
Math 309 Fall 2022
Homework 3 Drew Armstrong

1. Base b Arithmetic. Convert the number 123456 into base b for the following values of b:

(a) b = 2
(b) b = 5
(c) b = 16 [Use the letters A,B,C,D,E, F for 10, 11, 12, 13, 14, 15.]

I’ll do them in reverse order.

(c): We divide 123456 by 16 and then repeatedly divide the quotient by 16:

123456 = 16 · 7716 + 0

7716 = 16 · 482 + 4

482 = 16 · 30 + 2

30 = 16 · 1 + 14

1 = 16 · 0 + 1.

It follows that

123456 = 0 + 4 · 16 + 2 · 162 + 14 · 163 + 1 · 164.

Since E represents 14 we express this as

123456 = (1E240)16.

(b): This time we divide 123456 by 5 and then divide each quotient by 5:

123456 = 5 · 24691 + 1

24691 = 5 · 4938 + 1

4938 = 5 · 987 + 3

987 = 5 · 179 + 2

179 = 5 · 39 + 2

39 = 5 · 7 + 4

7 = 5 · 1 + 2

1 = 5 · 0 + 1.

We conclude that

123456 = (12422311)5.

(a): This time I’ll skip all the details:

123456 = (11110001001000000)2.

2. Carry the One. This problem generalizes base 10 phenomena such as

2749999999 + 1 = 2750000000.

Fix a base b ≥ 2. Then for any integers k, r ∈ Z with k ≥ 1 prove that

1 + (b− 1) + (b− 1)b + (b− 1)b2 + · · ·+ (b− 1)bk−1 + rbk = (r + 1)bk.

[Hint: Use the geometric series 1 + b + · · ·+ bk−1 = (bk − 1)/(b− 1).]
1



2

First we remind ourselves about the geometric series:

(1 + b + b2 + · · ·+ bk−1)(b− 1) = (b + b2 + · · ·+ bk)− (1 + b + · · ·+ bk−1)

= −1 + b− b + b2 − b2 + · · ·+ bk−1 − bk−1 + bk

= −1 + 0 + 0 + · · ·+ 0 + bk

= bk − 1.

It follows (for b 6= 1) that1

1 + b + b2 + · · ·+ bk−1 =
bk − 1

b− 1
.

Now we will use this to show that

(. . . , r, b− 1, b− 1, · · · , b− 1)b + 1 = (. . . , r + 1, 0, 0, . . . , 0)b.

(Assume that b− 1 occurs k − 1 times.) Indeed, the left side represents the number

1 + [(b− 1) + (b− 1)b + (b− 1)b2 + · · ·+ (b− 1)bk−1 + rbk + · · · ]

= 1 + (b− 1)(1 + b + b2 + · · ·+ bk−1) + rbk + · · ·

= 1 + (b− 1)(bk − 1)/(b− 1) + rbk + · · ·

= 1 + (bk − 1) + rbk + · · ·

= bk + rbk + · · ·

= (r + 1)bk + · · ·

= 0 + 0b + 0b2 + · · ·+ 0bk−1 + (r + 1)bk + · · · .

3. Lemma for the Euclidean Algorithm. Consider any positive a, b, c, x ∈ Z such that

a = bx + c.

(a) If d ∈ Z is a common divisor of b and c, show that d also divides a.
(b) If d ∈ Z is a common divisor of a and b, show that d also divides c.
(c) Combine (a) and (b) to show that gcd(a, b) = gcd(b, c).

(a): Suppose that d|b and d|c, so that b = db′ and c = dc′ for some integers b′, c′ ∈ Z. Since
a = bx + c it follows that

a = bx + c

= db′x + dc′

= d(b′x + c′),

and hence d|a.

(b): Suppose that d|a and d|a, so that a = da′ and b = db′ for some integers a′, b′ ∈ Z. Since
a = bx + c it follows that

c = a− bx

= da′ − db′x

= d(a′ − b′x),

and hence d|c.
1Remark: Remind yourself what happens when |b| < 1 and k goes to infinity.
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(c): We have shown that the set of common divisors of a and b is the same as the set of
common divisors of b and c:

{common divisors of a and b} = {common divisors of b and c}.

It follows that the greatest element of each set is the same, i.e., that gcd(a, b) = gcd(b, c).

4. Extended Euclidean Algorithm.

(a) Find integers x, y ∈ Z such that 221x + 132y = 1.
(b) Use your answer to solve the congruence 221c ≡ 7 (mod 132) to find c. [Hint: From

part (a) we have 221x ≡ 1 (mod 132). Multiply both sides of 221c ≡ 7 by x.]

(a): We consider the set of integer triples (x, y, r) satisfying 221x+ 132y = r. Beginning with
the obvious triples (1, 0, 221) and (0, 1, 132), we perform row operations until we reach a triple
of the form (x, y, 1):

x y r
1 0 221
0 1 132
1 −1 89
−1 2 43
3 −5 3
−43 72 1.

Reminder of the method: Dividing 43 by 3 gives 43 = 14 · 3 + 1. Thus the row following
(−1, 2, 43) and (3,−5, 3) is

(−1, 2, 43)− 14(3,−5, 3) = (−43, 72, 1).

We conclude that 221(−43) + 132(72) = 1. Note: This solution is not unique. Since
221(132k) + 132(−221k) = 0 for any k, we also have

221(−43 + 132k) + 132(72− 221k) = 1 for any k ∈ Z.

(b): Since 132 ≡ 0 (mod 132), the result from part (a) tells us that

1 ≡ 221(−43) + 132(72) ≡ 221(−43) + 0(72) ≡ 221(−43) (mod 132).

In other words, we can kill 221 (mod 132) by multiplying by−43 (mod 132), which in standard
form is 89 (mod 132). That is, we have

221 · 89 ≡ 221 · (−43) ≡ 1 (mod 132).

Thus, to solve the congruence 221c ≡ 7 (mod 132) we should multiply both sides by 89:

221c ≡ 7

89 · 221c ≡ 89 · 7
1c ≡ 623

c ≡ 95 (mod 132).

This answer is unique mod 132, but it represents infinitely many integer solutions:

c = (any integer that is congruent to 95 mod 132)

= (any integer of the form 95 + 132k for some integer k ∈ Z).

5. Freshman’s Dream. Let p ≥ 2 be prime.
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(a) For any integer 0 < k < p, use Euclid’s Lemma to prove that(
p

k

)
≡ 0 (mod p).

[Hint: We know that p! =
(
p
k

)
k!(p − k)!. Since p divides p!, Euclid’s Lemma tells us

that p divides
(
p
k

)
or k!(p− k)! If 0 < k < p− 1, show that p cannot divide k!(p− k)!.]

(b) For any integers a, b ∈ Z, use part (a) to prove that

(a + b)p ≡ ap + bp (mod p).

[Hint: Use the Binomial Theorem.]

(a): Let p ≥ 2 be prime and consider any integer 0 < k < p. The binomial coefficient
(
p
k

)
satisfies the equation

p! =

(
p

k

)
k!(p− k)!

p(p− 1) · · · 3 · 2 · 1 =

(
p

k

)
k(k − 1) · · · 3 · 2 · 1 · (p− k)(p− k − 1) · · · 3 · 2 · 1.

Since p divides the left hand side, it must also divide the right hand side:

p
∣∣∣ (p

k

)
k(k − 1) · · · 3 · 2 · 1 · (p− k)(p− k − 1) · · · 3 · 2 · 1

Since p is prime, Euclid’s Lemma2 tells us that p must divide one of the factors on the right
hand side. However, since 0 < k < p, every factor on the right hand side is smaller than p,
except for

(
p
k

)
. Since p cannot divide a number that is smaller than itself, we conclude that p

divides
(
p
k

)
, which is equivalent to saying that(

p

k

)
≡ 0 (mod p).

(b): Let p ≥ 2 be prime and consider any two integers a, b ∈ Z. Then from part (a) and the
Binomial Theorem we have

(a + b)p ≡ ap +

(
p

1

)
ap−1b +

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp

≡ ap + 0ap−1b + 0ap−2b2 + · · ·+ 0abp−1 + bp

≡ ap + bp (mod p).

6. RSA Cryptosystem. You are Eve the eavesdropper. You see that Bob sent the following
message to Alice using the public key (n, e) = (55, 27):

[2, 1, 33, 25, 1, 9, 4, 42, 25, 41, 1, 23, 23, 18, 17, 25, 1, 11].

Decrypt the message. [Hint: Factor n = pq as a product of primes. Then find some d such that
de ≡ 1 (mod (p − 1)(q − 1)); using trial and error, or using Extended Euclidean Algorithm.
This is the decryption exponent. After decryption, numbers 1, . . . , 26 stand for letters.]

2Recall: If p is prime then Euclid’s Lemma says that p|ab implies p|a or p|b.
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Notice that n = 55 factors as n = pq = 5 · 11, where p = 5 and q = 11 are prime. There, we
broke the system.3 Next we need to find the decryption exponent. Recall that d satisfies

de + (p− 1)(q − 1)k = 1,

for some integer k whose value we don’t care about. Since e = 27 and (p− 1)(q − 1) = 40 we
want to find integers d, k ∈ Z such that

40k + 27d = 1,

and this can be done with the Extended Euclidean Algorithm:

k d r
1 0 40
0 1 27
1 −1 13
−2 3 1.

We conclude that 27(3) + 40(−2) = 1, hence we can take d = 3 as the decryption exponent.

To encrypt a message 0 ≤ m < 55, Bob computes c = m27 (mod 55). Then to decrypt
Bob’s message we compute c3 (mod 55). The standard representative of c3 (mod 55), i.e., the
representative between 0 and 54, is guaranteed to equal m. Here is Bob’s encrypted message:

[2, 1, 33, 25, 1, 9, 4, 42, 25, 41, 1, 23, 23, 18, 17, 25, 1, 11].

Raising each integer to the power of 3 and then reducing mod 55 gives

[8, 1, 22, 5, 1, 14, 9, 3, 5, 6, 1, 12, 12, 2, 18, 5, 1, 11],

which corresponds to the message

[h, a, v, e, a, n, i, c, e, f, a, l, l, b, r, e, a, k].

3If p and q were very large we would not be able to factor n = pq.


