k choices in which there
are n possibilities for each choice. Thus the total number of possibilities is

n
loomoon

1st choice

ˆ n
loomoon

2nd choice

ˆ ¨ ¨ ¨ ˆ n
loomoon

kth choice

“ nk.

Counting Permutations

Let n, k ě 0 and consider the following collections:

• Selections of k from n things when order matters and repetition is not allowed.

• Words with no repeated letters of length k from an alphabet of size n

• Injective functions from a set of size k to a set of size n.

I claim that each of these collections is counted by the number

nPk :“ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 2qpn´ k ` 1q.

Proof. Each object in each collection is determined by a sequence of k choices, with n “ n´0
possibilities for the 1st choice, then n´ 1 possibilities for the 2nd choice, . . . , then n´ pi´ 1q
possibilities for the ith choice,. . . ,then n´ pk´ 1q “ n´ k` 1 possibilities for the kth choice.
Thus the total number of possibilities is

n
loomoon

1st choice

ˆ n´ 1
loomoon

2nd choice

ˆ ¨ ¨ ¨ ˆ n´ k ` 1
loooomoooon

kth choice

“ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 2qpn´ k ` 1q.

˝

Let me make some observations about the numbers nPk:

• If k ą n then one of the factors in the product is zero, hence nPk “ 0. In this case it is
impossible to choose k things from n things without repetition.

• If k “ n then we obtain nPn “ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ n` 1q “ n!. These selections are
called permutations, and this is the reason for the P in the number nPk.
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• If 0 ď k ă n then the formula for nPk can be simplified by multiplying by the fraction
pn´ kq!{pn´ kq! to get

nPk “ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 2qpn´ k ` 1q ¨
pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

“
npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

“
n!

pn´ kq!
.

If you want, we could also define nPk “ 0 when k ă 0. Thus for all n, k P Z with n ě 0 we
have the following definition of the “permutation numbers”:

nPk :“

#

0 if k ă 0 or k ą n,

n!{pn´ kq! if 0 ď k ď n.

4.2 Counting Unordered Selections

In general it is much harder to count unordered selections of things. For this we need tricks.

Let us begin by counting unordered selections of k things from n things when repetition is
not allowed. For some reason these are called combinations, but I prefer to call them subsets.
Our goal is to find a closed formula for the following “combination numbers”:

nCk :“ #tways to choose k unordered things from n things without repetitionu

“ #tsubsets of size k from a set of size nu

“ #tbinary strings of length n with k copies of 1u.

In order to develop intuition, let’s run an experiment. Here are all of the subsets of the set
t1, 2, 3, 4u and binary strings of length 4, arranged by size and the number of 1s:

binary strings with k copies of 1 subsets of size k 4Ck

1111 t1, 2, 3, 4u 1

1110, 1101, 1011, 0111 t1, 2, 3u, t1, 2, 4u, t1, 3, 4u, t2, 3, 4u 4

1100, 1010, 1001, 0110, 0101, 0011 t1, 2u, t1, 3u, t1, 4u, t2, 3u, t2, 4u, t3, 4u 6

1000, 0100, 0010, 0001 t1u, t2u, t3u, t4u 4

0000 H 1

Based on this example we might make the following conjecture:

nCk “

ˆ

n

k

˙

?

It turns out this conjecture is true.
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Counting Subsets (Combinations)

Let n ě k ě 0 and consider the following collections:

• Unordered selections of k things n things when repetition is not allowed.

• Subsets of size k from a set of size n.

• Binary strings with k copies of 1 and n´ k copies of 0.

Let nCk be the number of elements in each collection. Then I claim that

nCk “

ˆ

n

k

˙

.

I will give two proofs. First a bad proof, then a good proof.

Bad Proof (Induction). Consider the set t1, 2, . . . , nu and let nCk be the number of subsets
of size k. Since the binomial coefficients are defined by recursion we will verify that the
combination numbers nCk satisfy the same recursion.

The boundary conditions are true because for any n ě 0 we have nC0 “ 1 “
`

n
0

˘

and nCn “

1 “
`

n
n

˘

. Indeed, there is only one way to choose none of the elements, and there is only one
way to choose all of the elements.

Now suppose that 0 ă k ă n. In this case we will prove that nCk “ n´1Ck´1 ` n´1Ck. To see
this, let S be the set of subsets of size k from the set t1, 2, . . . , nu, so that #S “ nCk. Now
we will divide the collection S into two subcollections, depending on whether the symbol n is
in the subset:

S1 :“ tA Ď t1, . . . , nu : #A “ k and n P Au,

S2 :“ tA Ď t1, . . . , nu : #A “ k and n R Au.

For example, if n “ 5 and k “ 3 then we have

S1 “ tt1, 2, 5u, t1, 3, 5u, t1, 4, 5u, t2, 3, 5u, t2, 4, 5u, t3, 4, 5uu,

S2 “ tt1, 2, 3u, t1, 2, 4u, t1, 3, 4u, t2, 3, 4uu.

Notice that #S1 “ 2C4 “ 6 because 5 is already in the subset. In order to fill in the remaining
k ´ 1 “ 2 elements we must choose a subset of size 2 from t1, 2, 3, 4u and there are 2C4 ways
to do this. Note also that S2 “ 3C4. Since these subsets don’t contain 5 they are just subsets
of size k “ 3 from the remaining elements t1, 2, 3, 4u.

The same reasoning in general shows that

#S1 “ #tsubsets of size k from t1, 2, . . . , nu that contain nu
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“ #tsubsets of size k ´ 1 from t1, 2 . . . , n´ 1uu

“ n´1Ck´1

and

#S1 “ #tsubsets of size k from t1, 2, . . . , nu that don’t contain nu

“ #tsubsets of size k from t1, 2 . . . , n´ 1uu

“ n´1Ck

Finally, since S is a disjoint union51 of S1 and S2 we conclude that

nCk “ #S “ #S1 `#S2 “ n´1Ck´1 ` n´1Ck.

˝

And here is the good proof. It uses a method called double counting. This means that we
count the elements of a certain collection in two different ways to obtain a useful equation
that we can solve.

Good Proof (Double Counting). Let n ě k ě 0 and consider the following set:

S :“ tordered sections of k things from n things when repetition is not allowedu.

We know from the previous section that #S “ nPk “ n!{pn´ kq!. On the other hand, we can
choose an ordered collection of k things in two steps:

• First choose an unordered collection of k things from n. There are nCk ways to do this.

• Then put the k things in order. There are k! ways to do this.

From the multiplication principle we obtain

#S “ nCk
loomoon

choose k unordered things

ˆ k!
loomoon

then put them in order

.

By equating the two expressions for #S we obtain

nCk ¨ k! “ nPk

nCk “ nPk{k! “
n!{pn´ kq!

k!
“

n!

k!pn´ kq!
“

ˆ

n

k

˙

.

˝

Of course the induction proof also teaches us something, but I find the counting proof more
enlightening. In combinatorics52 we usually prefer a counting proof because it gives us a better
understanding of why the result is true.

51This means that S1 Y S2 “ S and S1 X S2 “ H.
52The study of counting.
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The following table summarizes what we have done in this and the previous section. When
selecting k things from a set of n things there are two different parameters, leading to four
different answers:

ordered unordered

no repetition nPk “
n!

pn´kq! nCk “
n!

k!pn´kq! “
`

n
k

˘

repetition OK nk ?

It only remains for us to count unordered selections with repetition. For example, suppose
that you want to buy 5 gallons of ice cream and the possible flavors are tc, v, su.53 In how
many ways can you do this?

First we need to come up with some notation to record the choices. Suppose that ccccc
represents the choice “5 chocolate”. Maybe ccccv represents the choice “5 chocolate and 1
vanilla”. Since order doesn’t matter, there are lots of ways to record the same choice:

ccccv “ cccvc “ ccvcc “ cvccc “ vcccc.

So let’s agree to put all the c’s on the left, v’s in the middle and s’s on the right. After some
trial and error you will find the following 21 choices:

vvvvv cvvvv ccvvv cccvv ccccv ccccc
vvvvs cvvvs ccvvs cccvs ccccs
vvvss cvvss ccvss cccss
vvsss cvsss ccsss
vssss cssss
sssss

What is the pattern? With only three flavors we can arrange all the choices in the shape of a
triangle. However, with more than three flavors this method won’t be so helpful. In general it
is much better to use the following trick. We will encode each choice as a binary string where
1’s represent gallons of ice cream and 0’s represent divisions between the flavors. Here are a
few examples:

ccvssØ 1101011

cccvv Ø 1110110

cccccØ 1111100

vvvvv Ø 0111110

sssssØ 0011111

53standing for chocolate, vanilla, strawberry.
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And here is the general pattern:

11 ¨ ¨ ¨ 1
loomoon

# of c’s

0 11 ¨ ¨ ¨ 1
loomoon

# of v’s

0 11 ¨ ¨ ¨ 1
loomoon

# of s’s

.

Note that every choice corresponds to a unique binary string containing 5 copies of 1 (for the
gallons of ice cream) and 2 copies of 0 (for the dividers between the three flavors). On the
other hand, we can create such a string by choosing 5 positions for the 1’s from 7 possible
positions. (Equivalently, we can choose 2 positions for the 0’s.) Thus the number of choices is

ˆ

7

5

˙

“

ˆ

7

2

˙

“
7 ¨ 6

2 ¨ 1
“ 21.

Note that this problem can be encoded in another way. Let xc, xv, xs P N be the number of
gallons of chocolate, vanilla and strawberry that we purchase. Then we are looking for the
number of solutions to the following equation:

xc ` xv ` xs “ 5.

Here is the general result.

Counting Subsets With Repeated Elements

Let n, k ě 0 and consider the following collections:

• Unordered selections of k from n things when repetition is allowed.

• Ways to distribute k identical objects into n labeled boxes.

• Non-negative integer solutions x1, x2, . . . , xn P N to the equation

x1 ` x2 ` ¨ ¨ ¨ ` xn “ k.

I claim that each of these collections is counted by the number

´́ n

k

¯̄

:“

ˆ

n` k ´ 1

k

˙

.

Proof. In each case we can encode a choice as a binary string containing k copies of 1 and
n´ 1 copies of 0. The 1’s represent the things, or the objects, or the values of the variables.
The 0’s represent the divisions between the n different flavors or boxes, or the ` symbols. We
can create such a binary string by choosing k positions for the 1’s among k ` pn ´ 1q total
positions. Therefore the number of choices is

ˆ

k ` pn´ 1q

k

˙

.
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˝

The trick of encoding the choices as binary strings is very clever. I would not expect you to
come up with this trick by yourself.

We can finally complete our table for the number of ways to choose k things from n things.
Note that we started on the bottom left and proceeded clockwise until the bottom right, with
the solution of each problem depending on the previous:

ordered unordered

no repetition nPk “
n!

pn´kq! nCk “
n!

k!pn´kq! “
`

n
k

˘

repetition OK nk
`̀

n
k

˘̆

“
`

n`k´1
k

˘

“
pn`k´1q!
k!pn´1q!

4.3 Proof by Counting

Sometimes there is more than one way to solve a counting problem. For example, consider
the symmetry of the binomial coefficients:

ˆ

n

k

˙

“

ˆ

n

n´ k

˙

.

We could prove this using pure algebra.

Algebraic Proof.
ˆ

n

n´ k

˙

“
n!

pn´ kq!pn´ pn´ kqq!
“

n!

pn´ kq!k!
“

n

k!pn´ kq!
“

ˆ

n

k

˙

.

˝

But the following counting argument is more meaningful because it gives use a better feeling
for why the algebraic formula is true.

Counting Proof. Let A be the set of subsets of t1, 2, . . . , nu of size k:

A :“ tS Ď t1, 2, . . . , nu : #S “ ku.

We know from the previous section that #A “
`

n
k

˘

. Similarly, we know that #B “
`

n
n´k

˘

,
where B is the set of subsets of size n´ k:

B :“ tS Ď t1, 2, . . . , nu : #S “ n´ ku.

Now observe that complementation is a bijection between A and B:

A
complement
ÐÝÝÝÝÝÝÑ B.
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Therefore we have
ˆ

n

k

˙

“ #A “ #B “

ˆ

n

n´ k

˙

.

Equivalently, we could think of A as the set of binary strings with k copies of 1 and n ´ k
copies of 0, while B is the set of binary strings with n´ k copies of 1 and k copies of 0. Then
the bijection is given by switching 0s and 1s:

A
switch 0s and 1s
ÐÝÝÝÝÝÝÝÝÑ B.

˝

Next let’s consider the identity

2n “

ˆ

n

0

˙

`

ˆ

n

1

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ `

ˆ

n

n

˙

.

We can give an algebraic proof by specializing the binomial theorem.

Algebraic Proof. The binomial theorem tells us that

p1` xqn “

ˆ

n

0

˙

`

ˆ

n

1

˙

x`

ˆ

n

2

˙

x2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

xn.

Substitute x “ 1 to get the result. ˝

Or we can give a counting proof by interpreting each side as the number of subsets of
t1, 2, . . . , nu.

Counting Proof. We have a bijection between subsets and binary strings:

tsubsets of t1, . . . , nuu ÐÑ tbinary strings of length nu.

Since binary strings are just words from the alphabet t0, 1u we conclude that

#tsubsets of t1, . . . , nuu “ #tbinary strings of length nu “ 2n.

On the other hand, we have

#tsubsets of t1, . . . , nuu “
n
ÿ

k“0

#tsubsets of t1, . . . , nu with k elementsu “
n
ÿ

k“0

ˆ

n

k

˙

.

Comparing the two expressions gives the result. ˝

Here’s another one:
ˆ

n

0

˙

`

ˆ

n

2

˙

`

ˆ

n

4

˙

` ¨ ¨ ¨ “

ˆ

n

1

˙

`

ˆ

n

3

˙

`

ˆ

n

4

˙

` ¨ ¨ ¨ .
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Algebraic Proof. Substitute x “ ´1 into the binomial theorem:

p1´ 1qn “

ˆ

n

0

˙

`

ˆ

n

1

˙

p´1q `

ˆ

n

2

˙

p´1q2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

p´1qn

0 “

ˆ

n

0

˙

´

ˆ

n

1

˙

`

ˆ

n

2

˙

´ ¨ ¨ ¨ ˘

ˆ

n

n

˙

ˆ

n

1

˙

`

ˆ

n

3

˙

` ¨ ¨ ¨ “

ˆ

n

0

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ .

˝

Counting Proof. Let A be the set of subsets of t1, . . . , nu with an even number of elements
and let B be the set of subsets of t1, . . . , nu with an odd number of elements. Thus we have

#A “

ˆ

n

0

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ ,

#B “

ˆ

n

1

˙

`

ˆ

n

3

˙

` ¨ ¨ ¨ .

Our goal is to find a bijection between A and B. If n is odd then the complementation map
will work. For example, here is the case n “ 3:

But if n is even then the problem is not so easy. For example, here are the even and odd
subsets of t1, 2, 3, 4u:
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We see that there are 1 ` 6 ` 1 “ 8 even subsets and 4 ` 4 “ 8 odd subsets. Can you see
a bijection between the two sets? This time complementation does not work, because the
complement of an even subset is even and the complement of an odd subset is odd. After a
bit of thought we see that “flipping the first bit” gives a bijection:

In retrospect, we see that “flipping the first bit” also works for n “ 3:
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In fact, it doesn’t matter which bit we flip. One can check that for any specific k P t1, 2, . . . , nu
we obtain a bijection

A
flip the kth bit
ÐÝÝÝÝÝÝÝÑ B,

which implies that #A “ #B. ˝

There is a nice picture of this last proof. I claim that the set of binary strings of length n
can be seen as the vertices of “hypercube”, where each edge of the hypercube corresponds
to flipping one bit. Consider the following picture, where the squiggly lines correspond to
“flipping the first bit” and the straight lines correspond to flipping some other bit:
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We have seen one type of counting proof called a “bijective proof”. Let me end this section
by giving an example of another proof technique called “double counting”. We will prove the
following identity:

ˆ

i

j

˙ˆ

j

k

˙

“

ˆ

i

k

˙ˆ

i´ k

j ´ k

˙

for all 0 ď i ď j ď k.

Algebraic Proof. The left side simplifies to

ˆ

i

j

˙ˆ

j

k

˙

“
i!

��j!pi´ jq!
��j!

k!pj ´ kq!
“

i!

pi´ jq!pj ´ kq!k!

and the right side simplifies to

ˆ

i

k

˙ˆ

i´ k

j ´ k

˙

“
i!

k!���
�

pi´ kq!
���

�
pi´ kq!

pj ´ kq!ppi´�kq ´ pj ´�kqq!
“

i!

pi´ jq!pj ´ kq!k!
.

Note that these are the same. ˝

Proof by Double Counting. Suppose we have a classroom of i students. From these we
will choose a committee of j students and then we will choose k members of the committee to
be leaders. Here is a picture:

One the one hand, we can first choose j committee members from the i students and then
choose k leaders from the j committee members:

#(choices) “

ˆ

i

j

˙

loomoon

choose committee

ˆ

ˆ

j

k

˙

loomoon

then choose leaders

.
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On the other hand, we can first choose k leaders and then choose j ´ k other members of the
committee from the remaining i´ k students:

#(choices) “

ˆ

i

k

˙

loomoon

choose leaders

ˆ

ˆ

i´ k

j ´ k

˙

looomooon

then choose committee

.

Comparing these two gives the result. ˝

4.4 The Multinomial Theorem

In this section we will discuss a generalization of the binomial theorem.

We know that the number of words of length n from the alphabet ta, b, cu is 3n. Furthermore,
we know that the number of these words containing i copies of the letter a and n ´ i copies
of the letter b is

`

n
i

˘

. Indeed, we just need to choose i of the n positions in which to place
the a’s. Then all of the remaining letters are b’s. More generally, how many words are there
containing i copies of a and j copies of b?

Answer. First choose i out of n positions to place the a’s. Then from the remaining n ´ i
positions choose j positions to place the b’s. Thus we have

#

ˆ

words of length n containing
i copies of a and j copies of b

˙

“

ˆ

n

i

˙

loomoon

first place the a’s

ˆ

ˆ

n´ i

j

˙

looomooon

then place the b’s

.

˝

These numbers are called trinomial coefficients because of the following algebraic formula:

pa` b` cqn “
ÿ

i,j,k

n!

i!j!k!
aibjck.

Does this formula simply? Sure:54

ˆ

n

i

˙ˆ

n´ i

j

˙

“
n!

i!pn´ iq!

pn´ iq!

j!pn´ i´ jq!
“

n!

i!j!pn´ i´ jq!
.

And what is the significance of the number n ´ i ´ j? Since there are only three letters this
must be the number of c’s n the word. Thus we can also write

#

ˆ

words made from i copies of a,
j copies of b and k copies of c

˙

“
n!

i!j!k!
“
pi` j ` kq!

i!j!k!
.

54You can also view this as a committee of size i` j with
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These numbers are called trinomial coefficients because of the following formula, which is
called the trinomial theorem:

pa` b` cqn “
ÿ

i,j,k

n!

i!j!k!
aibjck.

Here we think of the symbols a, b, c as numbers that can be added and multiplied and we
sum over all integers i, j, k ě 0 such that i` j ` k “ n. For example, when n “ 2 we have

pa` b` cq2 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

2!
1!1!0!a

1b1c0 ` 2!
1!1!0!a

1b1c0 ` 2!
0!2!0!a

0b2c0

` 2!
1!0!1!a

1b0c1 ` 2!
0!1!1!a

0b1c1

` 2!
0!0!2!a

0b0c2

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

a2 `2ab `b2

`2ac `2bc

`c2

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

And why are there 6 terms in this expansion? Each term corresponds to a solution of the
equation i` j ` k “ 2 where i, j, k P N. We saw in section 4.2 that the number of solutions is

ˆ

sum`# variables´ 1

sum

˙

“

ˆ

2` 3´ 1

2

˙

“
4

2
“ 6.

We can see what this has to do with counting words if we temporarily pretend that ab ‰ ba,
ac ‰ ca and bc ‰ cb. Then the expansion becomes

pa` b` cq2 “ aa` pab` baq ` bb` pac` caq ` pbc` cbq ` cc

“ the sum of all words of length 2 from the alphabet ta, b, cu.

Here is the general situation.

The Multinomial Theorem

Consider an alphabet ta1, a2, . . . , a`u of size `. Then the number of words of length n from
this alphabet which contain ki copies of the letter ai is equal to the following number,
called a multinomial coefficient:

ˆ

n

k1, k2, . . . , k`

˙

:“
n!

k1!k2! ¨ ¨ ¨ k`!
.

If we temporarily treat the letters ai as numbers then this fact is equivalent to the
multinomial theorem:

pa1 ` a2 ` ¨ ¨ ¨ ` a`q
n “

ÿ

k1,...,k`

ˆ

n

k1, . . . , k`

˙

ak11 ¨ ¨ ¨ a
k`
` .
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On the right we sum over all non-negative integers k1, . . . , k` such that k1` ¨ ¨ ¨ ` k` “ n.
The number of summands is thus

`

``n´1
n

˘

.

As with the binomial theorem, the multinomial theorem can be proved in many different ways.
(One of these methods is by induction, which you will examine on the homework.) Instead of
proving it now, let us examine some special cases.

Example: Alphabet of length ` “ 2. Consider the alphabet ta1, a2u. Then the number of
words of length n containing k1 copies of a1 and k2 copies of a2 is

ˆ

n

k1, k2

˙

“
n!

k1!k2!
.

Since k1 ` k2 “ n we could also write this as
ˆ

n

k1, k2

˙

“
n!

k1!pn´ k1q!
“

ˆ

n

k1

˙

or
ˆ

n

k1, k2

˙

“
n!

pn´ k2q!k2!
“

ˆ

n

k2

˙

.

Indeed, to create a word of length n containing k1 copies of a1 and k2 copies of a2 we can
either choose the positions for the a1’s in

`

n
k1

˘

ways or choose the positions for the a2’s in
`

n
k2

˘

ways. The result is the same.

The multinomial theorem in this case is just the binomial theorem in disguise:

pa1 ` a2q
n “

ÿ

k1,k2ě0
k1`k2“n

ˆ

n

k1, k2

˙

ak11 a
k2
2 “

n
ÿ

k“0

ˆ

n

k

˙

ak1a
n´k
2 .

Example: Rearrangements of Mississippi. In how many ways can you arrange the
following letters?

m, i, s, s, i, s, s, i, p, p, i

We are looking for a word of length 11 from the alphabet tm, i, s, pu in which the letter m
appears once, the letter i appears 4 times, the letter s appears 4 times and the letter p appears
twice. Thus the answer is

ˆ

11

1, 4, 4, 2

˙

“
11!

1!4!4!2!
“ 34650 ways.

This is related to the multinomial theorem because the word mississippi is one of the terms
in the expansion of pm` i` s` pq11:

pm` i` s` pq11 “ ¨ ¨ ¨ `mississippi` ¨ ¨ ¨ .
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If we collect all of the terms with the same number of each letter then we get

pm` i` s` pq11 “ ¨ ¨ ¨ ` 34650 ¨m1i4s4p2 ` ¨ ¨ ¨ .

There is another way to think of this problem if you like. Consider the labeled letters:

m1, i1, i2, i3, i4, s1, s2, s3, s4, p1, p2.

Let S be the set of words that we can make with the labeled letters. Since each of the 11
letters is distinct we have

#S “ 11!.

On the other hand, we can form such a word by first choosing an unlabeled word and then
placing labels on the letters. Let N be the number of words that we can make from the
unlabeled letters. Then we obtain

#S “ N
loomoon

choose unlabeled word

ˆ 1!
loomoon

label the m’s

ˆ 4!
loomoon

label the i’s

ˆ 4!
loomoon

label the s’s

ˆ 2!
loomoon

label the p’s

.

Finally, equating these two expressions for #S gives

N ¨ 1!4!4!2! “ 11!

N “
11!

1!4!4!2!
,

as expected. This method is an example of double counting.

4.5 Newton’s Binomial Theorem

In this section we will discuss a different generalization of the binomial theorem. We have seen
that the number of permutations (ordered selections without repetition) of k things chosen
from n equals

nPk “ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 1q.

Furthermore, we have seen that the number of combinations (unordered selections without
repetition) of k things chosen from n is given by

nCk “
nPk

k!
.

At first it seems that these formulas only make sense for integers 0 ď k ď n. However, in this
section we will observe that the formulas can be defined for any number n. To emphasize
that n is no longer an integer, we will use a different notation.

Definition of Falling Factorials

Fix an integer k ě 0. Then for any number z we define the falling factorial

pzqk :“

#

1 if k “ 0,

zpz ´ 1qpz ´ 2q ¨ ¨ ¨ pz ´ k ` 1q if k ě 1.
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We will also define the following notation:

ˆ

z

k

˙

:“
pzqk
k!

.

It is not immediately clear whether this notation is useful.

We should make a few observations right away:

• If 0 ď k ď n are integers then we have

pnqk “ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 1q “
n!

pn´ kq!

and hence
`

n
k

˘

“ n!
k!pn´kq! as usual.

• If 0 ď n ă k are integers then one of the factors in pnqk is equal to zero and hence
pnqk “ 0. It follows also that

`

n
k

˘

“ 0, which makes sense I guess, since there are zero
ways to choose k things from n things when k ą n.

Thus the new situations will occur when z is a negative integer or a non-integer number. For
practice, let us compute the value of

`

´1
k

˘

:

ˆ

´1

k

˙

“
1

k!
¨ p´1qk

“
1

k!
¨ p´1qp´1´ 1qp´1´ 2q ¨ ¨ ¨ p´1´ k ` 1q

“
1

k!
¨ p´1qp´2qp´3q ¨ ¨ ¨ p´kq

“
1

k!
¨ p´1qkk!

“ p´1qk.

Well, okay. It makes no sense to “choose k things from ´1 things”, but the algebraic formula
`

´1
k

˘

“ p´1qk is still perfectly valid. We can understand this formula a bit better with the
following theorem.

The Generalized Pascal’s Triangle
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For all integers n, k P Z with k ě 0 we have

ˆ

n

k

˙

“

$

’

&

’

%

1 if k “ 0,

0 if n “ 0 and k ‰ 0,
`

n´1
k´1

˘

`
`

n´1
k

˘

otherwise.

Proof. The boundary cases are immediate. For the recurrence, we observe that the usual
algebraic proof goes through even for non-integer values of n:

ˆ

z ´ 1

k ´ 1

˙

`

ˆ

z ´ 1

k

˙

“
pz ´ 1qk´1

pk ´ 1q!
`
pz ´ 1qk

k!

“
kpz ´ 1qk´1

kpk ´ 1q!
`
pz ´ 1qk

k!

“
pz ´ 1qk´1

k!
`
pz ´ 1qk

k!

“
1

k!
rkpz ´ 1qk´1 ` pz ´ 1qks

“
1

k!
pz ´ 1qk´1 r�k ` pz ´ �1´�k ` �1qs

“
1

k!
pz ´ 1qk´1 ¨ z

“
1

k!
pzqk

“

ˆ

z

k

˙

.

˝

Here is a picture of the generalized Pascal’s triangle:

1 ´5 15
1 ´4 10 ¨ ¨ ¨

1 ´3 6 ´10
1 ´2 3 ´4 ¨ ¨ ¨

1 ´1 1 ´1 1
1 0 0 0 0 ¨ ¨ ¨

1 1 0 0 0 0
1 2 1 0 0 0 ¨ ¨ ¨

1 3 3 1 0 0 0
1 4 6 4 1 0 0 ¨ ¨ ¨

Do you notice anything? It seems that the numbers in the “negative rows” are just another
copy of Pascal’s triangle, but rotated and with alternating minus signs. On the homework you
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will verify this observation by proving for all integers n, k ě 0 that

ˆ

´n

k

˙

“ p´1qk
ˆ

n` k ´ 1

k

˙

.

Wait a minute. The number
`

n`k´1
k

˘

on the right side is equal to the number of ways to
choose k things from n things when repetition is allowed. At first this seems like a strange
coincidence but I will show you that there is a good reason for it.

The following generalization of the binomial theorem was discovered by Isaac Newton around
1665 and played an important role in his development of Calculus.

Newton’s Binomial Theorem (1665)

Let x and z be any real or complex numbers with |x| ă 1. Then we have the following
identity, where the infinite series on the right is convergent:

p1` xqz “
8
ÿ

k“0

ˆ

z

k

˙

xk “

ˆ

z

0

˙

`

ˆ

z

1

˙

x`

ˆ

z

2

˙

x2 ` ¨ ¨ ¨ .

Note that this reduces to the usual binomial theorem when z “ n is a positive integer, since
then we have

`

n
k

˘

“ 0 for all k ą n. If z is not a positive integer then the series is truly infinite.
We can compute the first few negative integer expansions by looking at the table above:

p1` xq´1 “ 1´ x` x2 ´ x3 ` x4 ´ ¨ ¨ ¨

p1` xq´2 “ 1´ 2x` 3x2 ´ 4x3 ` ¨ ¨ ¨

p1` xq´3 “ 1´ 3x` 6x2 ´ 10x3 ` ¨ ¨ ¨

Indeed, we can verify that these formulas are true because the first is just the geometric series:

p1´ xq´1 “ 1` x` x2 ` x3 ` x4 ` ¨ ¨ ¨

p1´ p´xqq´1 “ 1` p´xq ` p´xq2 ` p´xq3 ` p´xq4 ` ¨ ¨ ¨

p1` xq´1 “ 1´ x` x2 ´ x3 ` x4 ´ ¨ ¨ ¨ .

The second formula is obtained by differentiating the geometric series as a function of x:

d

dx
p1` xq´1 “

d

dx
p1´ x` x2 ´ x3 ` x4 ´ ¨ ¨ ¨ q

´p1` xq´2 “ 0´ 1` 2x´ 3x2 ` 4x3 ´ ¨ ¨ ¨

p1` xq´2 “ 1´ 2x` 3x2 ´ 4x3 ` ¨ ¨ ¨ .
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And the third formula is obtained by differentiating the second:

d

dx
p1` xq´2 “

d

dx
p1´ 2x` 3x2 ´ 4x3 ` 5x4 ´ ¨ ¨ ¨ q

´2p1` xq´3 “ 0´ 2` 2 ¨ 3 ¨ x´ 3 ¨ 4 ¨ x2 ` 4 ¨ 5 ¨ x3 ´ ¨ ¨ ¨

p1` xq´3 “ 1´
2 ¨ 3

2
¨ x`

3 ¨ 4

2
¨ x2 ´

4 ¨ 5

2
¨ x3 ` ¨ ¨ ¨ .

You can probably see a pattern here. Indeed, we could use induction to prove Newton’s formula
for p1` xq´n when n is a positive integer. The interesting surprise that Newton discovered is
that the formula holds also for non-integer exponents. In fact, one can use Newton’s theorem
and some tricky algebraic simplification to prove that

?
1` x “ p1` xq1{2 “

8
ÿ

k“0

ˆ

1{2

k

˙

xk “
8
ÿ

k“0

p´1qk´1

k ¨ 22k´1

ˆ

2pk ´ 1q

k ´ 1

˙

xk when |x| ă 1.

Finally, let us return to the strange coincidence:
ˆ

´n

k

˙

“ p´1qk
ˆ

pn´ 1q ` k

k

˙

“ p´1qk
´́ n

k

¯̄

“ p´1qk ¨#(solutions e1, . . . , en P N to the equation e1 ` ¨ ¨ ¨ ` en “ k).

I claim that Newton’s theorem explains this coincidence.

Generating Function for the Numbers
`̀

n
k

˘̆

For all integers n ě 0 and complex numbers |x| ă 1 we have

1

p1´ xqn
“

8
ÿ

k“0

´́ n

k

¯̄

xk.

We say that 1{p1´xqn is a generating function for the numbers
`̀

n
k

˘̆

because it encodes
these numbers as the coefficients in its power series expansion.

Of course we can give an algebraic proof.

Algebraic Proof. On the homework you will use algebraic manipulation to show that
`

´n
k

˘

“

p´1qk
`̀

n
k

˘̆

. Then from Newton’s theorem we have

p1` xq´n “
8
ÿ

k“0

ˆ

´n

k

˙

xk
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p1` p´xqq´n “
8
ÿ

k“0

ˆ

´n

k

˙

p´xqk

p1´ xq´n “
8
ÿ

k“0

p´1qk
ˆ

´n

k

˙

xk

p1´ xq´n “
8
ÿ

k“0

´́ n

k

¯̄

xk.

˝

But this proof does not explain why the result is true. For that we need a counting proof.

Counting Proof. We can rewrite the formula using the geometric series:

´

1` x` x2 ` x3 ` ¨ ¨ ¨

¯n
“

ˆ

1

1´ x

˙n

“

8
ÿ

k“0

´́ n

k

¯̄

xk.

In order to prove that the formula is true we will compute the coefficient of xk on each side.
On the right side we have

`̀

n
k

˘̆

. Now observe that every term on the left side has the form

xe1xe2 ¨ ¨ ¨xen for some exponents e1, e2, . . . , en P N.

Indeed, to obtain a term on the left side we multiply one term from each copy of the geometric
series. Since there are n copies, we end up with a product of n powers of x. Thus to compute
the coefficient of xk on the left we only need to count the number of choices of exponents
e1, e2, . . . , en P N such that

xk “ xe1xe2 ¨ ¨ ¨xen “ xe1`e2`¨¨¨`en .

In other words, we need to count the number of solutions e1, e2, . . . , en P N to the equation

e1 ` e2 ` ¨ ¨ ¨ ` en “ k.

From section 4.2 we know that the answer to this problem is
`̀

n
k

˘̆

. ˝

Maybe you don’t find that proof very convincing, because the multiplication of power series
on the left happens mostly in our minds. To write it down explicitly would be a notational
nightmare and would make the proof even less understandable. The reason I know that the
proof is correct is because:

(1) It is plausible.

(2) We already know that the result is true.

That’s good enough for me. The reason that the counting proof is important is because it
explains that the coincidence

`

´n
k

˘

“ p´1qk
`̀

n
k

˘̆

was not a coincidence.

In the next section we will investigate the idea of generating functions more systematically.
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4.6 Generating Functions

Never mind. We don’t have time for this.

If we had time we would discuss (1) binomial theorem, (2) fibonacci numbers, (3) integer
partitions. Sometimes generating functions lead to the cleanest proofs.

4.7 Worked Exercises

4.1. The following table shows that the Fibonacci sequence can be run in both directions:

n ´4 ´3 ´2 ´1 0 1 2 3 4

Fn ´3 2 ´1 1 0 1 1 2 3

Use induction to prove that F´n “ p´1qn`1Fn for all n ě 0.

Proof. The statement holds for n “ 0 because F´0 “ F0 “ 0 and p´1q0`1F0 “ 0. Now
assume for induction that F´k “ p´1qk`1Fk for all k P t0, 1, . . . , n´ 1u. Then we also have

F´n`2 “ F´n`1 ` F´n definition

F´n “ F´n`2 ´ F´n`1

“ F´pn´2q ´ F´pn´1q

“ p´1qpn´2q`1Fn´2 ´ p´1qpn´1q`1Fn´1 induction

“ p´1qn`1Fn´2 ` p´1qn`1Fn´1

“ p´1qn`1 rFn´2 ` Fn´1s

“ p´1qn`1Fn definition

˝

4.2. For all integers n ě k ą 0 we have k
`

n
k

˘

“ n
`

n´1
k´1

˘

.

(a) Prove this using pure algebra.

(b) Prove this using a counting argument. [Hint: Choose a committee of k people from n
people. The committee has a president.]

(a) Algebraic Proof. The left side simplifies to

k

ˆ

n

k

˙

“ k ¨
n!

k!pn´ kq!
“

n!

pk ´ 1q!pn´ kq!

and the right side simplifies to the same expression:

n

ˆ

n´ 1

k ´ 1

˙

“ n ¨
pn´ 1q!

pk ´ 1q!ppn´ �1q ´ pk ´ �1qq!
“

n!

pk ´ 1q!pn´ kq!
.
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˝

(b) Counting Proof. Let N be the number of ways to choose a committee of k people from
n people, where 1 member of the committee is the president. On the one hand, we can choose
the commiittee first and then choose the president:

N “

ˆ

n

k

˙

loomoon

choose the committee

ˆ k
loomoon

then choose the president

“ k

ˆ

n

k

˙

.

On the other hand, we can choose one person from n to be the president and then choose
k ´ 1 from the remaining n´ 1 to be the other committee members:

N “ n
loomoon

choose the president

ˆ

ˆ

n´ 1

k ´ 1

˙

looomooon

then choose the other members

“ n

ˆ

n´ 1

k ´ 1

˙

.

˝

4.3. Count the possibilities in each case.

(a) A phone number consists of 7 digits.

(b) Suppose that a license plate consists of 3 digits followed by 4 letters.55

(c) A poker hand consists of 5 unordered cards from a standard deck of 52.

(d) Solutions x1, x2, x3, x4, x5 P N to the equation x1 ` x2 ` x3 ` x4 ` x5 “ 10.

(a) A phone number is a word of length 7 from the alphabet t0, 1, . . . , 9u. Since repetition is
allowed there are

107 “ 10, 000, 000 different phone numbers.

This is why we also have area codes.

(b) Symbols on a license plate are ordered. If symbols may be repeated then the number of
possibilities is

10
loomoon

1st digit

ˆ 10
loomoon

2nd digit

ˆ 10
loomoon

3rd digit

ˆ 26
loomoon

1st letter

ˆ 26
loomoon

2nd letter

ˆ 26
loomoon

3rd letter

ˆ 26
loomoon

4th letter

“ 456, 976, 000.

If symbols may not be repeated then the number of possibilities is

10
loomoon

1st digit

ˆ 9
loomoon

2nd digit

ˆ 8
loomoon

3rd digit

ˆ 26
loomoon

1st letter

ˆ 25
loomoon

2nd letter

ˆ 24
loomoon

3rd letter

ˆ 23
loomoon

4th letter

“ 258, 336, 000.

55Assume that the alphabet has 26 letters.
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This should be enough for most countries.

(c) Since a poker hand is unordered and cards are not repeated, the number of possibilities is

ˆ

52

5

˙

“
52 ¨ 51 ¨ 50 ¨ 49 ¨ 48

5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
“ 2, 598, 960.

Will you ever see the same hand twice? According to my calculations, the average number of
poker hands until you see the first repetition is 2021.17 (assuming that each hand comes from
a full shuffled deck).56

(d) The number of solutions x1, . . . , x5 P N to the equation x1 ` ¨ ¨ ¨ ` x5 “ 10 is the number
of ways to buy 10 gallons of ice cream if there are 5 possible flavors (so xi is the number of
gallons of the ith flavor). We can encode such a choice as a binary sequence with ten 1’s
(representing the gallons of ice cream) and four 0’s (representing walls between flavors). The
number of such binary strings is

ˆ

total # positions

# positions for 0’s

˙

“

ˆ

10` 4

4

˙

“

ˆ

14

4

˙

“
14 ¨ 13 ¨ 12 ¨ 11

4 ¨ 3 ¨ 2 ¨ 1
“ 1001.

If you just want to memorize a formula: The number of solutions x1, . . . , xn P N to the
equation x1 ` ¨ ¨ ¨ ` xn “ k is

`

n`k´1
k

˘

“
`

n`k´1
n´1

˘

. In our case n “ 5 and k “ 10.

4.4. For all integers r, g, n ě 0 we have the following identity:

n
ÿ

k“0

ˆ

r

k

˙ˆ

g

n´ k

˙

“

ˆ

r ` g

n

˙

.

(a) Prove this identity. [Hint: There are r red balls and g green balls in an urn. You reach in
and grab n balls (unordered and without repetition). Count the number of possibilities
in two different ways.]

(b) Use the result of (a) to prove that
`

n
0

˘2
`
`

n
1

˘2
`
`

n
2

˘2
` ¨ ¨ ¨ `

`

n
n

˘2
“

`

2n
n

˘

.

(a) Counting Proof. Let N be the number of ways to choose n balls from the urn. On the
one hand, since there are r ` g balls in the urn we have

N “

ˆ

r ` g

n

˙

.

56According to robjohn’s answer on stackexchange, the expected number of rolls of a fair n-sided die un-
til the first repetition is approximately

a

πn
2
` 2

3
: https://math.stackexchange.com/questions/542200/

expected-number-of-tosses-before-you-see-a-repeat
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On the other hand, suppose that our selection of n balls contains exactly k red balls (and
hence n´ k green balls). The number of ways this can happen is

#

ˆ

ways to get k red balls
and n´ k green balls

˙

“

ˆ

r

k

˙

loomoon

choose red balls

ˆ

ˆ

g

n´ k

˙

looomooon

then choose green balls

.

Thus the total number of choices is

N “

n
ÿ

k“0

#

ˆ

ways to get k red balls
and n´ k green balls

˙

“

n
ÿ

k“0

ˆ

r

k

˙ˆ

g

n´ k

˙

.

If r ă n or g ă n then this sum contains some zeroes since we define
`

a
b

˘

“ 0 for a ă b. ˝

Remark: This is called Vandermonde’s identity. It is much harder to find an algebraic proof.

(b) Let r “ g “ n. Then since
`

n
k

˘

“
`

n
n´k

˘

we obtain

ˆ

2n

n

˙

“

ˆ

n` n

n

˙

“

n
ÿ

k“0

ˆ

n

k

˙ˆ

n

n´ k

˙

“

n
ÿ

k“0

ˆ

n

k

˙2

.

4.5. The trinomial coefficient
`

n
i,j,k

˘

“ n!
i!j!k! is the number of words of length n from the

alphabet ta, b, cu using i copies of a, j copies of b and k copies of c. These numbers satisfy the
trinomial recurrence:

ˆ

n

i, j, k

˙

“

ˆ

n´ 1

i´ 1, j, k

˙

`

ˆ

n´ 1

i, j ´ 1, k

˙

`

ˆ

n´ 1

i, j, k ´ 1

˙

.

(a) Prove the trinomial recurrence using pure algebra.

(b) Prove the trinomial recurrence using a counting argument.

(a) Algebraic Proof. We add three fractions by obtaining the common denominator i!j!k!:

pn´ 1q!

pi´ 1q!j!k!
`

pn´ 1q!

i!pj ´ 1q!k!
`

pn´ 1q!

i!j!pk ´ 1q!

“
ipn´ 1q!

ipi´ 1q!j!k!
`

jpn´ 1q!

i!jpj ´ 1q!k!
`

kpn´ 1q!

i!j!kpk ´ 1q!

“
ipn´ 1q!

i!j!k!
`
jpn´ 1q!

i!j!k!
`
kpn´ 1q!

i!j!k!

“
ipn´ 1q!` jpn´ 1q!` kpn´ 1q!

i!j!k!

“
pi` j ` kqpn´ 1q!

i!j!k!
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“
npn´ 1q!

i!j!k!

“
n!

i!j!k!
.

˝

(b) Counting Proof. Recall that
`

n
i,j,k

˘

is the number of words of length n from the alphabet
ta, b, cu which contain i copies of a, j copies of b and k copies of c. Let S be the set of such
words. Furthermore, let Sa, Sb, Sc Ď S be the subsets of words in which a, b or c is the first
letter, respectively. In order to choose an element of Sa we start by placing a on the left.
Then we must fill in the remaining n´ 1 letters with a word of length n´ 1 using i´ 1 copies
of a, j copies of b and k copies of c. The number of ways to do this is

#Sa “

ˆ

n´ 1

i´ 1, j, k

˙

.

Similarly we have

#Sb “

ˆ

n´ 1

i, j ´ 1, k

˙

and #Sc “

ˆ

n´ 1

i, j, k ´ 1

˙

.

Since the sets Sa, Sb, Sc partition the set S we conclude that

#S “ #Sa `#Sb `#Sc
ˆ

n

i, j, k

˙

“

ˆ

n´ 1

i´ 1, j, k

˙

`

ˆ

n´ 1

i, j ´ 1, k

˙

`

ˆ

n´ 1

i, j, k ´ 1

˙

.

˝

4.6. Let k ě 0 be an integer. Then for any number z the following formula makes sense:
ˆ

z

k

˙

:“
1

k!
¨ zpz ´ 1qpz ´ 2q ¨ ¨ ¨ pz ´ k ` 1q.

Isaac Newton proved that for all numbers z, x with |x| ă 1 the following series converges:

p1` xqz “

ˆ

z

0

˙

`

ˆ

z

1

˙

x`

ˆ

z

2

˙

x2 `

ˆ

z

3

˙

x3 ` ¨ ¨ ¨ .

(a) For all integers n, k ě 0 show that
`

´n
k

˘

“ p´1qk
`

n`k´1
k

˘

.

(b) Use part (a) to obtain the power series expansion of p1` xq´2.

(a) For all integers n, k ě 0 we have

ˆ

´n

k

˙

“
1

k!
p´nqp´n´ 1qp´n´ 2q ¨ ¨ ¨ p´n´ k ` 1q

129



“
1

k!
p´1qpnqp´1qpn` 1qp´1qpn` 2q ¨ ¨ ¨ p´1qpn` k ´ 1q

“
1

k!
p´1qkpn` k ´ 1q ¨ ¨ ¨ pn` 2qpn` 1qpnq

“
1

k!
p´1qkpn` k ´ 1q ¨ ¨ ¨ pn` 2qpn` 1qpnq

pn´ 1q!

pn´ 1q!

“
1

k!
p´1qk

pn` k ´ 1q!

pn´ 1q!

“ p´1qk
pn` k ´ 1q!

k!pn´ 1q!

“ p´1qk
ˆ

n` k ´ 1

k

˙

.

˝

(b) For all integers k ě 0, part (a) tells us that

ˆ

´2

k

˙

“ p´1qk
ˆ

2` k ´ 1

k

˙

“ p´1qk
ˆ

k ` 1

k

˙

“ p´1qkpk ` 1q.

And then Newton’s theorem tells us that

p1` xq´2 “

8
ÿ

k“0

ˆ

´2

k

˙

xk “
8
ÿ

k“0

p´1qkpk ` 1qxk “ 1´ 2x` 3x2 ´ 4x3 ` ¨ ¨ ¨ .

5 Graph Theory

The final topic of this course is graph theory. This is a relatively modern subject that one
could describe as “the study of how things are connected”.57 It has applications to computer
science at all levels. For example, it deals with the following problems:

• Given a logical circuit, how can we etch it onto a chip with the fewest number of wire
crossings?

• What is the least number of wires that we need to connect n computers? What if each
wire has an associated cost/distance?

• How can we design a network of computers that remains connected if any k of the
computers/connections are knocked out?

We will see that graph theory arguments are similar to counting arguments, in that they
cannot easily be described using algebra. Instead we have to rely on pictures and abstract
reasoning. This is why it is the final topic of the course.

57More precisely, graph theory is the study of how one-dimensional things (such as wires) are connected.
Topology is the study of how higher-dimensional things (such as surfaces) are connected.
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5.1 Definitions and Degrees

A graph consists of a set of vertices (or nodes) that are connected by a set of edges. We can
formalize this idea as follows.

Definition of Simple Graphs

A simple graph G “ pV,Eq consists of:

• a set V of vertices,

• a set E Ď
`

V
2

˘

of edges.

Here we use the notation
`

V
2

˘

to denote the set of two-element subsets of V . Thus
an edge tu, vu is just an unordered pair of distinct vertices u ‰ v P V .58

We encode the graph in a computer via the adjacency matrix A “ paijq. If the vertices
are ordered as V “ tv1, . . . , vnu then the ij entry of the matrix is defined by

aij :“

#

1 if tvi, vju P E,

0 if tvi, vju R E.

For example, the following graph G “ pV,Eq has

V “ t1, 2, 3, 4u and E “ tt1, 2u, t1, 3u, t2, 3u, t3, 4u.

The adjacency matrix A is displayed on the right:

Note that a graph with n vertices can have at most
`

n
2

˘

edges, since this is the number of
unordered pairs of vertices. We can define the complement G1 “ pV,E1q of a graph G “ pV,Eq
by keeping the vertices the same and switching the edges with non-edges. For example, if G
is the graph above then the complement G1 has V “ t1, 2, 3, 4u and E1 “ tt1, 4u, t2, 4uu:

58There are other kinds of graphs. For example, directed graphs have edges corresponding to ordered pairs
pu, vq of vertices. Multigraphs may have repeated edges ptu, vu, tu, vuq and/or loops pu, uq. In this course we
sill stick to simple graphs.
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The data of a graph just tells us how the vertices are connected to each other. We can
draw many different pictures to display this information. For example, let K4 be the complete
graph on the vertex set t1, 2, 3, 4u, which contains all six possible edges. Here are three different
pictures of K4:

Sometimes it is difficult to know whether two different pictures represent the same graph. In
general, what do we mean when we say that two graphs are the same?

Definition of Graph Isomorphism

Consider two graphs G “ pVG, EGq and H “ pVH , EHq. We say that G and H are equal
(and write G “ H) if VG “ VH and EG “ EH . We say that G and H are isomorphic (and
write G – H) if we have a bijection VG Ø VH that preserves the edges. For example:

If we only care about isomorphism then we will not label the vertices.

Sometimes it is difficult to tell whether two graphs are isomorphic. For example, you will
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prove on the homework that the following two graphs are not isomorphic:

Don’t worry, I’ll give you a hint later. For now you can just puzzle over it. Here are some
important classes of graphs that we use in our examples below.

Important Clases of Graphs

• The path Pn on n vertices looks like this:

• The cycle Cn on n vertices looks like this:

• The complete graph Kn on n vertices has all
`

n
2

˘

possible edges. Here is K5:

• The complete bipartite graph Km,n has vertex set V “ A Y B with #A “ m and
#B “ n. The edge set is tta, bu : a P A and b P Bu. Here is K3,4:
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Later I will define “bipartite graphs” more generally.

So that this first section is not only definitions, let me present the Handshaking Lemma and
then show you a couple of quick applications.

The Handshaking Lemma

Let G “ pV,Eq be a graph. For each vertex u P V we define its degree as follows:

degpuq :“ #tv P V : tu, vu P Eu “ #(vertices sharing an edge with u)

Then the sum of the degrees is equal to twice the number of edges:

ÿ

uPV

degpuq “ 2 ¨#E

(sum of the degrees) “ (twice the number of edges).

Proof by Double Counting. Define a “lollipop” as an edge together with one of its vertices
and let L be the set of lollipops in the graph. We will count this set in two different ways. On
the one hand, we can choose the edge first, then choose the vertex:

#L “ #E
loomoon

choose the edge

ˆ 2
loomoon

then choose the vertex

“ 2 ¨#E.

On the other hand, for each vertex u P V we note that there are degpuq lollipops containing
this vertex. Then summing over all vertices gives

#L “
ÿ

uPV

#tlollipops containing uu “
ÿ

uPV

degpuq.

˝

We have the following immediate corollary.
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The Number of Odd Vertices is Even.

For any graph, the number of odd-degree vertices is even.

Proof. Let V “ Ve Y Vo, where Ve, Vo are the vertices of even and odd degree, respectively.
Now assume for contradiction that #Vo is odd. Summing degrees for each set gives

ÿ

uPVo

degpuq “
ÿ

(odd number of odd numbers) “ (odd number),

ÿ

uPVe

degpuq “
ÿ

(some number of even numbers) “ (even number).

But then from the Handshaking Lemma we have

ÿ

uPV

degpuq “
ÿ

uPVe

degpuq `
ÿ

uPVo

degpuq

2 ¨#E “
ÿ

uPVe

degpuq `
ÿ

uPVo

degpuq

(even number) “ (even number)` (odd number),

which is a contradiction. ˝

Many nice graphs have the property that every vertex has the same degree. The following
theorem tells us exactly when these graphs can exist.

Existence of Regular Graphs

We say that a graph is d-regular if each vertex has degree d.

(1) If there exists a d-regular graph on n vertices then dn is even.

(2) If dn is even then there exists at least one d-regular graph on n vertices.

Proof. (1) Let G be a d-regular graph on n vertices. Then we have

2 ¨#E “
ÿ

uPV

degpuq “ d` d` ¨ ¨ ¨ ` d
loooooooomoooooooon

n times

“ dn.

(2) Conversely, suppose that dn is even. Then there are two cases. In each case we will
construct a certain d-regular graph on n vertices, called a Harary graph Hd,n.
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‚ If d is even then we arrange the n vertices in a circle and then connect each vertex to
its d{2 neighbors on either side. For example, here is the graph H4,7:

‚ If d is odd (hence n is even) then we draw n vertices in a circle and connect each vertex
to its pd ´ 1q{2 neighbors on either side. Furthermore, we connect each vertex to the
opposite vertex (which exists because n is even). For example, here is the graph H5,8:

˝

Of course, there may exist many non-isomorphic d-regular graphs of size n. You have already
seen two such graphs with d “ 3 and n “ 6. In general, it is a theorem of Béla Bollobás59

that the number of non-isomorphic d-regular graphs on n vertices is approximately equal to

e´pd
2´1q{4

n!pd!qn
¨
p2mq!

2mm!
, where m “

dn

2
is an integer.

5.2 Paths and Components

What does it mean for a graph to be connected? For example, the graph defined by

V “ t1, 2, 3, 4, 5u and E “ tt1, 2u, t2, 3u, t1, 3u, t4, 5uu

is not connected:

59The asymptotic number of unlabelled regular graphs, (1981).
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In fact, I would say that this graph has two connected components. In order to prove
anything about connectivity we need a precise definition.

Definition of Walks and Paths

Let G “ pV,Eq be a graph and consider two vertices u, v P V .

• A u, v-walk of length k60 is a sequence of vertices u “ v0, v1, . . . , vk “ v in which
tvi´1, viu P E for all i. Note that a walk may contain repeated vertices and edges.

• A u, v-path is a u, v-walk with no repeated vertices. This implies that a path also
has no repeated edges.

For example, consider the following graph on the vertex set V “ ta, b, c, d, e, fu:

The sequence a, b, c, d, e, f is an a, f -path. The sequence a, b, d, e, c, d, f is an a, f -walk with
the vertex d repeated. The sequence a, b, c, d, e, c, d, f is an a, f -walk with repeated edges and
vertices.

Note that walks can be very inefficient. It seems obvious that every u, v-walk can be shortened
to a u, v-path by removing repetition, but this is a bit tricky to prove.

60We say it has length k because it travels across k edges.
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Proof by Induction on Length. I claim that every u, v-walk of length k ě 1 contains a
u, v-path. For the base case we note that every walk of length 1 is a path, hence it contains
a path (itself). Now consider a walk u “ v0, v1, . . . , vk “ v of length k. If this walk is a path
then we are done. Otherwise, we have a repeated vertex vi “ vj for some i ă j:

Delete all steps between the two occurrences of vi to obtain a shorter walk:

By (strong) induction on length, we may suppose that this shorter walk contains a u, v-path.
But then this path is also contained in the original walk. [Note that the pictures are merely
suggestive. There may be other repetitions that I have not drawn.] ˝

We can also express this proof as an algorithm: Find a repeated vertex. Delete everything
between the two occurrences of this vertex. Continue until there are no repeated vertices.
Since the length goes down at each step, the well-ordering principle guarantees that this
process will terminate.

Now I can give the official definition of connectivity.

Definition of Connected Components

Let G “ pV,Eq be a graph. For any two vertices u, v P V we define the following relation:

u „ v ðñ there exists a u, v-path.

In this case we say that u and v are connected. We say that the graph G is connected if
we have u „ v for all u, v P V .
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If G is not connected then the relation „ allows us to partition the vertices into connected
components

V “ V1 Y V2 Y ¨ ¨ ¨ Y Vk

so that u „ v if and only if u and v are in the same component. Let Gi denote the graph
with vertices Vi and with edges inherited from G. Then we will write

G “ G1 YG2 Y ¨ ¨ ¨ YGk

and we will call these the connected components of G. These are sometimes also called
the path components of G.

For example, the graph from the beginning of this section decomposes into two connected
components, G “ G1 YG2:

Let me show you a cute and surprising result that we can prove by combining this definition
with the Handshaking Lemma.

Cute and Surprising Result

If a graph has exactly two odd vertices then there exists a path between these vertices.

Non-Constructive Proof. Let G “ pV,Eq and let u, v P V be the two vertices of odd
degree. Now assume for contradiction that there does not exist a u, v-path. This means that
u and v are in separate path components, say u P Gu and v P Gv. But then Gu (and also Gv)
is a graph with exactly one odd vertex, which contradicts the Handshaking Lemma. ˝
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This proof is called “non-constructive” because it only proves the existence of a path; it does
not tell us how to find a path. Here is a constructive proof, which, however, is not cute.

Constructive Proof. Let G “ pV,Eq be a graph with exactly two odd vertices u, v P V . I
claim that the following algorithm produces a u, v-walk (which then contains a u, v-path):

procedure: to construct u, v-walk
v0 :“ u
v1 :“ any neighbor of v0

while vk ‰ v do
k :“ k ` 1
vk :“ any neighbor of vk´1

delete one copy of the edge tvk´1, vku from the graph61

end do
return pv0, v1, v2, . . . , vkq

Suppose at the kth step that we have vk ‰ v. Then I claim that vk still has a neighbor.
Indeed, if vk “ u then we have deleted an even number of edges at u. Since degpuq is odd this
means that u still has a neighbor. And if vk R tu, vu then we have deleted an odd number of
edges at vk. Since degpvkq is even this means that vk still has a neighbor. Thus the algorithm
never gets stuck. Finally, we observe that the algorithm must terminate because the graph
has a finite number of edges. ˝

In the rest of this section we will prove a more substantial result that relates the number of
edges to the number of connected components of a graph.

Connected Components Theorem

Let G be a graph62 with n vertices, e edges and k connected components. Then we have

pn´ kq ď e ď

ˆ

n´ k ` 1

2

˙

“
pn´ k ` 1qpn´ kq

2
.

For the first inequality we observe that deleting an edge increases the number of components
by 0 or 1.63 The only difficulty is to turn this into an induction proof.

Proof that n´k ď e. We will prove this by induction on the number of edges. First note that
e “ 0 implies n “ k (because each component is an isolated vertex), hence n´ k “ 0 ď 0 “ e.

61This proof works also for multigraphs.
62The upper bound holds for simple graphs. The lower bound holds for any kind of graph.
63See the definition of “bridges” in Section 5.4 for a proof of this observation.
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Now consider a graph G with parameters n, e, k where e ě 1. Delete a random edge to obtain
a new graph G1 with parameters n1, e1, k1. Observe that n1 “ n and e1 “ e´1. What about k?
By deleting an edge we either preserve the number of components or we split one component
into two. In either case we have k1 ď k ` 1. Now since e1 ă e we may assume by induction
that e1 ě n1 ´ k1 and hence

e´ 1 “ e1 ě n1 ´ k1 ě n1 ´ pk ` 1q “ n´ pk ` 1q “ pn´ kq ´ 1.

Adding 1 to both sides gives the result. ˝

The second inequality is trickier.

Proof that e ď
`

n´k`1
2

˘

. Let G be a graph with n vertices and k connected components

G1, G2, . . . , Gk. In this case we will prove that e ď
`

n´k`1
2

˘

. Suppose that the i-th component
Gi has ni edges. By adding all possible edges we observe that the number of edges is maximized
when each component is a complete graph Kni with

`

ni
2

˘

edges. In other words, we must have

e “

ˆ

n1

2

˙

`

ˆ

n2

2

˙

` ¨ ¨ ¨ `

ˆ

nk
2

˙

.

It only remains to choose the values of n1, . . . , nk so that this number is maximized. I claim
that this happens when all but one of the components are isolated vertices, i.e., when ni “ 1
for k ´ 1 of the values of i and hence hence ni “ n ´ pk ´ 1q for the final value of i. In this
case we will have

e “

ˆ

1

2

˙

`

ˆ

1

2

˙

` ¨ ¨ ¨ `

ˆ

1

2

˙

`

ˆ

n´ pk ´ 1q

2

˙

“ 0` ¨ ¨ ¨ ` 0`

ˆ

n´ k ` 1

2

˙

as desired. So let us assume for contradiction that the number e is maximized and that there
exist two components Gi – Kni and Gj – Knj with 2 ď ni ď nj . Let us disconnect one
vertex from Gi and connect it to all of the vertices in Gj , which has the effect of replacing the
numbers pni, njq by pni ´ 1, nj ` 1q. In doing so we will delete ni ´ 1 edges from the graph
and add nj new edges to the graph:
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Since ni ě nj this will increase the number of edges. But this is a contradiction because
we assumed that e was maximized. ˝

This is a very typical graph theory proof since the essential insight is a picture: disconnect
a vertex from one complete component and glue it to a larger component. The hard part
is turning the picture into a convincing proof. There are no rules for doing this; the only
criterion is that your audience believes that the proof is correct.

You will use the Connected Components Theorem on the homework to prove that any (simple)
graph on n vertices with more than

`

n´1
2

˘

edges must be connected. More generally, one can

show that any graph on n vertices with more than
`

n´r`1
2

˘

edges must have fewer than r
connected components.

5.3 Planar Graphs

Let G be the graph with adjacency matrix

¨

˚

˚

˝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

˛

‹

‹

‚

.

This graph can be drawn in various ways. Here are two examples:

The drawing on the right has the nice property that the edges do not cross.

Definition of Planar Graphs

Inside a computer, a graph G is just a collection of information saying which vertices are
connected by edges. As humans, we like to draw pictures of graphs. We say that G is a
planar graph if it can be drawn in the plane in such a way that the edges do not cross.
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For example, we just saw that the complete graph K4 is planar. Is every graph planar?
Consider the complete graph K5. Here is an attempt to draw K5 without edge crossings:

I moved the edges 13 and 14 outside of the main pentagon, but now I can’t figure out how to
draw the edge between vertices 3 and 5. After some trial and error you will become convinced
that the graph K5 is not planar. But how can we possibly prove this? In order to prove
that a graph is planar we only have to produce a drawing. In order to prove that a graph is
not planar, we need to show that all of the infinitely many possible drawings must have edge
crossings. That seems hard.

The following theorem is our main tool for studying planar graphs.

Euler’s Formula for Planar Graphs

Let G be a connected planar graph with n vertices and e edges. Any planar drawing of
G will divide the plane into regions, called faces. Note that there will be one “infinite
face” on the outside of the drawing.64 Let f be the number of faces in such a drawing,
including the infinite face. Then we must have

n´ e` f “ 2.

For example, our planar drawing of K4 has 4 faces:

64It is more natural to consider drawings on the surface of a sphere. Then all of the faces are finite.
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Since K4 has n “ 4 vertices and e “ 6 edges, we confirm that

n´ e` f “ 4´ 6` 4 “ 2.

The numbers n and e are intrinsic properties of the graph, but the number f is a property of
the drawing. One consequence of Euler’s formula is that any two drawings of a planar graph
must have the same number of faces: f “ 2´ n` e.

Note that Euler’s formula only applies to connected graphs. For example, here is a planar
drawing of the disconnected graph K3 YK3:

Note that this planar drawing has n “ 6, e “ 6 and f “ 3, so that n´ e` f “ 3. Oops. If G
is a planar graph with n vertices, e edges and k connected components, then a generalization
of Euler’s formula says that

v ´ e` f “ k ` 1.

This is an easy consequence of the connected case, but we won’t bother to prove it.

Proof of Euler’s Formula. In order to make the proof easier, we will allow connected planar
graphs with loops and multiple edges. We use induction on the number of vertices n.

For the base case we have n “ 1. A planar graph with n “ 1 vertex can have any number of
loops e. If e “ 0 then there is just one face (the infinite face). Each loop added to this will
create one new face, so that f “ e` 1. Then it follows that n´ e` f “ 1´ e` pe´ 1q “ 2,
as desired. Here is an example with n “ 1, e “ 4 and f “ 5:
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Now fix some n ě 2 and consider a planar drawing with n vertices, e edges and f faces.65

Since our graph G is connected it must have an edge. Pick a random edge and contract it to
a point, to obtain a new graph G1. Here is an example of an edge contraction:

Note that an edge contraction can create multiple edges and loops, which is why we have to
include them in our proof. Let n1, e1 and f 1 be the number of vertices, edge and faces in the
new graph G1. We observe that

n1 “ n´ 1, and e1 “ e´ 1 and f 1 “ f.

Indeed, contracting an edge removes one vertex and one edge, but it does not change the
number of faces.66 By induction on n, we may assume that n1 ´ e1 ` f 1 “ 2. But then we
also have

n´ e` f “ pn1 ` 1q ´ pe1 ` 1q ´ f 1 “ n1 ´ e1 ` f 1 “ 2,

as desired. ˝

The induction proof stopped after one edge contraction. In the real life situation we would
continue to contract random edges until we reach a graph with one vertex:

65This is a funny situation. We have to consider a specific drawing, even though we don’t know what it looks
like.

66The fact that the number of faces is unchanged is intuitively obvious but it is difficult to prove rigorously.
Look at the Jordan curve theorem on Wikipedia. Rigorous topological proofs are one of my least favorite kinds
of mathematics; it’s just so much work for something that we already knew.
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At each step, the quantity n´ e` f is unchanged. Since the final graph (with n “ 1) satisfies
n´ e` f “ 2, so must the original graph.

Now we will use Euler’s formula to prove that K5 is not planar. In order to facilitate the proof
we give a version of the Handshaking Lemma for faces in a planar graph.

Handshaking for Faces in a Planar Graph

Consider a planar drawing of a graph G “ pV,Eq and let F be the set of faces. For each
face f P F we define its degree:67

degpfq :“ the number of edges bounding the face f.

I claim that
ÿ

fPF

degpfq “ 2 ¨#E.

Technicality: If an edge e has the same face f on both sides, then we must count e twice
in the degree of f . We have to do this to make the formula work.

We can prove this from scratch or we can derive it from the usual Handshaking Lemma for
vertex degrees. To prove it from scratch we note that each edge gets counted twice in the sum
of the face degrees. To derive it from the theorem for vertices, we draw the dual planar graph.
For this, we put a vertex in each face and we draw an edge across each edge shared by the
corresponding faces. That’s hard to say and easier to draw:

67I apologize for using the letter f here for a face when when previously I used it for the number of faces. I
couldn’t think of a better notation.
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A planar graph and its dual have the same number of edges, but the numbers of vertices and
faces have been swapped. Furthermore, the degree of a vertex in the dual graph equals the
degree of the corresponding face in the original graph. In the above example, we have n “ 7,
e “ 9 and f “ 4. The degrees of the faces are 3, 3, 4, 8 and the sum of the face degrees is

ÿ

fPF

degpfq “ 3` 3` 4` 8 “ 18 “ 2 ¨ 6 “ 2e,

as expected.

Now we combine Euler’s formula and Handshaking to derive an inequality relating the numbers
of vertices and edges in a planar graph.

Vertex-Edge Inequalities for Planar Graphs

Let G be a connected graph with n vertices and e edges. Let ` ě 3 and suppose that G
contains no cycles of length ă `.68 If G is planar then we must have

e ď
`pn´ 2q

`´ 2
.

For example, if G is a simple graph then we can take ` “ 3 because a simple graph has
no loops (so no cycles of length 1) and no multiple edges (so no cycles of length 2). Thus
a simple, connected planar graph must satisfy

e ď
3pn´ 2q

3´ 2
“ 3n´ 6.

68A cycle is just a path that starts and ends at the same vertex. For the official definition see the next
section.
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Why did I bother to take ` as a variable, when I could have just assumed ` “ 3? See the
homework.

Proof. Let F be the set of faces in a planar drawing of a connected graph G “ pV,Eq. If G
contains no cycles of length ă ` then we must have degpϕq ě ` for all faces ϕ P F .69 Indeed,
the edges surrounding a face ϕ are a cycle of length degpϕq. Then from Handshaking we have

2e “
ÿ

ϕPF

degpϕq ě `` `` ¨ ¨ ¨ ` `
looooooomooooooon

f times

“ `f.

Now combine this with Euler’s formula n´ e` f “ 2 to obtain

`f ď 2e

`p2´ n` eq ď 2e

2`´ `n` `e ď 2e

`e´ 2e ď `n´ 2`

p`´ 2qe ď `pn´ 2q

e ď `pn´ 2q{p`´ 2q.

˝

Finally, we can prove that K5 is not planar.

Proof that K5 is not planar. Assume for contradiction that K5 has a planar drawing.
Since K5 is a simple graph (no loops and no multiple edges), the previous result says that

e ď 3n´ 6.

But K5 has n “ 5 vertices and e “
`

5
2

˘

“ 10 edges, which contradicts this inequality. ˝

More generally, the complete graph Kn has n vertices and e “
`

n
2

˘

“ npn´ 1q{2 edges. If Kn

is planar then we must have

e ď 3n´ 6

npn´ 1q{2 ď 3n´ 6

npn´ 1q ď 6n´ 12

n2 ´ n ď 6n´ 12

n2 ď 5n´ 12.

69Oops, the notation caught up with me. Here I use f for the number of faces, so I need a new letter to
denote a face. I went with Greek.
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But one can prove by induction that this inequality is false for all n ě 5. Hence Kn is
non-planar for all n ě 5.70

You might think that the K in Kn stands for Komplett (complete in German), but apparently
is stands for Kuratowski. You will prove on the homework that the complete bipartite graph
K3,3 is non-planar. It turns out that K5 and K3,3 are the “smallest non-planar graphs”, in
the following precise sense.

Kuratowski’s Theorem (1930)

A graph is planar if and only if it does not contain a subgraph that is isomorphic to a
subdivision of K5 or K3,3.

Never mind the details. I just included this for culture.

5.4 Circuits and Cycles

Section 5.2 discussed the existence and non-existence of paths in a graph. Now let us discuss
the existence and non-existence of cycles.

Definition of Circuits and Cycles

Let G “ pV,Eq be a graph.

• A circuit is a u, u-walk for some vertex u P V . In other words, it is a walk that
begins and ends at the same vertex.

• A cycle is a u, u-walk that contains no repetition, except for vertex u.

The length of a circuit or cycle is the number of times that it crosses an edge. Note that
the basepoint u is arbitrary since a circuit/cycle can be based at any of its vertices.

As with walks and paths, I claim that every u, u-circuit contains a u, u-cycle. Furthermore, I
claim that any circuit of odd length contains a cycle of odd length, possibly with a different
basepoint.

70Actually, we don’t need to do this. If n ě 5 then Kn contains K5 as a subgraph. If we could draw Kn

in the plane then we would obtain a planar drawing of K5. Contradiction. Hence Kn cannot be drawn in the
plane.
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Proof by Induction on Length. Since we are working with simple graphs, the base case is
a circuit of length 3, which is necessarily a cycle. Now consider a u, u-walk of length k:

u “ v0, v1, . . . , vk “ u.

If this is a cycle then we are done. Otherwise, there exists a repeated vertex vi “ vj with
1 ď i ă j ď k ´ 1. Here is a picture (note that there may exist further repetitions that are
not shown in the picture):

By induction on length, we may assume that the u, u-circuit labeled ` contains a u, u-cycle,
which is also contained in the original circuit. This proves the first statement.

Now assume that k is an odd number and observe that

(length of circuit `)` (length of circuit r) “ k.

It follows that exactly one of ` or r has odd length. Then by induction we may assume that
this odd circuit contains an odd cycle. (Note that if r was the odd circuit then the odd cycle
does not contain u.) ˝

For example, consider the following circuit u “ v0, v1, . . . , v6, v7 “ u of length 7:
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This circuit contains the cycle u “ v0, v1, v2, v6, v7 “ u of length 4. Since 7 is odd we also
know that there exists an odd cycle, in this case the 3-cycle v2, v3, v4, v2. However, this 3-cycle
does not contain u. For our first application of the cycle concept we will discuss graphs that
do not contain any odd cycles. The following theorem explains why these graphs are called
“bipartite”.

Characterization of Bipartite Graphs

A graph G “ pV,Eq is called bipartite if the vertices can be partitioned into two sets
V “ A Y B such that every edge has one endpoint in A and the other endpoint in B.
Equivalently, I claim that

G is bipartite ðñ G has no odd cycles.

For the purpose of the proof we may assume that the graphG is connected, since a disconnected
graph is bipartite if and only if each of its components is bipartite. Similarly, a graph has no
odd cycles if and only if each of its components has no odd cycles.

Proof. First suppose that G is bipartite with vertices V “ AYB. Note that any cycle in the
graph must bounce back and forth between the sets A and B, therefore the cycle must have
even length.

Conversely, suppose that the graph G has no odd cycles. In this case we will prove that the
graph is bipartite. For this purpose we select a basepoint u P V at random. I claim that for
any given vertex v P V , all u, v-walks have the same parity (i.e., they all have even length or
they all have odd length). Indeed, suppose for contradiction that there exists an even u, v-walk
and an odd u, v-walk:

By reversing one of the walks and concatenating we obtain an odd circuit, which contains an
odd cycle by the previous result. Contradiction. Thus we may partition the vertices into two
disjoint sets:

A :“ tv P V : every u, v-walk is evenu,
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B :“ tv P V : every u, v-walk is oddu.

(Note that u P A because 0 is an even number.) Finally, I claim that V “ AYB is a “bipar-
tition” of the graph. Indeed, suppose for contradiction that there exists an edge ta1, a2u P E
with a1, a2 P A. Then by concatenating this edge with an (even) u, a1-walk and an (even) u, a2-
walk we obtain an odd circuit, hence also an odd cycle. Contradiction. A similar argument
shows that there can be no edge tb1, b2u P E with b1, b2 P B:

Hence we conclude that G is bipartite. ˝

For example, here is a connected bipartite graph:

Each vertex is labeled with its shortest distance to the basepoint u P A. Observe that there
are no edges between the A vertices, nor between the B vertices. If we were to add all possible
edges between A and B we would obtain the complete bipartite graph K4,5.

As an application of the previous theorem we will prove that the following graphs are not
isomorphic:
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They certainly look different but how can we prove that they are different? The brute force
attack would consider all of the 8! “ 40320 different labelings of the vertices and check that the
edges never match up. Clearly we don’t want to do this so we will use a trick. The following
picture demonstrates that the graph on the left is bipartite, while the graph on the right has
a 5-cycle:

Since 5 is odd it follows from the previous theorem that the graph on the left does not contain
a 5-cycle, hence the two graphs are not isomorphic.

Our next theorem is actually the oldest result in all of graph theory. It was published by
Leonhard Euler in 1736.71 As you will see, the subject has very humble beginnings.

In the Prussian city of Königsburg there was an island called Kneiphof in a river called Pregel.72

In the year 1736 the surrounding 4 landmasses were connected by 7 bridges as in the following
picture:

71Solutio problematis ad geometriam situs pertinentis, Proceedings of the Imperial Saint Petersburg Academy
of Sciences, (1736).

72Königsburg was conquered by the Soviet Union in 1945 and renamed to Kaliningrad. Today it is still part
of Russia.
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The problem, which Euler says “is widely known”, is to find a walk that crosses each bridge
exactly once. For this purpose Euler realized that the geometry of the situation doesn’t matter,
only the connections. Thus we can view the landmasses as vertices and the bridges as edges.
In the case of the Kneiphof we obtain the multigraph above. (For this problem, and this
problem only, we will allow ourselves to discuss multigraphs.)

Euler observed that this problem is impossible for the following reason: Suppose for con-
tradiction that your friend is able to take a walk, crossing each bridge exactly once. Now let
them do the same walk again, while you sit at one of the vertices and watch. Make sure to
choose a vertex that is not at the beginning or the end of the walk. Let’s say you sit at vertex
A which has 5 bridges (in graph theory language we say that degpAq “ 5). Thus you will say
“hello” to you friend twice and “goodbye” twice:

But now what happens? Since A is not at the start or the end of the walk, it is impossible for
your friend to cross the 5th bridge at A without getting stuck. We conclude from this that
every intermediate vertex of the walk (i.e., not the start or the end point) must have even
degree. Since Euler’s graph has no vertex of even degee this is impossible.
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If Euler’s only contribution was to solve this specific puzzle then it would be not be remembered
today. However, Euler went on to state the following completely general theorem.

Euler’s Theorem (1736)

Let G “ pV,Eq be a connected graph, possibly with multiple edges. An Euler walk is a
u, v-walk that crosses each edge exactly once.73 We call this an Euler circuit when u “ v.
I claim that:

• There exists an Euler u, v-walk with u ‰ v if and only if u and v have odd degree
and every other vertex has even degree.

• There exists an Euler circuit if and only if every vertex has even degree.

Proof. We have already observed that every vertex in an Euler walk that is not at the starting
point or the endpoint must have even degree (every time you say “hello” to your friend you
must also say “goodbye”). In an Euler circuit we can apply the same reasoning to show that
every vertex in the graph must have even degree. This was the easy direction.

For the other direction, we need to prove that an Euler walk/circuit always exists under
the right conditions.74 First we will prove by induction on the number of edges that an Euler
circuit always exists when the degree of each vertex is even. So let G be a connected graph in
which every vertex has even degree and let u P V be a random vertex.75 Apply the following
algorithm to obtain a u, u-circuit:

procedure: to construct a u, u-circuit
v0 :“ u
v1 :“ any neighbor of v0

while vk ‰ u do
k :“ k ` 1
vk :“ any neighbor of vk´1

delete one copy of the edge tvk´1, vku from the graph
end do
return pv0, v1, v2, . . . , vkq

Note that the algorithm never gets stuck since if vk ‰ u then vk always has a neighbor.
Indeed, if at the kth step we have vk ‰ u then we have deleted an odd number of vertices
at vk. Since degpvkq is even this means that vk still has a neighbor. Furthermore, we know

73In the case of multigraphs it is not enough to specify the sequence of vertices in a walk. We must also
specify the sequence of edges. But never mind.

74Euler was a bit vague on this point, but that was the style in 1736.
75We also assume that the graph has more than one vertex and no loops.
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that the algorithm must terminate because the graph has finitely many edges. Thus we have
constructed a u, u-circuit (not necessarily Eulerian).

Now delete the edges of this circuit to obtain a graph G1 with fewer edges, which might be
disconnected. Let G11, . . . , G

1
k be the components of G1. Since an even number of edges have

been deleted at each vertex we observe that every vertex of G1 is still even. Thus by induction
we know that each component G1i contains an Euler circuit. Finally we stitch each of these
circuits into to the original u, u-circuit to obtain a big Euler circuit in G:

To complete the proof, let G be any connected graph with exactly two odd vertices u, v P V .
To prove that there exists an Euler u, v-walk, let us first add a new edge between u and v.
Now every vertex has even degree and we conclude from the previous argument that there
exists an Euler circuit. Finally, we delete the new edge from this circuit to obtain an Euler
u, v-walk in the graph G. ˝

Here is a fun application.

Every Graph has a Double Euler Circuit

In every graph G there exists a circuit that crosses each edge exactly twice.

Proof. Let G be a graph and let G1 be the same graph with every edge doubled. It follows

156



that every vertex in G1 has even degree, hence G1 has an Euler circuit. This circuit in G1

describes a circuit in G that crosses each edge exactly twice. ˝

For example, here is Euler’s map of Königsburg with every bridge doubled:

One can verify that the following is a double Euler circuit:

AcCcAaBaAdCdAbBbAeDgCgDfBfDeA

5.5 Trees and Forests

In this section we will consider graphs with very few edges. For example, suppose that G is a
connected graph with n vertices. What is the fewest number of edges that G can have? (In
other words: What is the fewest number of wires that you need to connect n computers?) Let
e be the number of edges and let k be the number of connected components, and recall that
we have proved the following inequality:

e ě n´ k.

In the case of a connected graph we have k “ 1 and hence e ě n´ 1. Thus we conclude that

any connected graph on n vertices has at least n ´ 1 edges.

Graphs that attain this lower bound are called “trees”. For example, here is a tree with 9
vertices (and hence 8 edges):

The interesting thing about trees is that one can define them in many different ways. For
example, we will see below that the following definitions are all equivalent:

• A connected graph with the fewest possible number of edges.
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• A connected graph with no cycles.

• A graph in which there exists a unique path between any two vertices.

The following concept will help us in our study of trees.

Definition of a Bridge

Let G “ pV,Eq be a graph. An edge tx, yu P E is called a bridge if by deleting it we
increase the number of connected components.76 I claim that deleting a bridge increases
the number of components by exactly one. Furthermore, I claim that

tx, yu is a bridge ðñ tx, yu belongs to no cycle.

Proof. Let Gxy be the connected component containing the edge tx, yu and let G1 be the
graph obtained from G by deleting the this edge. If tx, yu belongs to a cycle in G then I claim
that Gxy is still connected in G1, hence the number of components remains the same. Indeed,
consider any u, v-path in Gxy which contains the edge tx, yu. After deleting this edge we can
still get from u to v by following a detour around the cycle:

Conversely, suppose that tx, yu does not belong to a cycle in G. Then I claim that the
component Gxy breaks into two components Gxy “ Gx Y Gy in G1 with x P Gx and y P Gy.
Indeed, suppose for contradiction that Gxy is still connected in G1. Then by definition there
exists an x, y-path in G1. But this path together with the edge tx, yu would create a cycle
in G. Contradiction. We conclude that the number of components goes up, hence tx, yu is a
bridge. Finally, we will show that the number of components goes up by exactly one. For

76Do not confuse the formal concept of a “bridge” with the bridges of Königsberg, which are merely edges.
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this we will prove that every vertex u P Gxy is still connected to one of x or y in G1. Indeed,
since u, y P Gxy we know that there exists a u, y-path in G. If this path does not use the edge
tx, yu then the u, y-path still exists in G1. On the other hand, if the u, y-path in G uses the
edge tx, yu then there still exists a u, x-path in G1:

˝

For example, the following graph has exactly two bridges. Can you find them?

Before officially defining a “tree”, it is convenient to define a “forest”.

Characterization of Forests

Let G be a graph with n vertices, e edges and k connected components. Recall from the
Connected Components Theorem that we must have e ě n´ k. I claim that the number
of edges is minimized precisely when the graph has no cycles:

e “ n´ k ðñ G has no cycles.

In either case we say that G is a forest.

Proof. First suppose that e “ n ´ k and assume for contradiction that G has a cycle. Let
G1 be the graph obtained by deleting a random edge from this cycle and let n1, e1, k1 be the
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parameters of this new graph, so that n1 “ n and e1 “ e ´ 1. Since the edge we deleted was
in a cycle, it was not a bridge. Thus we have k “ k1 and hence

e1 ă e “ n´ k “ n1 ´ k1

which contradicts the fact e1 ě n1 ´ k1.

Conversely, suppose that G has no cycles. We will prove by induction on the number of edges
that e “ n ´ k. Indeed, if e “ 0 then we must have n “ k and hence n ´ k “ 0 “ e. Now
suppose that e ě 1 and delete a random edge to obtain a graph G1 with parameters n1, e1, k1

so that n1 “ n and e1 “ e ´ 1. Since G has no cycles we know that the deleted edge was a
bridge and hence k1 “ k ´ 1. Furthermore, since G has no cycles we see that G1 also has no
cycles. Thus we conclude by induction that e1 “ n1 ´ k1 and hence

e “ e1 ` 1 “ pn1 ´ k1q ` 1 “ pn´ pk ` 1qq ` 1 “ n´ k

as desired. ˝

Finally I will give the official definition of a tree. As I mentioned above, there are at least
three different ways to state the definition. A computer science professor told me that he
really wants you to learn this theorem because it is important for the analysis of algorithms.

Theorem/Definition of Trees

I claim that the following definitions are equivalent:

(T1) A connected forest.

(T2) A connected graph with the least possible number of edges.

(T3) A connected graph with no cycles.

(T4) A graph in which there exists a unique path between any two vertices.

Any graph satisfying one (and hence all) of these definitions is called a tree. Observe
that every connected component of a forest is a tree, hence the name.

The proof will be terse because we already did all of the work.

Proof. (T1)ñ(T2): A connected forest has k “ 1 and e “ n ´ k “ n ´ 1. This the
minimum possible number of edges. (T2)ñ(T3): Consider a connected graph (k “ 1) with
e “ n´1. From the Characterization of Forests this graph has no cycles. (T3)ñ(T4): Consider
a connected graph with no cycles. By connectivity there exists a u, v-path for all u, v P V .
If there existed two such paths then we would obtain a cycle. Contradiction. (T4)ñ(T1):
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Consider a graph in which there exists a unique path between any two vertices. Such a graph
is connected. Furthermore, such a graph has no cycles, since any two vertices in a cycle are
connected by two paths. Hence the graph is a connected forest. ˝

I will end this section with an important application. A graph can represent a network of roads
between cities. In this case, each edge/road has an associated distance/cost. It is natural to
ask what is the cheapest way to connect all of the cities. In this case we are looking for a
“minimum cost spanning tree”, i.e., a tree whose edges connect all of the vertices, and whose
edges have the minimum possible cost. It turns out that the most obvious possible algorithm
gives a valid solution, and is reasonably efficient.

Kruskal’s Algorithm (1956)

Let G “ pV,Eq be a connected graph and suppose that each edge e P E has an associated
number wpeq P R called its weight. Our goal is to find a mimimum weight spanning tree,
i.e., a connected subgraph with the minimum number of possible edges, in which the sum
of the edge weights is minimized. I claim that the following algorithm works:

procedure: to find a minimum weight spanning tree for G “ pV,EGq

ET :“ tu
sort edges EG “ te1, . . . , emu so that wpeiq ď wpei`1q for all i
for i from 1 to m do

if ET Y teiu has no cycle then
ET :“ ET Y teiu

end if
end do
return T “ pV,ET q

Proof. Let T “ pV,ET q be the graph output by the algorithm and note that the subset
ET Ď EG has the property that adding one further edge creates a cycle. First we will show
that T is a spanning tree. To do this, suppose for contradiction that there exist two vertices
u, v P V such that there is no u, v-path in T . Since G is connected there exists is a u, v-path
in G, which must use some edge that is not in ET . By adding this edge to ET we obtain a
cycle in T , which implies that there was already a u, v-path in T . Contradiction. Thus T is a
connected graph with vertex set V and no cycles. In other words, it is a spanning tree.

Next we will prove by induction that the spanning tree T has minimum weight. To do this,
let T1 be any spanning tree of minimum weight. If T1 “ T then we are done. Otherwise, we
will show how to construct another spanning tree T2 such that

• T2 shares one more edge in common with T than T1 does,
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• weightpT2q “ weightpT1q, hence T2 also has minimum weight.

We can repeat this construction to obtain a sequence of minimum weight spanning trees
T1, T2, . . ., each of which has one more edge in common with T . After a finite number of steps
we will obtain Tk “ T and we will conclude that T itself has minimum weight.

Here is the construction: Let Ti “ pV,ETiq be any minimum weight spanning tree. If Ti “ T
then we are done, so let e1 P ETi be the first edge of Ti that was not chosen by Kruskal’s
algorithm. By adding e1 to ET we obtain a cycle, which since T is acyclic necessarily contains
some edge e P ET that is not in ETi . Since T ´ e ` e1 still has #V ´ 1 edges, it is still
a tree and hence has no cycles. This means that Kruskal’s algorithm could have chosen
the edge e1 instead of e. The fact that it didn’t implies that wpeq ď wpe1q. We conclude
that Ti`1 :“ Ti ´ e1 ` e is a spanning tree that has one more edge in common with T and
also satisfies weightpTi`1q ď weightpTiq. Since Ti had minimum weight this implies that
weightpTi`1q “ weightpTiq and hence Ti`1 also has minimum weight. ˝

Kruskal’s algorithm is an example of a greedy algorithm, i.e., an algorithm that makes the
most obvious choice at each step. Sometimes a greedy algorithm can get stuck with a non-
optimal solution. We are lucky when a greedy algorithm (such as Krukal’s) leads to an optimal
solution. Here’s an example:

Note that the edges of weight 1, 2, 4, 6, 8 were chosen in increasing order. It follows that every
other spanning tree for this graph has weight greater than or equal to 1` 2` 4` 6` 8 “ 21.

Example.

5.6 Counting Trees and Forests

We have seen that Kruskal’s algorithm produces a minimum weight spanning tree for a given
weighted graph. It is natural to wonder, therefore, how many different spanning trees a graph
can have.
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I should investigate the history of the Matrix Tree Theorem. How is it implicit in Kirchoff’s
work on electrical circuits (1847).

Cayley’s Tree Formula (1881). Prüfer’s proof (1918).

The number of spanning trees of Km,n is mn´1nm´1.77

Other kinds of graphs are too hard to count.

5.7 Worked Exercises

5.1. Check that the relation
ř

uPVG
degpuq “ 2 ¨#EG holds for each of the following:

(a) Cycles Cn

(b) Paths Pn

(c) Complete graphs Kn

(d) Complete bipartite graphs Km,n

(a) The graph Cn has n vertices, each with degree 2. Hence the degree sum is

ÿ

uPV

degpuq “ 2` 2` ¨ ¨ ¨ ` 2
loooooooomoooooooon

n times

“ 2n.

On the other hand, the number of edges is #E “ n, hence 2 ¨#E “ 2n.

(b) The path Pn has two vertices of degree 1 and n´ 2 vertices of degree 2, hence

ÿ

uPV

degpuq “ 1` 2` ¨ ¨ ¨ ` 2
looooomooooon

n´ 2 times

`1 “ 1` 2pn´ 2q ` 1 “ 2pn´ 1q.

On the other hand, the path Pn has #E “ n´1 (indeed, it is a tree) and hence 2¨#E “ 2pn´1q.

(c) The complete graph Kn has n vertices, each with degree n´ 1, hence

ÿ

uPV

degpuq “ pn´ 1q ` ¨ ¨ ¨ ` pn´ 1q
looooooooooooomooooooooooooon

n times

“ npn´ 1q.

On the other hand, the number of edges is #E “
`

n
2

˘

because there is an edge between each
pair of vertices. This agrees with the degree sum because

2 ¨#E “ 2

ˆ

n

2

˙

“ 2 ¨
npn´ 1qpn´ 2qpn´ 3q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

2 ¨ 1 ¨ pn´ 2qpn´ 3q ¨ ¨ ¨ 3 ¨ 2 ¨ 1
“ 2 ¨

npn´ 1q

2
“ npn´ 1q.

77https://math.stackexchange.com/questions/3157546/prove-that-the-complete-bipartite-graph-k-3-s-has-s23s-1-spanning-tree
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(d) The complete bipartite graph Km,n has vertices V “ AY B with #A “ m and #B “ n.
Each vertex in A has degree n (because it connects to each vertex in B) and each vertex in B
has degree m (because it connects to each vertex in A). Hence the degree sum is

ÿ

uPV

degpuq “
ÿ

aPA

degpaq `
ÿ

bPB

degpbq “ mn` nm “ 2mn.

On the other hand, the number of edges in Km,n is mn because each edge has exactly one
vertex in A, hence #E “

ř

aPA degpaq “ mn. This agrees with the degree sum. Remark: The
identity

ÿ

aPA

degpaq “ mn “
ÿ

bPB

degpbq

will show up again in Problem 5.6.

5.2. The hypercube graph Qn has 2n vertices corresponding to the binary strings of length n
and edges corresponding to “flipping one bit”.

(a) Draw the graphs Q1, Q2, Q3.

(b) Compute the number of edges in Qn. [Hint: What are the vertex degrees?]

(a) Here they are:

(b) We know from the previous chapter that there are 2n binary strings of length n. Hence
the graph Qn has 2n vertices. Furthermore, since each edge corresponds to “flipping a bit”,
and since each vertex has n possible bits to flip, we see that each vertex in Qn has degree n.
Finally, the Handshaking Lemma tells us that

2 ¨#E “
ÿ

uPV

degpuq
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2 ¨#E “ n` n` ¨ ¨ ¨ ` n
loooooooomoooooooon

2n times

2 ¨#E “ n2n

#E “ n2n´1.

Where would we be without the Handshaking Lemma??

5.3. Explain why every (simple) graph has two vertices of the same degree. [Hint: Suppose
that the graph has n vertices. Show that the degrees 0 and n´ 1 cannot both occur. So how
many possible degree values are there?]

Proof. Each vertex of a simple graph on n vertices must have its degree in the set t0, 1, . . . , nu.
Furthermore, it is impossible to have two vertices with degrees 0 and n ´ 1. Indeed, if there
exists a vertex of degree n ´ 1 then it shares an edge with every other vertex, but a vertex
of degree 0 shares an edge with no one. Therefore there are at most n ´ 1 different possible
degrees (pigeonholes). Since there are n total vertices (pigeons), two vertices must share a
degree (two pigeons must share a hole).78 ˝

5.4. Give two different proofs that the following graphs are not isomorphic:

(a) Show that the complements are not isomorphic.

(b) Show that the left graph is bipartite, while the right graph is not.

(a) Here are the complements. Note that the left graph has two connected components, while
the right graph has one connected component. Since the complements are not isomorphic the
original graphs are also not isomorphic.

78Yes, this type of argument is called the pigeonhole principle. I don’t know where the name comes from.
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The following picture demonstrates that the right graph has a 3-cycle, while the left graph is
bipartite (hence does not have a 3-cycle):

5.5. Let G be a (simple) graph with n vertices.

(a) If 2 ď k ď n show that
`

n´k`1
2

˘

ď
`

n´1
2

˘

.

(b) If G has more than
`

n´1
2

˘

edges, prove that G is connected. [Hint: Let k be the number
of connected components of G. There is a relevant theorem in the notes.]

(c) Draw a graph with 6 vertices and
`

5
2

˘

edges that is not connected.

(a) More generally, consider any integers 2 ď m ď n. Then we have

mpm´ 1q ď npm´ 1q ď npn´ 1q

and hence
ˆ

m

2

˙

“
mpm´ 1q

2
ď
npn´ 1q

2
“

ˆ

n

2

˙

.

(b) Proof. We proved in class that any (simple) graph with n vertices, e edges and k connected
components satisfies

e ď

ˆ

n´ k ` 1

2

˙

.
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If k ě 2 then it follows from part (a) that

e ď

ˆ

n´ k ` 1

2

˙

ď

ˆ

n´ 1

2

˙

.

Therefore if e ą
`

n´1
2

˘

then we must have k ă 2, hence G is connected. ˝

(c) Here is disconnected graph on 6 vertices with the maximum number of edges:

5.6. Let G “ pV,Eq be a bipartite graph with partition V “ AYB. In other words, assume
that every edge of the graph has the form ta, bu for some a P A and b P B.

(a) Let degpAq,degpBq be the average degree of a vertex in A,B, respectively. Prove that

#A ¨ degpAq “ #B ¨ degpBq.

(b) A certain statistical survey79 found that men in the United States report 74% more op-
posite sex partners than women. Explain why this statistic cannot possibly be accurate.
[Hint: Let A and B be the sets of men and women.]

(a) We will count the edges in two ways. On the one hand, every edge has exactly one endpoint
in A, hence

#E “
ÿ

aPA

#(edges containing a) “
ÿ

aPA

degpaq.

On the other hand, every edge has exactly one endpoint in B, hence

#E “
ÿ

bPB

#(edges containing b) “
ÿ

bPB

degpbq.

It follows that the average degrees degpAq and degpBq satisfy

ÿ

aPA

degpaq “
ÿ

bPB

degpbq

79The Social Organization of Sexuality (1994) by Edward O. Laumann et al. The authors themselves ac-
knowledge (pg. 185) that this result cannot be accurate.
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#A

ˆř

aPA degpaq

#A

˙

“ #B

ˆř

bPB degpbq

#B

˙

#A ¨ degpAq “ #B ¨ degpBq.

(b) Let A,B be the sets of men and women in the United States. Let G “ pA Y B,Eq be
the graph whose edges are “opposite sex partnerships”. Since this graph is bipartite we know
from part (a) that

degpAq

degpBq
“

#B

#A
“

# women

# men
« 1.

However, the survey found that
degpAq

degpBq
“ 1.74.

There is no way this can be accurate.

5.7. (This was not assigned.)

(a) We proved above that the number of trees on the vertex set t1, 2, 3, 4u is 44´2 “ 16.
Draw them all.

(b) We also proved that the number of trees on t1, 2, 3, 4, 5u with degrees 1, 1, 1, 2, 3 equals
ˆ

5´ 2

1´ 1, 1´ 1, 1´ 1, 2´ 1, 3´ 1

˙

“

ˆ

3

0, 0, 0, 1, 2

˙

“
3!

1!2!
“ 3.

Draw them.

(a) Here are the 16 trees on t1, 2, 3, 4u:
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Observe that the number of trees with degrees 1, 1, 2, 2 (in some order) is

ˆ

2

0, 0, 1, 1

˙

`

ˆ

2

0, 1, 0, 1

˙

` ¨ ¨ ¨ `

ˆ

2

1, 1, 0, 0

˙

“ 6 ¨ 2 “ 12

and the number of trees with degrees 1, 1, 1, 3 (in some order) is

ˆ

2

0, 0, 0, 2

˙

`

ˆ

2

0, 0, 2, 0

˙

`

ˆ

2

0, 0, 2, 0

˙

`

ˆ

2

2, 0, 0, 0

˙

“ 4 ¨ 1 “ 4.

(b) Here are the 3 trees on t1, 2, 3, 4, 5u with degrees 1, 1, 1, 2, 3:
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