There are 5 problems, each with 3 parts. Each part is worth 2 points, for a total of 30 points. If any two exams are submitted with identical answers then **both** exams will receive 0 points.

1. Induction. For all positive integers n and p we define

$$S_p(n) := 1^p + 2^p + 3^p + \dots + n^p.$$

In this problem you will use induction to prove that $S_1(n) = n(n+1)/2$ for all $n \ge 1$.

(a) Check that the formula $S_1(n) = n(n+1)/2$ is true for n = 1, 2, and 3.

n	$S_1(n)$	n(n+1)/2	correct?
1	1	$\frac{1(1+1)}{2} = \frac{1 \cdot 2}{2} = 1$	\checkmark
2	1 + 2 = 3	$\frac{2(2+1)}{2} = \frac{2\cdot 3}{2} = 3$	\checkmark
1	1+2+3=6	$\frac{3(3+1)}{2} = \frac{3\cdot4}{2} = 6$	\checkmark

(b) Find a simple equation relating $S_1(n)$ and $S_1(n+1)$.

$$S_1(n+1) = 1 + 2 + 3 + \dots + n + (n+1)$$

$$S_1(n+1) = S_1(n) + (n+1).$$

(c) Prove that if $S_1(n) = n(n+1)/2$, then $S_1(n+1) = (n+1)(n+2)/2$. You must begin your proof with the words "Consider some $n \ge 1$ and assume that...".

Consider some $n \ge 1$ and assume that $S_1(n) = n(n+1)/2$. In this case we have

$$S_1(n+1) = S_1(n) + (n+1)$$

= $\frac{n(n+1)}{2} + (n+1)$
= $(n+1)\left(\frac{n}{2}+1\right)$
= $\frac{(n+1)(n+2)}{2}$,

as desired.

2. Recurrence. Consider the following recurrence relation:

$$p_n = p_{n-1} + n.$$

(a) Assume that $p_0 = 3$. In this case, make a table of p_n for n between 0 and 6.

n	0	1	2	3	4	5 18	6
p_n	3	4	6	9	13	18	24

(b) Assume that $p_5 = 20$. In this case, tell me the value of p_2 .

We can rearrange the recurrence to get $p_{n-1} = p_n - n$. Then we have

 $p_4 = p_5 - 5 = 20 - 5 = 15$ $p_3 = p_4 - 4 = 15 - 4 = 11$ $p_2 = p_3 - 3 = 11 - 3 = 8.$

(c) Assume that $p_0 = 1$. In this case, tell me a closed formula for p_n . [Hint: Prob 1.]

We have

$$p_{0} = 1$$

$$p_{1} = p_{0} + 1 = 1 + 1$$

$$p_{2} = p_{1} + 2 = 1 + 1 + 2$$

$$p_{3} = p_{2} + 3 = 1 + 1 + 2 + 3$$

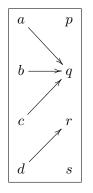
$$\vdots$$

$$p_{n} = 1 + (1 + 2 + 3 + \dots + n)$$

Then using the formula from Problem 1 gives $p_n = 1 + \frac{n(n+1)}{2}$.

- **3.** Functions. Consider the sets $X = \{a, b, c, d\}$ and $Y = \{p, q, r, s\}$.
 - (a) Draw an example of a function $f: X \to Y$ that is **not** injective and **not** surjective.

There are 232 different correct answers. Here is one of them:

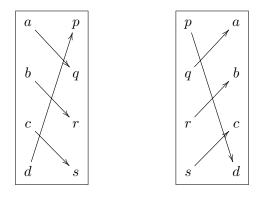


(b) Tell me the total number of different functions from X to Y.

In general the number of different functions from X to Y is $\#Y^{\#X}$. In this case we have #X = #Y = 4, hence there are $4^4 = 256$ functions.

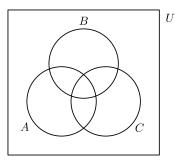
(c) Draw an example of an **invertible** function $f: X \to Y$. Also draw its inverse f^{-1} .

There are 24 different correct answers. Here is one of them:

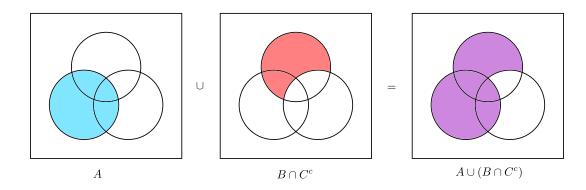


4. Venn Diagrams. Fix a universal set U and consider sets $A, B, C \subseteq U$. In this problem you will use Venn diagrams to prove that $A \cup (B \cap C^c) = (A \cup B) \cap (A \cup C^c)$.

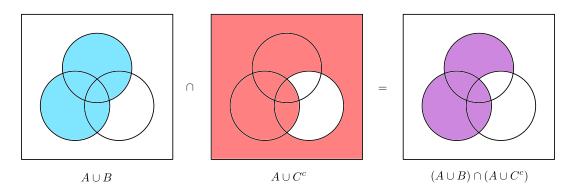
(a) Draw a general Venn diagram displaying the sets A, B, C, and U.



(b) Use Venn diagrams to draw the set $A \cup (B \cap C^c)$. Show intermediate steps.



(c) Use Venn diagrams to draw the set $(A \cup B) \cap (A \cup C^c)$. Show intermediate steps.



[Remark: The fact that $A \cup (B \cap C^c) = (A \cup B) \cap (A \cup C^c)$ is an example of the distributive law.]

5. Truth Tables. Let P and Q be logical statements.

(a) Draw the truth table for the statement $P \wedge Q$ (i.e., P AND Q).

P	Q	$P \land Q$
T	Т	T
T	F	F
F	T	F
F	F	F

(b) Draw the truth table for the statement $\neg(P \land Q)$ (i.e., NOT (P AND Q))

P	Q	$P \wedge Q$	$\neg (P \land Q)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

(c) Draw the truth table for the statement $\neg P \lor \neg Q$ (i.e., (NOT P) OR (NOT Q)). [Hint: It may help to think about the Venn diagram of the set $A^c \cup B^c$.]

P	Q	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
\overline{F}	F	T	T	T

[Remark: The fact that $\neg(P \land Q) = \neg P \lor \neg Q$ is an example of de Morgan's law.]

1. Let n be a positive whole number. Find a **closed form** for the following sum:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

2. Let n be a positive whole number. Find a **closed form** for the following sum:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n^{3}$$

3. Translate the following statement into English. (Many correct answers.)

$$\forall x \in S, P(x)$$

"Every element x of the set S satisfies property P(x)."

4. Translate the following statement into English. (Many correct answers.)

$$\exists x \in S, \neg P(x)$$

"There exists an element x of the set S such that property P(x) does not hold."

5. What is the logical relationship between the statements in Problems 3 and 4?

They are opposites. Writing symbolically, we have

$$\neg(\forall x \in S, P(x)) \equiv \exists x \in S, \neg P(x).$$

Throughout this quiz, P and Q are Boolean variables.

1. Write out the truth table for $P \lor Q$.

Proof.

Math 309

Quiz 2 Solutions

P	Q	$ P \lor Q$
T	T	T
T	F	T
F	T	T
F	F	F

2. Write out the truth table for $P \wedge Q$.

Proof.

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F
		1

Now consider the Boolean function $\varphi:\{T,F\}^2\to\{T,F\}$ defined by the following table:

Р	Q	$\varphi(P,Q)$
T	T	T
T	F	F
F	T	T
F	F	T

3. Write out the truth table for $\neg \varphi(P,Q)$.

Proof.

P	Q	$\neg \varphi(P,Q)$
T	T	F
T	F	T
F	T	F
F	F	F

4. Tell me a **formula** for $\neg \varphi(P,Q)$ in terms of \lor, \land, \neg . [Hint: Disjunctive normal form.]

Proof. The only T is in the (T, F) row of the truth table. This row corresponds to the formula $P \wedge \neg Q$ (and we can think of it as a region of the corresponding Venn diagram). Therefore the disjunctive normal form is

$$\neg \varphi(P,Q) = P \land \neg Q.$$

5. Now tell me a formula for $\varphi(P,Q)$. [Hint: Use Problem 4 and de Morgan's identity.]

Proof. We can read the disjunctive normal form of $\varphi(P,Q)$ from the truth table above. There are three T's in the rows (T,T), (F,T) and (F,F). Therefore the disjunctive normal form is

$$\varphi(P,Q) = (P \land Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q).$$

However, this doesn't look very nice. We get a more compact formula by using Problem 4 and applying de Morgan's identity. We have

$$\neg \varphi(P,Q) = P \land \neg Q$$
$$\varphi(P,Q) = \neg(P \land \neg Q)$$
$$\varphi(P,Q) = \neg P \lor \neg \neg Q$$
$$\varphi(P,Q) = \neg P \lor Q.$$

[Remark: The Boolean function φ is very important in mathematics. In this class we will denote it by " $P \Rightarrow Q$ " := $\varphi(P,Q)$ and we will read the statement " $P \Rightarrow Q$ " as "if P then Q", or "Pimplies Q". (WARNING: This definition might not totally agree with your intuition about the words "if ...then ...". For example, do you regard "if 1 + 1 = 3 then 1 + 1 = 5" to be a true statement? I do.) Mathematical proofs and logical arguments are built from these arrows.] **1.** Let n be a positive integer. Tell me a **closed formula** for the following sum:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

2. Use your answer from Problem 1 to simplify the following sum:

$$\sum_{k=1}^{n} (2k+1) = 2\left(\sum_{k=1}^{n} k\right) + \left(\sum_{k=1}^{n} 1\right) = 2 \cdot \frac{n(n+1)}{2} + n = n(n+1) + n = n(n+2)$$

3. Suppose that the numbers p_n are defined by the initial condition $p_0 = 1$ and the recurrence $p_{n+1} = p_n + n + 2$ for all $n \ge 0$. Fill in the following table:

n	0	1	2	3	4
p_n	1	3	6	10	15

4. Continuing from Problem 3, use your answer from Problem 1 to find a **closed formula**: There are many ways to do this. Here's the least clever way:

$$p_{0} = 1$$

$$p_{1} = 1 + (0 + 2)$$

$$p_{2} = 1 + (0 + 2) + (1 + 2)$$

$$\vdots$$

$$p_{n} = 1 + (0 + 2) + (1 + 2) + (3 + 2) + (4 + 2) + \dots + ((n - 1) + 2)$$

$$= 1 + \sum_{k=0}^{n-1} (k + 2)$$

$$= 1 + \left(\sum_{k=0}^{n-1} k\right) + \left(\sum_{k=0}^{n-1} 2\right)$$

$$= 1 + \frac{(n - 1)n}{2} + 2n$$

$$= \frac{2 + (n - 1)n + 4n}{2}$$

$$= \frac{n^{2} + 3n + 2}{2}$$

$$= \frac{(n + 1)(n + 2)}{2}$$

0. (Make-up for Quiz 1) The numbers p_n are defined by the initial condition $p_0 = 1$ and the recurrence $p_n = p_{n-1} - n$ for all $n \ge 1$. Find a closed formula:

$$p_n = 1 - 1 - 2 - 3 - \dots - n$$

= 1 - (1 + 2 + 3 + \dots + n)
= 1 - $\frac{n(n+1)}{2}$

1. Let S be a set and for all elements $x \in S$ let P(x) be a logical statement. Translate the following statements into English:

• " $\forall x \in S, P(x)$ "

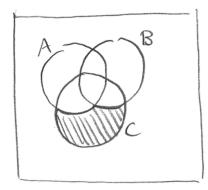
"For all elements x in S, the statement P(x) is true." or "The statement P(x) holds for every element x in S." or "Every element x of S satisfies P(x)."

• " $\exists x \in S, \neg P(x)$ "

"There exists an element x in S such that P(x) is false."

2. Let A, B, C be subsets of the universal set U. Use a Venn diagram to illustrate the set

 $(A \cup B)^c \cap C.$



3. Complete the following truth table:

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
Т	T	Т	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

4. Consider the Boolean function $\varphi(P,Q)$ defined as follows:

P	Q	$\varphi(P,Q)$
T	T	F
T	F	T
F	T	F
F	F	T

Write down two different algebraic formulas for this function:

(There are infinitely many correct answers.)

$$\varphi(P,Q) = (P \land \neg Q) \lor (\neg P \land \neg Q)$$
$$\varphi(P,Q) = \neg Q$$

Problem 1.

(a) Draw Pascal's Triangle down to the 7th row.

(b) Use the triangle to expand $(1+x)^7$.

$$(1+x)^7 = 1 + 7x + 21x^2 + 35x^3 + 35x^4 + 21x^5 + 7x^6 + x^7$$

(c) Use the triangle to evaluate the following sum:

$$\sum_{k=0}^{4} (-1)^k \binom{7}{k} = \binom{7}{0} - \binom{7}{1} + \binom{7}{2} - \binom{7}{3} + \binom{7}{4} = 1 - 7 + 21 - 35 + 35 = 15$$

Problem 2. Let the sequence S_0, S_1, S_2, \ldots be defined by the following initial condition and recurrence relation:

$$S_n := \begin{cases} 1 & \text{if } n = 0, \\ S_{n-1} + 2^{n-1} & \text{if } n \ge 1. \end{cases}$$

(a) Fill in the following table:

1	n	0	1	2	3	4	5
S	\tilde{b}_n	1	2	4	8	16	32

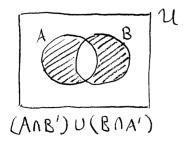
(b) Try to guess a simple formula for S_n .

I guess that $S_n = 2^n$ for all $n \ge 0$.

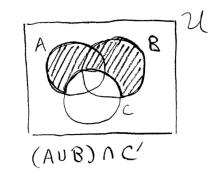
- (c) Use induction to prove that your formula is correct.
 - Base Case. If n = 0 then we have $S_0 = 1 = 2^0$. \checkmark
 - Induction Step. Now fix some $n \ge 0$ and assume for induction that $S_n = 2^n$. In this case we want to prove that $S_{n+1} = 2^{n+1}$. Indeed, we observe that

$S_{n+1} = S_n + 2^n$	by definition
$=2^n+2^n$	by assumption
$= 2 \cdot 2^n$	
$=2^{n+1}.$	

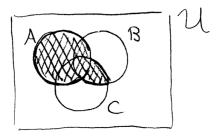
- **1. Venn Diagrams.** Let $A, B, C \subseteq U$ be subsets of the universal set.
 - (a) Draw a Venn diagram to show the set $(A \cap B') \cup (B \cap A')$.



(b) Draw a Venn diagram to show the set $(A \cup B) \cap C'$.



(c) Tell the name of the following set (many correct answers):



The shortest name of the set is $A \cup (B \cap C)$. The disjunctive normal form is $(A \cap B \cap C) \cup (A \cap B' \cap C) \cup (A \cap B \cap C') \cup (A \cap B' \cap C') \cup (A' \cap B \cap C)$.

Or we can compute the disjunctive normal form of the unshaded region. Then we take the complement and apply de Morgan's law:

$$\begin{bmatrix} (A' \cap B' \cap C) \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C') \end{bmatrix}' = (A' \cap B' \cap C)' \cap (A' \cap B \cap C')' \cap (A' \cap B' \cap C')' = (A \cup B \cup C') \cap (A \cup B' \cup C) \cap (A \cup B \cup C).$$

The resulting expression is called the *conjunctive normal form*.

2. Boolean Functions. Consider the Cartesian product set:

$$\{T,F\}^n := \underbrace{\{T,F\} \times \{T,F\} \times \dots \times \{T,F\}}_{n \text{ times}}.$$

(a) Tell me the number of elements of the set $\{T, F\}^n$.

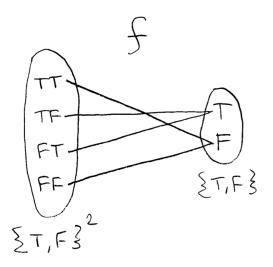
$$#\{T,F\}^n = \underbrace{\#\{T,F\} \times \#\{T,F\} \times \dots \times \#\{T,F\}}_{n \text{ times}} = \underbrace{2 \times 2 \times \dots \times 2}_{n \text{ times}} = 2^n$$

(b) Count the functions $f: \{T, F\}^2 \to \{T, F\}$ with two inputs and one output.

The number of functions from A and B is $(\#B)^{\#A}$. Hence the number of functions from $\{T, F\}^2$ to $\{T, F\}$ is

$$(\#\{T,F\})^{(\#\{T,F\}^2)} = 2^{(2^2)} = 2^4 = 16.$$

(c) Fill in the arrows for the function $f(P,Q) = (P \land \neg Q) \lor (Q \land \neg P)$:



Remark: This is just one of the 16 Boolean functions with two inputs and one output. It is commonly called XOR. This function also appeared in Problem 1(a).