Math 309 Fall 2022
Homework 1 Drew Armstrong

We will use the following notations for sums of (all, even, odd) pth powers:

n
Sp(n):1p+2p+...+np:2kp7
k=1

SEp(n) =20 + 47 4 6P + -+ (2n) = > _(2k)7,
k=1

SOp(n) =17+ 3P + 5P 4+ (20— 1)P = Y (2k — 1)P.
k=1
1. Consider the following statement P(n) = “S3(n) = n?(n+1)2/4”. In this problem you will
prove by induction that P(n) is true for all integers n > 1.

(a) Check by hand that P(n) is true for n = 1,2, 3,4.

(b) Now fix some arbitrary n > 1 and assume for induction that P(n) is a true state-
ment. In this case, prove that P(n + 1) is also a true statement. [Hint: Use the
recurrence S3(n + 1) = S3(n) + (n + 1)3)]

(a): For induction we only need to check one base case, but for fun we’ll check four:

12. 22
P(l) — 4413 _ T 4] =1 = T,
2% . 3
P(2) — 4413 + 23 — I 74 = Q7 = T,
32 . 42
P(3) _ 4413 + 23 + 33 — 7 436 = 367 = 7‘!7
42 . 52
P() = “1° +2° +3° +4% = — =7 = 100 = 100" = T

(b): Now fix some arbitrary integer n > 1 and assume for induction that P(n) is a true
statement. That is, suppose that
2 2
1
13+23+_“+n3:n(n4+).
In this case, we must have
P22+ n+1P=[P+2° 4+ 40 + (n+1)°
2 2
n“(n+1
4
2

= (n+1)? BHHH)}

(n 4+ 1)2(n? + 4n + 4)
4
(n+1)2(n + 2)?
1 .
Hence the statement P(n + 1) is also true. O




2. Find explicit formulas for SEs(n) and SOz(n). [Hint: You may assume that > ,_, k =
n(n+1)/2 and >}, k* =n(n+1)(2n+1)/6.]

The sum of square of even numbers is

n

SEy(n) =) (2k)° = Zn:4k2 = 4zn:k2 _ . Mt )@2n+1)
k=1 k=1

k=1 6

The sum of square of odd numbers is

n

SOa(n) = (2k — 1)

k=1
=) (4k* — 4k +1)
k=1
=4y K4 k+ ) 1
k=1 k=1 k=1
1)(2n +1 1
:4.n(n—|— )6(n+ )_4_n(n2+ )+n.

You don’t need to simplify this, but it turns out that

SOa(n) = n(2n + 1§(2n - 1)'

Remark: Observe that
SEQ(TL) -+ SOQ(TL) =

dn(n+1)2n+1) 2n(2n+1)(2n—1)
6 + 6

_ (2”)<26” U o(n 4 1) + (20— 1)

- (2”)(26" D o(2n) +1]
= 52(271),

as it should be.

3. Define the sequence Cy, C',C5, Cs ... by the following initial condition and recurrence:
1 if n =0,
C, = ; 1' n
Ch-1+n“—n ifn>1.

Find a closed formula for C,,.

Write out the first few terms until you see a pattern:
Cr=Co+1>—1,
Co=0C1+22—2=Cy+12—-1+22-2,
Cy3=0Cy+3—-3=Cy+12-1+22-2+3%-3.
We observe that the pattern is

n n
Co=Co+1'=1422 243 -3+ 40’ —n=Co+» K-> k
k=1 k=1



Using the known formulas for sums of squares and first powers, this becomesﬂ

1)(2 1 1 1 1
Cn:CO+n(n+ )6( n+ )_n(n2—|- ):Co+3n3—3n.

From this we see that the value of Cy isn’t really important to the general formula.

Remark: Observe that this formula has a nice factorization:

Cn_CO_’_n(n—l;(n-i-l).

This was an accident on my part. It follows from specific case of the “hockey stick identity”:
zn: <k) B (n + 1>
— 2 3
n

Z(kz_k):2§k(k2—l):2i(l;> :2(n;r1> _ (n+1)7;(n—1)_

k=1 k=1

Then we have

You don’t need to know this.

4. The sequence of factorials 0!,1!,2!,... is defined as follows:

L itn=0,
o l(n=1)!n ifn>1.

You will prove by induction that n! > 3" for all n > 7.

(a) Verify that 7! > 37.
(b) Now fix some arbitrary n > 7 and assume for induction that n! > 3™. In this case,
prove that (n +1)! > 3"*!. [Hint: Use the facts (n+ 1) =n!-(n+1) and n+1 > 3]

(a): My computer says that 7! = 5040 and 37 = 2187, hence 7! > 37.

(b): Now fix some arbitrary n > 7 and assume for induction that n! > 3". In this case we
will show that (n + 1)! > 3", Indeed, we observe that

(n+ 1= (n+1)n! definition of factorial
> (n+1)3" because n! > 3"
>3-3" because n +1 >3
= 3"t

Recall the definition of Pascal’s Triangle. For all integers n, k with n > 0 we have

1 n=0k=0,
<Z> =1 n=0k+#0,
(7=1) + ("z') n>1,k = anything.

1You don’t need to simplify it.



This definition implies that (}) =0 for k <0 or k> nand (}) =1 for k=0 or k =n. The
Binomial Theorem says that for all numbers x we have

A+z)"=> (Z)xk

k

5. Use the Binomial Theorem to prove the following identity for all n > 1:

(1) 72() <o(5) roen(i) =

[Hint: Differentiate with respect to x.]

The Binomial Theorem holds for any value of x:

o= (o) (e (o)t ()

Taking the derivative of both sides with respect to = gives

n(l + 2)"=! = (T)x + (Z) (2z) + -+ <Z> (na"b).

This formula also holds for any value of z. In particular, substituting x = 1 gives

n(l+1)"=! = (Y) +2<Z> ++n<z)

which is the formula we want.

6. Let R, (d) be the maximum number of d-dimensional regions formed by n hyperplanes in
d-dimensional spaceﬂ Ludwig Schléfli (1850) gave a geometric argument that

1 d=0,n2>1,

R,1(d)+ Ry—1(d—1) n>1,d>1.

Use Schlafli’s recurrence and induction on n to prove that

Ry(d) = <Z>+<dﬁ1>+-~+<q)+<g> for all n > 0,d > 0.

Hint: For all n > 0, consider the statement

P(n) = “Ru(d) = <Z) + (df 1) bt (T) + <g> for all d > 0.

Check that P(0) is true. Then fix some arbitrary n > 1 and assume for induction that P(n)
is true. In this case, prove that P(n + 1) is also true. You will need to use the recurrence
formula for Pascal’s Triangle.

Proof. By definition we have Ry(d) = 1 for any d > 0. Also by definition, we have (2) =0
for any k # 0. Thus for any d > 0 we have

<2)+<d81)+...+<8) =040+ +0+1=1=Ry(d).

This shows that the statement P(0) is true.

2A hyperplane is a flat (d — 1)-dimensional shape in d-dimensional space. Never mind.



Now fix some arbitrary n > 0 and assume for induction that P(n) is true. That is, suppose
that for any d > 0 we have

- ()+(,2) -+ )

In this case we will prove for any d > 0 that

MM@—C§§+@jD+M+035_

How? From the definition of R, (d) and the induction hypothesis, we have
Rp+1(d) = Ry (d) + Ry (d — 1)

_<Z>+<dﬁl>+”'+<g>+<d21>+<dﬁ2>+”'+<g>'

Now we group these terms in pairs and use the definition of Pascal’s Triangle. Only one of
the terms doesn’t get paired up:

o= (5)+ (u20) -+ (5) < (10)« (0a) - )
L@ () G ()] G @)+ )
_ <n:lr1> N (ZJ—FD T <n—1|-1> .\ <8>
But it’s okay because () = ("F') = 1. Hence we have
R = ("5 ) (3 ) ek (U0,
as desired. -

Remark: The Steiner-Schlédfli Theorem was pure recreational mathematics. But recreational
mathematics has a habit of becoming useful. See Gilbert Strang’s Linear Algebra and Learning
from Data (page 381) for an application to neural networks.



