Math 309 Fall 2022
Homework 3 Drew Armstrong

1. Base b Arithmetic. Convert the number 123456 into base b for the following values of b:
(a) b=2
(b) b=5
(c) b= 16 [Use the letters A, B,C, D, E, F for 10,11,12,13,14,15.]

I'll do them in reverse order.

(c): We divide 123456 by 16 and then repeatedly divide the quotient by 16:

123456 = 16- 7716 + 0
7716 =16-482 +4
482 =16-30+ 2
30=16-1+14
1=16-0+1.
It follows that
123456 = 0 +4-16 4+ 2-16% + 14 - 16> + 1 - 16*.
Since E represents 14 we express this as

123456 = (1£240) 6.

(b): This time we divide 123456 by 5 and then divide each quotient by 5:

123456 = 5 - 24691 41
24691 =5-4938 +1
4938 =5-987 + 3
987 =5-179+2
179 =5-39+2

39=5-7T+4
7=5-1+2
1=5-0+4+1.

We conclude that
123456 = (12422311)5.

(a): This time I'll skip all the details:
123456 = (11110001001000000)>.

2. Carry the One. This problem generalizes base 10 phenomena such as
2749999999 + 1 = 2750000000.
Fix a base b > 2. Then for any integers k,r € Z with k > 1 prove that
L+ (b=1)+(b—1)b+(b—1)b*+ -+ (b— 1) +rbF = (r + 1)k,

[Hint: Use the geometric series 1+ b+ --- + b1 = (bF —1)/(b—1)]
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First we remind ourselves about the geometric series:
(I+b4+02 4+ " )b -1) =B+ 4 4+0) = (A +b+---+ "1

= —14+b—b+ bbb pFT ok
=—1+4+0+0+--+0+b"
=b" — 1.

It follows (for b # 1) thalﬂ

bk —1

b—1"

L+b4+b%+- b =
Now we will use this to show that
(oorb=1,b—1,--- b—1)p+1=(...,r+1,0,0,...,0).

(Assume that b — 1 occurs k — 1 times.) Indeed, the left side represents the number

14[b=1)4+b=1b+ (=10 + -+ (b— 1)L 7o+

=14+ b0 +b+b*+ -+ b .

=1+0B-1)0"-1)/b—1)+rbF+---

=14+ 0" —1)+rbF+- -

L S

:(r+1)bk+...

=04+ 06400+ -4+ 00" 1+ (r+ 1)0F + -

3. Lemma for the Euclidean Algorithm. Consider any positive a, b, ¢, x € Z such that
a=bx+c.

(a) If d € Z is a common divisor of b and ¢, show that d also divides a.
(b) If d € Z is a common divisor of a and b, show that d also divides c.
(c) Combine (a) and (b) to show that ged(a,b) = ged(b, ¢).

(a): Suppose that d|b and d|c, so that b = db/ and ¢ = d¢’ for some integers ¥/, ¢’ € Z. Since
a = bx + ¢ it follows that
a=br+c
=dbz +dd
=d'x+ ),
and hence d|a.

(b): Suppose that d|a and d|a, so that a = da’ and b = db for some integers o', " € Z. Since
a = bx + c it follows that

c=a—bx
=dda —dbx
=d(a —Vz),

and hence d|c.

1Remark: Remind yourself what happens when |b| < 1 and k goes to infinity.



(c):

common divisors of b and c:
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We have shown that the set of common divisors of a and b is the same as the set of

{common divisors of a and b} = {common divisors of b and c}.

It follows that the greatest element of each set is the same, i.e., that ged(a,b) = ged(b, c).

4. Extended Euclidean Algorithm.

(a) Find integers z,y € Z such that 221z + 132y = 1.
(b) Use your answer to solve the congruence 221¢ = 7 (mod 132) to find ¢. [Hint: From
part (a) we have 221z = 1 (mod 132). Multiply both sides of 221c = 7 by z.]

(a): We consider the set of integer triples (z,y,r) satisfying 221z + 132y = r. Beginning with
the obvious triples (1,0,221) and (0, 1, 132), we perform row operations until we reach a triple

of the form (z,y,1):

x Y r
1 0 | 221
0 1 1132
1 | -1/ 89

-1 1| 2 | 43
3 | —-5| 3

—43 1 72 | 1.

Reminder of the method: Dividing 43 by 3 gives 43 = 14 -3 + 1. Thus the row following
(—1,2,43) and (3,5, 3) is

(—1,2,43) — 14(3,—5,3) = (—43,72,1).

We conclude that 221(—43) 4+ 132(72) = 1. Note: This solution is not unique.
221(132k) + 132(—221k) = 0 for any k, we also have

221(—43 + 132k) + 132(72 — 221k) = 1

Since

for any k € Z.

(b): Since 132 = 0 (mod 132), the result from part (a) tells us that
1 = 221(—43) + 132(72) = 221(—43) + 0(72) = 221(—43) (mod 132).

In other words, we can kill 221 (mod 132) by multiplying by —43 (mod 132), which in standard
form is 89 (mod 132). That is, we have

221 -89 = 221 - (—43) = 1 (mod 132).
Thus, to solve the congruence 221c¢ = 7 (mod 132) we should multiply both sides by 89:

2lec="7
89.221¢=89-7
le =623

¢ =95 (mod 132).
This answer is unique mod 132, but it represents infinitely many integer solutions:

¢ = (any integer that is congruent to 95 mod 132)
= (any integer of the form 95 + 132k for some integer k € 7Z).

5. Freshman’s Dream. Let p > 2 be prime.



a) For any integer 0 < k < p, use Euclid’s Lemma to prove that
y g b, b

<i) =0 (mod p).

[Hint: We know that p! = (z)k!(p — k)!. Since p divides p!, Euclid’s Lemma tells us
that p divides (z) or kl(p—k)!' If 0 < k < p— 1, show that p cannot divide k!(p — k)!.]
(b) For any integers a,b € Z, use part (a) to prove that

(a+b)P =a” + b (mod p).
[Hint: Use the Binomial Theorem.]

(a): Let p > 2 be prime and consider any integer 0 < k < p. The binomial coefficient (g)

satisfies the equation
P
= kEl(p—k)!

pp—1)---3-2-1= <£)kz(k‘—1)---3-2-1-(p—k:)(p—k—l)-~-3-2-l.
Since p divides the left hand side, it must also divide the right hand side:
p‘ (g)k(k—l)--'?)'Q'l‘(P_k)(p_k_l)"'3'2'1

Since p is prime, Euclid’s Lemmaﬂ tells us that p must divide one of the factors on the right
hand side. However, since 0 < k < p, every factor on the right hand side is smaller than p,
except for (i) Since p cannot divide a number that is smaller than itself, we conclude that p
divides (z), which is equivalent to saying that

(i) =0 (mod p).

(b): Let p > 2 be prime and consider any two integers a,b € Z. Then from part (a) and the
Binomial Theorem we have

(a—l—b)pzap—l—<p>ap_1b+<p>ap_2b2+~-~l—< b >abp—1+bp
1 p p—1

= af + 0a” b+ 0aP2b* + - - - + 0abP ™t + bP

= a” + b’ (mod p).

6. RSA Cryptosystem. You are Eve the eavesdropper. You see that Bob sent the following
message to Alice using the public key (n,e) = (55, 27):

2,1,33,25,1,9,4,42,25,41,1, 23,23, 18,17, 25, 1, 11].

Decrypt the message. [Hint: Factor n = pq as a product of primes. Then find some d such that
de =1 (mod (p — 1)(¢ — 1)); using trial and error, or using Extended Euclidean Algorithm.
This is the decryption exponent. After decryption, numbers 1,...,26 stand for letters.]

2Recall: If p is prime then Euclid’s Lemma says that p|ab implies p|a or plb.
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Notice that n = 55 factors as n = pg = 5- 11, where p = 5 and ¢ = 11 are prime. There, we
broke the systemﬂ Next we need to find the decryption exponent. Recall that d satisfies

de+(p—1)(¢— k=1,

for some integer k& whose value we don’t care about. Since e = 27 and (p — 1)(¢ — 1) = 40 we
want to find integers d, k € Z such that

40k 4+ 27d =1,
and this can be done with the Extended Euclidean Algorithm:

We conclude that 27(3) 4+ 40(—2) = 1, hence we can take d = 3 as the decryption exponent.

To encrypt a message 0 < m < 55, Bob computes ¢ = m?" (mod 55). Then to decrypt
Bob’s message we compute ¢3 (mod 55). The standard representative of ¢3 (mod 55), i.e., the
representative between 0 and 54, is guaranteed to equal m. Here is Bob’s encrypted message:

[2,1,33,25,1,9,4,42,25,41,1,23,23,18,17,25,1, 11].
Raising each integer to the power of 3 and then reducing mod 55 gives
8,1,22,5,1,14,9,3,5,6,1,12,12,2,18,5,1, 11],
which corresponds to the message

[h7a7/v767a7n7i7c?67f7a7l7l7b7lr’ e7a7 k]'

31f p and q were very large we would not be able to factor n = pq.



